Contributions of dust to phosphorus cycling in tropical forests of the Luquillo Mountains, Puerto Rico

Pett-Ridge, J. C. 2009. Contributions of dust to phosphorus
cycling in tropical forests of the Luquillo Mountains, Puerto
Rico. Biogeochemistry 94:63-80.

The input of phosphorus (P) through mineral aerosol dust deposition may be an important component of nutrient dynamics in tropical forest ecosystems. A new dust deposition calculation is used to construct a broad analysis of the importance of dust-derived P to the P budget of a montane wet tropical forest in the Luquillo Mountains of Puerto Rico. The dust deposition calculation used here takes advantage of an internal geochemical signal (Sr isotope mass balance) to provide a spatially integrated longer-term average dust deposition flux. Dust inputs of P (0.23 ± 0.08 kg ha-1 year-1) are compared with watershed-average inputs of P to the soil through the conversion of underlying saprolite into soil (between 0.07 and 0.19 kg ha-1 year-1), and with watershed-average losses of soil P through leaching (between 0.02 and 0.14 kg ha-1 year-1) and erosion (between 0.04 and 1.38 kg ha-1 year-1). The similar magnitude of dust-derived P inputs to that of other fluxes indicates that dust is an important component of the soil and biomass P budget in this ecosystem. Dust-derived inputs of P alone are capable of completely replacing the total soil and biomass P pool on a timescale of between 2.8 ka and 7.0 ka, less than both the average soil residence time (*15 ka) and the average landslide recurrence interval (*10 ka).

Litterfall and Decomposition in Relation to Soil Carbon Pools Along a Secondary Forest Chronosequence in Puerto Rico

Ostertag, R.; Marín-Spiotta, E.; Silver, W.L.; Schulten, J. 2008. Litterfall and decomposition in relation to soil carbon pools along a secondary forest chronosequence in Puerto Rico. Ecosystems. 11:701-714.

Secondary forests are becoming increasingly widespread in the tropics, but our understanding of how secondary succession affects carbon (C) cycling and C sequestration in these ecosystems is limited. We used a well-replicated 80-year pasture to forest successional chronosequence and primary forest in Puerto Rico to explore the relationships among litterfall, litter quality, decomposition, and soil C pools. Litterfall rates recovered rapidly during early secondary succession and averaged 10.5 (± 0.1 SE) Mg/ha/y among all sites over a 2-year period. Although forest plant community composition and plant life form dominance changed during succession, litter chemistry as evaluated by sequential C fractions and by 13C-nuclear magnetic resonance spectroscopy did not change significantly with forest age, nor did leaf decomposition rates. Root decomposition was slower than leaves and was fastest in the 60-year-old sites and slowest in the 10- and 30-year-old sites. Common litter and common site experiments suggested that site conditions were more important controls than litter quality in this chronosequence. Bulk soil C content was positively correlated with hydrophobic leaf compounds, suggesting that there is greater soil C accumulation if leaf litter contains more tannins and waxy compounds relative to more labile compounds. Our results suggest that most key C fluxes associated with litter production and decomposition re-establish rapidly—within a decade or two—during tropical secondary succession. Therefore, recovery of leaf litter C cycling processes after pasture use are faster than aboveground woody biomass and species accumulation, indicating that these young secondary forests have the potential to recover litter cycling functions and provide some of the same ecosystem services of primary forests.


Moyer RP (2008) Carbon Isotopes (δ13C & Δ14C) and Trace Elements (Ba, Mn, Y) in Small Mountainous Rivers and Coastal Coral Skeletons in Puerto Rico. Ph.D. Dissertation, The Ohio State University, School of Earth Sciences, Columbus, OH. 260pp.

Tropical small mountainous rivers (SMRs) may transport up to 33% of the total carbon (C) delivered to the oceans. However, these fluxes are poorly quantified and historical records of land-ocean carbon delivery are rare. Corals have the potential to provide such records in the tropics because they are long-lived, draw on dissolved inorganic carbon (DIC) for calcification, and isotopic variations within their skeletons are useful proxies of palaeoceanographic variability. The ability to quantify riverine C inputs to the coastal ocean and understand how they have changed through time is critical to understanding global carbon budgets in the context of modern climate change. A seasonal dual isotope (13C & 14C) characterization of the three major C pools in two SMRs and their adjacent coastal waters within Puerto Rico was conducted in order to understand the isotope signature of DIC being delivered to the coastal oceans. Additionally a 56-year record of paired coral skeletal C isotopes (δ13C & Δ14C) and trace elements (Ba/Ca, Mn/Ca, Y/Ca) is presented from a coral growing ~1 km from the mouth of an SMR. Four major findings were observed: 1) Riverine DIC was more depleted in δ13C and Δ14C than seawater DIC, 2) the correlation of δ13C and Δ14C was the same in both coral skeleton and the DIC of the river and coastal waters, 3) Coral δ13C and Ba/Ca were annually coherent with river discharge, and 4) increases in coral Ba/Ca were synchronous with the iii timing of depletions of both δ13C and Δ14C in the coral skeleton and increases in river discharge. This study represents a first-order comprehensive C isotope analysis of major C pools being transported to the coastal ocean via tropical SMRs. The strong coherence between river discharge and coral δ13C and Ba/Ca, and the concurrent timing of increases in Ba/Ca with decreases in δ13C and Δ14C suggest that river discharge is simultaneously recorded by multiple geochemical records. Based on these findings, the development of coral-based proxies for the history of land-ocean carbon flux would be invaluable to understanding the role of tropical land-ocean carbon fluxes in the context of global climate change.

