Biogeochemistry

Research plan for the investigation of water, energy, and biogeochemical budgets in the Luquillo mountains, Puerto Rico

Larsen, M.C., Collar, P.D., and Stallard, R.F., 1993, Research plan for the investigation of water, energy, and biogeochemical budgets in the Luquillo mountains, Puerto Rico: U.S. Geological Survey Open-file Report 92-150, 19 p.

Abstract: 
The Luquillo mountains of eastern Puerto Rico are the site of U. S. Geological Survey (USGS) research into biogeochemical and geomorphic processes that control the movement and transformation of water, energy, bedrock weathering products, and nutrients in the earth-surface environment. This study was begun in 1990 and is scheduled to last three years, with the possibility of being extended for further data collection. The study area for this research effort includes the 113 square kilometers Luquillo Experimental Forest (LEF) that is administered by the U. S. Forest Service. The LEF has been the site of ongoing research since 1988 as part of the National Science Foundation's Long Term Ecological Research program. In addition, comparative studies are being conducted in the Río Grande de Loíza basin (Loíza basin), an urban and agriculturally developed 600 square kilometers watershed located immediately to the west of the LEF. The principal elements of the study described in the report are as follows: Determination of biogeochemical budgets: water, energy, carbon, nutrient, ion, sediment, and gas budgets will be calculated in two LEF watersheds instrumented with meteorologic, soil, hydrologic, and ground-water monitoring equipment. A biweekly time series of samples is being collected. In addition, intensive sampling is undertaken during selected storms. Study of weathering, erosion, and mass-wasting processes in undeveloped watersheds of contrasting lithology: chemical-weathering, erosion, and mass-wasting processes in watersheds underlain by the two dominant rock types, volcaniclastic and quartz diorite, are being compared. The effects of mass wasting on biogeochemical cycling in each rock type will be evaluated through a compilation of physical, chemical, and mineralogic properties for a chronosequence of landslides. Water and sediment budgets will be used to develop a conceptual model of hillslope hydrology and landform evolution. Comparison of weathering and gas flux in developed and forested watersheds: paired basins were selected and gaged in the relatively undisturbed LEF and in the agriculturally developed Loíza basin. Budgets of all aqueous constituents will be compared and contrasted in the developed and forested basins of similar lithology. Gas-flux differences (carbon dioxide, nitrogen dioxide, methane) between developed and undeveloped areas will be evaluated using chamber techniques and the results related to land-use differences. Measurement of reservoir and agricultural pond gas fluxes: methane production is being measured in selected reservoirs and agricultural ponds in and near the Loíza basin and LEF. A regional methane budget will be calculated.

HURRICANE-INDUCED CHANGES IN VEGETATION STRUCTURE, COMPOSITION AND STOICHIOMETRY IN A SUBTROPICAL WET FOREST

Abstract: 
This paper compares aboveground forest structure and macronutrient stoichiometry over 5 15 years of hurricane induced secondary succession by species, life history groups, community 6 species composition, and geomorphic setting. Stem density continually increased after the 7 impact of the Category 4 hurricane Hugo and 15 years later, it was greater than pre-hurricane. 8 There were significant spatial and temporal differences in the number of species, the diversity 9 index per plot, forest structure, and biomass. The greatest compositional differences occurred 10 between the post-Hugo and the 15-year census. Prior to hurricane Hugo most plots had very 11 similar species composition and abundances, and thus occupied a small area in non-metric 12 multidimensional species space. Following the hurricane new species combinations occurred 13 and the location of plots was spread in multidimensional space. Diversity indices were 14 significantly different among geomorphic settings before and immediately after hurricane Hugo. 15 However, these differences were not observed again until the 15-year census where they returned 16 to pre-hurricane levels. Plant associations based on abundance, life history traits, and landscape 17 position had measurable differences in their structure, composition, aboveground nutrient 18 storage, and stoichiometry. However, these differences were reflected in a variety of ways at 19 different spatial scales. At the species level differences in macronutrient tissue concentrations 20 were apparent when comparing co-existing primary forests dominants, early successional 21 dominants, high-light and low-light species, and species whose stem densities are negatively 22 correlated. Community level differences were greater for forest structure and total nutrient 23 storage compared to the mass weighted concentrations of macronutrients. The largest differences observed were in Mg and can be attributed to the succession of pioneer species 2 following the hurricane. Over the entire 15-year period, the watershed average aboveground 3 stoichiometry was relatively consistent and this is linked to the biomass dominance of a few 4 species. The successional history recorded here also suggests that community level differences 5 in species composition, structure, and stoichiometry were well established after 10 to 15 years of 6 secondary succession.

