Waide R.B.

Long-term influence of deforestation on tree species composition and litter dynamics of a tropical rain forest in Puerto Rico

Zou X, Zucca CP, Waide RB & McDowell WH (1995)
Long-term influence of deforestation on tree species composition
and litter dynamics of a tropical rain forest in
Puerto Rico. Forest Ecology and Management 78:

Understanding the long-term impact of deforestation on ecosystem structure and function of tropical forests may aid in designing future conservation programs to preserve biodiversity and sustain ecosystem productivity. We examined forest structure, tree species composition, litterfall rate, and leaf litter decomposition in a mid-successional forest (MSF) and an adjacent mature tabonuco forest (MTF) in the Luquillo Experimental Forest of Puerto Rico. Whereas the MTF site received limited human disturbance, the MSF site had been cleared for timber production by the beginning of this century and was abandoned after hurricanes struck the Luquillo Mountains in the 1920s and 1930s. We found that the MSF was dominated by successional tree species 50 years after secondary succession, and did not differ in tree basal area and litterfall rate from the MTF. Leaf decomposition rate in the MSF was higher than in the MTF, but this differencew as small.O ur resultss how that deforestation has long-term (over 50 years) influence on tree species composition and that recovery of leaf decomposition processes in secondary forest is relatively faster than that of tree species composition.

Nitrogen Immobilization by Decomposing Woody Debris and the Recovery of Tropical Wet Forest from Hurricane Damage

Nitrogen Immobilization by Decomposing Woody Debris and the Recovery of Tropical Wet Forest from Hurricane Damage
J. K. Zimmerman, W. M. Pulliam, D. J. Lodge, V. Quiñones-Orfila, N. Fetcher, S. Guzmán-Grajales, J. A. Parrotta, C. E. Asbury, L. R. Walker and R. B. Waide
Vol. 72, No. 3 (Apr., 1995), pp. 314-322

Following damage caused by Hurricane Hugo (September 1989) we monitored inorganic nitrogen availability in soil twice in 1990, leaf area index in 1991 and 1993, and litter production from 1990 through 1992 in subtropical wet forest of eastern Puerto Rico. Experimental removal of litter and woody debris generated by the hurricane (plus any standing stocks present before the hurricane) increased soil nitrogen availability and above-ground productivity by as much as 40% compared to unmanipulated control plots. These increases were similar to those created by quarterly fertilization with inorganic nutrients. Approximately 85% of hurricane-generated debris was woody debris >5 cm diameter. Thus, it appeared that woody debris stimulated nutrient immobilization, resulting in depression of soil nitrogen availability and productivity in control plots. This was further suggested by simulations of an ecosystem model (CENTURY) calibrated for our site that indicated that only the large wood component of hurricane-generated debris was of sufficiently low quality and of great enough mass to cause the observed effects on productivity. The model predicted that nutrient immobilization by decaying wood should suppress net primary productivity for 13 yr and total live biomass for almost 30 yr following the hurricane. Our findings emphasize the substantial influence that woody debris has upon nutrient cycling and productivity in forest ecosystems through its effects on the activity of decomposers. We suggest that the manner in which woody debris regulates ecosystem function in different forests is significantly affected by disturbance regime.

Land Use History, Environment, and Tree Composition in a Tropical Forest

Thompson, Jill; Brokaw, Nicholas; Zimmerman, Jess K.; Waide, Robert B.; Everham, Edwin M. III; Lodge, D. Jean; Taylor, Charlotte M.; Garcia-Montiel, Diana; Fluet, Marcheterre 2002. Land use history, environment, and tree composition in a tropical forest. Ecological applications. Vol. 12, no. 5 (2002): pages 1344-1363.