Hurricane-induced nitrous oxide fluxes from a wet tropical forest

Erickson HE, Ayala G (2004) Hurricane-induced nitrous oxide
fluxes from a wet tropical forest. Global Change Biology, 10,

Hurricane activity is predicted to increase over the mid-Atlantic as global temperatures rise. Nitrous oxide (N2O), a greenhouse gas with a substantial source from tropical soils, may increase after hurricanes yet this effect has been insufficiently documented. On September 21, 1998, Hurricane Georges crossed Puerto Rico causing extensive defoliation. We used a before–after design to assess the effect of Georges on N2O emissions, and factors likely influencing N2O fluxes including soil inorganic nitrogen pools and soil water content in a humid tropical forest at El Verde, Puerto Rico. Emissions of N2O up to 7 months post-Georges ranged from 5.92 to 4.26 ng cm2 h1 and averaged five times greater than fluxes previously measured at the site. N2O emissions 27 months after the hurricane remained over two times greater than previously measured fluxes. Soil ammonium pools decreased after Georges and remained low. The first year after the hurricane, nitrate pools increased, but not significantly when compared against a single measurement made before the hurricane. Soil moisture and temperature did not differ significantly in the two sampling periods. These results suggest that hurricanes increase N2O fluxes in these forests by altering soil N transformations and the relative availabilities of inorganic nitrogen.

Biological Nitrogen Fixation in Two Tropical Forests: Ecosystem-Level Patterns and Effects of Nitrogen Fertilization

Cusack DF, Silver W, McDowell WH (2009b) Biological nitrogen fixation
in two tropical forests: ecosystem-level patterns and effects of nitrogen
fertilization. Ecosystems, 12, 1299–1315.

Humid tropical forests are often characterized by large nitrogen (N) pools, and are known to have large potential N losses. Although rarely measured, tropical forests likely maintain considerable biological N fixation (BNF) to balance N losses. We estimated inputs of N via BNF by free-living microbes for two tropical forests in Puerto Rico, and assessed the response to increased N availability using an on-going N fertilization experiment. Nitrogenase activity was measured across forest strata, including the soil, forest floor, mosses, canopy epiphylls, and lichens using acetylene (C2H2) reduction assays. BNF varied significantly among ecosystem compartments in both forests. Mosses had the highest rates of nitrogenase activity per gram of sample, with 11 ± 6 nmol C2H2 reduced/g dry weight/h (mean ± SE) in a lower elevation forest, and 6 ± 1 nmol C2H2/g/h in an upper elevation forest. We calculated potential N fluxes via BNF to each forest compartment using surveys of standing stocks. Soils and mosses provided the largest potential inputs of N via BNF to these ecosystems. Summing all components, total background BNF inputs were 120 ± 29 lg N/m2/h in the lower elevation forest, and 95 ± 15 lg N/m2/h in the upper elevation forest, with added N significantly suppressing BNF in soils and forest floor. Moisture content was significantly positively correlated with BNF rates for soils and the forest floor. We conclude that BNF is an active biological process across forest strata for these tropical forests, and is likely to be sensitive to increases in N deposition in tropical regions.

Topographic control of soil microbial activity: a case study of denitrifiers

Florinsky, 1. V., S. McMahon, and D. L. Burton. 2004.
Topographic control of soil microbial activity: a case study of
denitrifiers. Geoderma 119:33-53.

Topography may affect soil microbial processes, however, the use of topographic data to model and predict the spatial distribution of soil microbial properties has not been widely reported. We studied the effect of topography on the activity of denitrifiers under different hydrologic conditions in a typical agroecosystem of the northern grasslands of North America using digital terrain modelling (DTM). Three data sets were used: (1) digital models of nine topographic attributes, such as elevation, slope gradient and aspect, horizontal, vertical, and mean land surface curvatures, specific catchment area, topographic, and stream power indices; (2) two soil environmental attributes (soil gravimetric moisture and soil bulk density); and (3) six attributes of soil microbial activity (most probable number of denitrifiers, microbial biomass carbon content, denitrifier enzyme activity, nitrous oxide flux, denitrification rate, and microbial respiration rate). Linear multiple correlation, rank correlation, circular–linear correlation, circular rank correlation, and multiple regression were used as statistical analyses. In wetter soil conditions, topographically controlled and gravity-driven supply of nutritive materials to microbiota increased the denitrification rate. Spatial differentiation of the denitrification rate and amount of denitrifying enzyme in the soil was mostly effected by redistribution and accumulation of soil moisture and soil organic matter down the slope according to the relative position of a point in the landscape. The N2O emission was effected by differentiation and gain of soil moisture and organic matter due to the local geometry of a slope. The microbial biomass, number of denitrifiers, and microbial respiration depended on both the local geometry of a slope and relative position of a point in the landscape. In drier soil conditions, although denitrification persisted, it was reduced and did not depend on the spatial distribution of soil moisture and thus land surface morphology. This may result from a reduction in soil moisture content below a critical level sufficient for transient induction of denitrification but not sufficient to preserve spatial patterns of the denitrification according to relief. Digital terrain models can be used to predict the spatial distribution of the microbial biomass and amount of denitrifying enzyme in the soil. The study demonstrated a feasibility of applying digital terrain modelling to investigate relations of other groups of soil microbiota with topography and the system ‘topography–soil microbiota’ as a whole.