Asynchronous fluctuation of soil microbial biomass and plant litterfall in a tropical wet forest

Ruan, H.H., Zou, X.M., Scatena, F.N., Zimmerman, J.K., 2004.
Asynchronous fluctuation of soil microbial biomass and plant litterfall
in a tropical wet forest. Plant and Soil 260, 147–154.

Abstract: 
Carbon availability often controls soil microbial growth and there is evidence that at regional scales soil microbial biomass is positively correlated with aboveground forest litter input. We examined the influence of plant litterfall on annual variation of soil microbial biomass in control and litter-excluded plots in a tropical wet forest of Puerto Rico. We also measured soil moisture, soil temperature, and plant litterfall in these treatment plots. Aboveground plant litter input had no effect on soil microbial biomass or on its pattern of fluctuation. Monthly changes in soil microbial biomass were not synchronized with aboveground litter inputs, but rather preceeded litterfall by one month. Soil microbial biomass did not correlate with soil temperature, moisture, or rainfall. Our results suggest that changes in soil microbial biomass are not directly regulated by soil temperature, moisture, or aboveground litter input at local scales within a tropical wet forest, and there were asynchronous fluctuation between soil microbial biomass and plant litterfall. Potential mechanisms for this asynchronous fluctuation include soil microbial biomass regulation by competition for soil nutrients between microorganisms and plants, and regulation by below-ground carbon inputs associated with the annual solar and drying-rewetting cycles in tropical wet forests.

A decade of belowground reorganization following multiple disturbances in a subtropical wet forest

Teh, Y.A.; Silver, W.L.; Scatena, F.N. 2009. A decade of belowground reorganization following multiple disturbances in a subtropical wet forest. Plant and Soil. 323: 197-212.

Abstract: 
Humid tropical forests are dynamic ecosystems that experience multiple and overlapping disturbance events that vary in frequency, intensity, and spatial extent. Here we report the results of a 10-year study investigating the effects of forest clearing and multiple hurricanes on ecosystem carbon reservoirs, nutrient pools and vegetation. The aboveground plant community was most heavily affected by multiple disturbances, with the 9-year-old stands showing high rates of hurricane-induced mortality relative to surrounding forest. Belowground pools were less affected. Live fine root biomass fluctuated in response to multiple disturbances, but returned to pre-disturbance levels after 10 years. Soil C was resilient to clearing and hurricanes, probably due to the large pool size and high clay content. Soil P fluctuated over time, declining during periods of rapid plant recovery and growth. With the exception of K, base cations recovered within 2 years following clearing and showed little response to hurricane disturbance.

Distribution of Nitrous Oxide and Regulators of Its Production across a Tropical Rainforest Catena in the Luquillo Experimental Forest, Puerto Rico

MCSWINEY, CLAIRE P.; MCDOWELL, WILLIAM H.; KELLER, MICHAEL 2001. Distribution of nitrous oxide and regulators of its production across a tropical rainforest catena in the Luquillo Experimental Forest, Puerto Rico. Biogeochemistry 56: 265-286.

Abstract: 
Understanding of N2O fluxes to the atmosphere is complicated by interactions between chemical and physical controls on both production and movement of the gas. To better understand how N2O production is controlled in the soil, we measured concentrations of N2O and of the proximal controllers on its production in soil water and soil air in a field study in the Rio Icacos basin of the Luquillo Experimental Forest, Puerto Rico. A toposequence (ridge, slope-ridge break, slope, slope-riparian break, riparian, and streambank) was used that has been previously characterized for groundwater chemistry and surface N2O fluxes. The proximal controls on N2O production include NO−3 , NH+4 , DOC, and O2. Nitrous oxide and O2 were measured in soil air and NO−3 , NH+4 , and DO were measured in soil water. Nitrate and DOC disappeared from soil solution at the slope-riparian interface, where soil N2O concentrations increased dramatically. Soil N2O concentrations continued to increase through the flood plain and the streambank. Nitrous oxide concentrations were highest in soil air probes that had intermediate O2 concentrations. Changes in N2O concentrations in groundwater and soil air in different environments along the catena appear to be controlled by O2 concentrations. In general, N processing in the unsaturated and saturated zones differs within each topographic position apparently due to differences in redox status.

