Thomlinson J.R.

The Ecological Consequences of Socioeconomic and Land-Use Changes in Postagriculture Puerto Rico

Grau, H. Ricardo; Aide, T. Mitchell; Zimmerman, Jess K.; Thomlinson, John R.; Helmer, Eileen; Zou, Xioming 2003. The ecological consequences of socioeconomic and land-use changes in post agriculture Puerto Rico. BioScience. Vol. 53, no. 12 (Dec. 2003): Pages 1159-1168.

Contrary to the general trend in the tropics, forests have recovered in Puerto Rico from less than 10% of the landscape in the late 1940s to more than 40% in the present. The recent Puerto Rican history of forest recovery provides the opportunity to study the ecological consequences of economic globalization, reflected in a shift from agriculture to manufacturing and in human migration from rural to urban areas. Forest structure rapidly recovers through secondary succession, reaching mature forest levels of local biodiversity and biomass in approximately 40 years. Despite the rapid structural recovery, the legacy of pre-abandonment land use, including widespread abundance of exotic species and broadscale floristic homogenization, is likely to persist for centuries.

Trends and scenarios of the carbon budget in postagricultural Puerto Rico (1936–2060)

Grau, H. R., T. M. Aide, J. K. Zimmerman, and J. R.
Thomlinson. 2004. Trends and scenarios of the carbon
budget in post-agricultural Puerto Rico (1936–2060). Global
Change Biology 10:1163–1179.

Contrary to the general trend in the tropics, Puerto Rico underwent a process of agriculture abandonment during the second half of the 20th century as a consequence of socioeconomic changes toward urbanization and industrialization. Using data on landuse change, biomass accumulation in secondary forests, and ratios between gross domestic product (GDP) and carbon emissions, we developed a model of the carbon budget for Puerto Rico between 1936 and 2060. As a consequence of land abandonment, forests have expanded rapidly since 1950, achieving the highest sequestration rates between 1980 and 1990. Regardless of future scenarios of demography and land use, sequestration rates will decrease in the future because biomass accumulation decreases with forest age and there is little agricultural land remaining to be abandoned. Due to high per-capita consumption and population density, carbon emissions of Puerto Rico have increased dramatically and exceeded carbon sequestration during the second half of the 20th century. Although Puerto Rico had the highest percent of reforestation for a tropical country, emissions during the period 1950–2000 were approximately 3.5 times higher than sequestration, and current annual emission is almost nine times the rate of sequestration. Additionally, while sequestration will decrease over the next six decades, current socioeconomic trends suggest increasing emissions unless there are significant changes in energy technology or consumption patterns. In conclusion, socioeconomic changes leading to urbanization and industrialization in tropical countries may promote high rates of carbon sequestration during the decades following land abandonment. Initial high rates of carbon sequestration can balance emissions of developing countries with low emission/GDP ratio. In Puerto Rico, the socioeconomic changes that promoted reforestation also promoted high-energy consumption, and resulted in a net increase in carbon emissions.

Metacommunity structure of tropical forest along an elevation gradient in Puerto Rico

Barone, J. A. et al. 2008. Metacommunity structure of tropical forest along an elevational gradient in Puerto Rico. – J. Trop. Ecol. 24: 525–534.

The development of metacommunity theory, which suggests that the diversity and composition of communities is influenced by interactions with other communities, has produced new tools for evaluating patterns of community change along environmental gradients. These techniques were used to examine how plant communities changed along elevation gradients in montane tropical forests. Two transects of 0.1-ha vegetation plots were established every 50 m in elevation in the mountains of eastern Puerto Rico. The transects ranged from 300 m to 1000 m asl and 400 m to 900 m. In each plot, all free-standing woody stems greater than 1 cm in diameter at 130 cm in height were marked, measured and identified. Additional data on three similar transects were taken from the literature. The upper or lower boundaries of species ranges were significantly clumped along all five transects. Coherence, a measure of the number of gaps in species distributions, was also significant across all transects, and three transects showed significant, albeit low, nestedness. Four sites had significant species turnover. These results suggest that metacommunity techniques can be useful in searching for patterns of community change present in montane tropical forests.

predicting landslide vegetation in patches on landscape gradients in puerto rico

Myster, R.W., Thomlinson, J.R., and Larsen, M.C., 1997, Predicting landslide vegetation in patches on landscape gradients in Puerto Rico: Landscape Ecology, v. 12 p. 299-307.

We explored the predictive value of common landscape characteristics for landslide vegetative stages in the LuquilloExperimental Forest of Puerto Rico using four different analyses. Maximum likelihood logistic regression showed that aspect, age, and substrate type could be used to predict vegetative structural stage. In addition it showed that the structural complexity of the vegetation was greater in landslides (1) facing the southeast (away from the dominant wind direction of recent hurricanes), (2) that were older, and (3) that had volcaniclastic rather than dioritic substrate. Multiple regression indicated that both elevation and age could be used to predict the current vegetation, and that vegetation complexity was greater both at lower elevation and in older landslides. Pearson product-moment correlation coefficients showed that (1) the presence of volcaniclastic substrate in landslides was negatively correlated with aspect, age, and elevation, (2) that road association and age were positively correlated and (3) that slope was negatively correlated with area. Finally, principal components analysis showed that landslides were differentiated on axes defined primarily by age, aspect class, and elevation in the positive direction, and by volcaniclastic substrate in the negative direction. Because several statistical techniques indicated that age, aspect, elevation, and substrate were important in determining vegetation complexity on landslides, we conclude that landslide succession is influenced by variation in these landscape traits. In particular, we would expect to find more successional development on landslides which are older, face away from hurricane winds, are at lower elevation, and are on volcaniclastic substrate. Finally, our results lead into a hierarchical conceptual model of succession on landscapes where the biota respond first to either gradients or disturbance depending on their relative severity, and then to more local biotic mechanisms such as dispersal, predation and competition.
Syndicate content