Emmanual J Gabet, O J Reichman, and Eric W Seabloom (2003)
The Effects of Bioturbation on Soil Processes and Sediment Transport
Annual Review Earth Planet Science:249-73.

Plants and animals exploit the soil for food and shelter and, in the process, affect it in many different ways. For example, uprooted trees may break up bedrock, transport soil downslope, increase the heterogeneity of soil respiration rates, and inhibit soil horizonation. In this contribution, we review previously published papers that provide insights into the process of bioturbation. We focus particularly on studies that allowus to place bioturbation within a quantitative framework that links the form of hillslopes with the processes of sediment transport and soil production. Using geometrical relationships and data from others’ work, we derive simple sediment flux equations for tree throw and root growth and decay.

Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation–incubation procedure

Zoua, X.M.; Ruanc,H.H.; Fua, Y.; Yanga, X.D.; Sha, L.Q. 2005. Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation–incubation procedure.. Soil Biology & Biochemistry 37 :1923-1928.

Labile carbon is the fraction of soil organic carbon with most rapid turnover times and its oxidation drives the flux of CO2 between soils and atmosphere. Available chemical and physical fractionation methods for estimating soil labile organic carbon are indirect and lack a clear biological definition. We have modified the well-established Jenkinson and Powlson’s fumigation–incubation technique to estimate soil labile organic carbon using a sequential fumigation–incubation procedure. We define soil labile organic carbon as the fraction of soil organic carbon degradable during microbial growth, assuming that labile organic carbon oxidizes according to a simple negative exponential model. We used five mineral soils and a forest Oa horizon to represent a wide range of organic carbon levels. Soil labile organic carbon varied from 0.8 mg/g in an Entisol to 17.3 mg/g in the Oa materials. Potential turnover time ranged from 24 days in an Alfisol to 102 days in an Ultisol. Soil labile organic carbon contributed from 4.8% in the Alfisol to 11.1% in the Ultisol to the total organic carbon. This new procedure is a relatively easy and simple method for obtaining indices for both the pool sizes and potential turnover rates of soil labile organic carbon and provides a new approach to studying soil organic carbon.


Direct and Optical Assay of Leaf Mass of the Lower Montane Rain Forest of Puerto Rico
Howard T. Odum, B. J. Copeland and Robert Z. Brown
Proceedings of the National Academy of Sciences of the United States of America
Vol. 49, No. 4 (Apr. 15, 1963), pp. 429-434

Nutrient relations of dwarf Rhizophora mangle L. mangroves on peat in eastern Puerto Rico

Medina E, Cuevas E, Lugo AE (2010) Nutrient relations of
dwarf Rhizophora mangle L. mangroves on peat in eastern
Puerto Rico. Plant Ecol 207:13–24

Dwarf mangroves on peat substrate growing in eastern Puerto Rico (Los Machos, Ceiba State Forest) were analyzed for element concentration, leaf sap osmolality, and isotopic signatures of C and N in leaves and substrate. Mangrove communities behind the fringe presented poor structural development with maximum height below 1.5 m, lacked a main stem, and produced horizontal stems from which rhizophores developed. This growth form departs from other dwarf mangrove sites in Belize, Panama, and Florida. The dwarf mangroves were not stressed by salinity but by the low P availability reflected in low P concentrations in adult and senescent leaves. Low P availability was associated with reduced remobilization of N and accumulation of K in senescent leaves, contrasting with the behavior of this cation in terrestrial plants. Remobilization of N and P before leaf abscission on a weight basis indicated complete resorption of these nutrients. On an area basis, resorption was complete for P but not for N. Sulfur accumulated markedly with leaf age, reaching values up to 400%, compared with relatively modest accumulation of Na (40%) in the same leaves. This suggests a more effective rejection of Na than sulfate at the root level. Dwarf mangrove leaves had more positive d13C values, which were not related to salinity, but possibly to drought during the dry season due to reduced flooding, and/or reduced hydraulic conductance under P limitation. Negative leaf d15N values were associated with low leaf P concentrations. Comparison with other R. mangle communities showed that P concentration in adult leaves below 13 mmol kg-1 is associated with negative d15N values, whereas leaves with P concentrations above 30 mmol kg-1 in non-polluted environments had positive d15N values.
Syndicate content