The effects of historical land use on tropical forest must be examined to understand present forest characteristics and to plan conservation strategies. We compared the effects of past land use, topography, soil type, and other environmental variables on tree species composition in a subtropical wet forest in the Luquillo Mountains, Puerto Rico. The study involved stems > 10 cm diameter measured at 130 cm above the ground, within the 16-ha Luquillo Forest Dynamics Plot (LFDP), and represents the forest at the time Hurricane Hugo struck in 1989. Topography in the plot is rugged, and soils are variable. Historical documents and local residents described past land uses such as clear-felling and selective logging followed by farming, fruit and coffee production, and timber stand improvement in the forest area that now includes the LFDP. These uses ceased 40-60 yr before the study, but their impacts could be differentiated by percent canopy cover seen in aerial photographs from 1936. Using these photographs, we defined four historic cover classes within the LFDP. These ranged from cover class 1, the least tree-covered area in 1936, to cover class 4, with the least intensive historic land use (selective logging and timber stand improvement). In 1989, cover class 1 had the lowest stem density and proportion of large stems, whereas cover class 4 had the highest basal area, species richness, and number of rare and endemic species. Ordination of tree species composition (89 species, 13 167 stems) produced arrays that primarily corresponded to the four cover classes (i.e., historic land uses). The ordination arrays corresponded secondarily to soil characteristics and topography. Natural disturbances (hurricanes, landslides, and local treefalls) affected tree composition, but these effects did not correlate with the major patterns of species distributions on the plot. Thus, it appears that forest development and natural disturbance have not masked the effects of historical land use in this tropical forest, and that past land use was the major influence on the patterns of tree composition in the plot in 1989. The least disturbed stand harbors more rare and endemic species, and such stands should be protected.


Controls of Primary Productivity: Lessons from the Luquillo Mountains in Puerto Rico
Robert B. Waide, Jess K. Zimmerman and F. N. Scatena
Vol. 79, No. 1 (Jan., 1998), pp. 31-37

The Luquillo Mountains of eastern Puerto Rico are used as a case study to evaluate possible single- or multiple-factor controls of productivity in montane forests. A review of published studies from the Luquillo Mountains revealed that canopy height, productivity, and species richness decline while stem density increases with elevation, as is typical of other montane forests. A mid-elevation floodplain palm stand with high levels of productivity provides a notable exception to this pattern. Previous basic and applied studies of productivity in the Luquillo Mountains have consistently considered the overall gradient in productivity to be important in understanding forest structure and function. Recent observational and experimental studies have determined that disturbance of all types is an important factor mediating productivity in both low- and high-elevation (cloud) forests. For example, low-elevation forest recovers more quickly from hurricane disturbance and is more responsive to nutrient additions than is cloud forest. All of the factors proposed for limiting productivity are supported in one way or another by research in the Luquillo Mountains. What is critically lacking is both an appreciation for the way that these factors interact and experiments appropriate to evaluate multiple controls acting simultaneously.

The Effect of Hurricane Hugo on Bird Populations in the Luquillo Experimental Forest, Puerto Rico

The Effect of Hurricane Hugo on Bird Populations in the Luquillo Experimental Forest, Puerto Rico
Robert B. Waide
Vol. 23, No. 4, Part A. Special Issue: Ecosystem, Plant, and Animal Responses to Hurricanes in the Caribbean (Dec., 1991), pp. 475-480

Abstract Hurricane Hugo caused severe but short-term disruption of the avian community of a subtropical wet forest site in the Luquillo Mountains of Puerto Rico. Nectarivorous and frugivorous bird species were greatly reduced in numbers immediately after the hurricane. The single granivore species studied decreased in numbers more slowly Insectivores and omnivores increased after the hurricane. All species except the granivore returned to their prehurricane abundance levels prior to the following breeding season, suggesting that population changes were a result of movement in search of food rather than mortality. Mist net captures and observations indicated that birds occupied a reduced vertical foraging range after the hurricane, and stomach contents from birds captured 6-10 months after the hurricane showed that different foods were being consumed. Fewer and different kinds of arthropods were found in stomachs after the hurricane. These findings, coupled with the frequent occurrence of hurricanes in the Caribbean, suggest that there is pressure on bird populations in this region to maintain plasticity in habitat and dietary requirements.
Syndicate content