Controls on soil organic matter content within a northern hardwood forest

Johnson, K.D.; Scatena, F.N.; Johnson, A.H.; Pan, Y. 2009. Controls on soil organic matter content within a northern hardwood forest. Geoderma. 148(3-4): 346-356.

Abstract: 
Forest soils can act as both sinks and sources for atmospheric CO2 and therefore have an important role in the global carbon cycle. Yet the controls on forest soil organic matter content (SOM) distribution at the scale of operational land management scales within forest types are rarely quantified in detail. To identify factors that influence the spatial distribution and accumulation of SOM in forests, soils and stand composition data from 42 even-aged northern hardwood forest plots were analyzed using multiple linear regression and non-parametric statistical approaches. The analysis included three layers of SOM pools (forest floor, 0–20 cm mineral soil, and 20+ cm mineral soil) over three spatial scales (point, plot and regional). The largest amounts of total SOM (mean = 289, std dev = 70 Mg ha− 1) occurred in deep and well drained soils located on gently grading slopes. When soil layers were analyzed separately, the following relationships were observed: 1) highest forest floor SOM occurred under mixed species composition as opposed to stands dominated by sugar maple, 2) highest 0–20 cm mineral SOM occurred at high elevations (greater than 450 m) in moderately well drained soils, and 3) highest 20+ cm mineral SOM also occurred at high elevations and when soils were deeper. Further analysis of 0–20 cm mineral layer revealed that lower rock volume and finer soil texture resulted in higher SOM at a single point. When SOM that was predicted from models based on plot-specific attributes (soils series, slope and aspect) were compared to soil survey SOM estimates, the mean SOM values for both approaches were similar (253 and 269 Mg ha− 1 respectively). Easily identifiable characteristics such as mixed stand composition, the presence of forest floor and E horizon thickness may be used as field indicators of SOM storage. The variety of controls identified in this study should be considered when assessing soil carbon response to management options and future changes in climate.

An EMERGY Evaluation of Puerto Rico and the Luquillo Experimental Forest

Scatena, F.N.; Doherty, S.J.; Odum, H.T.; Kharecha, P. 2002. An EMERGY
evaluation of Puerto Rico and the Luquillo Experimental Forest. Gen. Tech. Rep.
IITF-GTR-9. Río Piedras, PR: U.S. Department of Agriculture, Forest Service,
International Institute of Tropical Forestry. 79 p.

Abstract: 
The many functions of Puerto Rico and the Luquillo Experimental Forest (the Forest) were evaluated in units of solar EMERGY, an energy-based measure of resource contribution and influence, defined as the energy of one type required to produce a flow or storage of another type. Rainfall and tectonic uplift are the largest environmental inputs into the Forest. The interaction of these inputs results in an erosional landscape where the EMERGY of biological processes is less than the EMERGY associated with the physical and chemical sculpturing of the landscape. The environmental work that built the natural capital of these forests is 9 to 50 times their current dollar market values. Of the investments evaluated in this study, the effects associated with water extraction are the largest. Tectonic inputs and the hydrologic cycle also provide most of the environmental EMERGY flows in the island of Puerto Rico. The ratio of societal inputs to environmental inputs, however, is 45 for Puerto Rico and 3.5 for the Forest. Per capita EMERGY- use is typical of moderately developed economies, but the island has one of the most investment-intensive, least self-sufficient economies known and an EMERGY signature that resembles a city-state.

Hierarchical contribution of river–ocean connectivity, water chemistry, hydraulics, and substrate to the distribution of diadromous snails in Puerto Rican streams

Blanco, Juan F.; Scatena, Frederick N. 2006. Hierarchical contribution of river-ocean connectivity, water chemistry, hydraulics, and substrate to the distribution of diadromous snails in Puerto Rican streams.. J. N. Am. Benthol. Soc., 25(1) :82-98.

Abstract: 
Diadromous faunas dominate most tropical coastal streams and rivers, but the factors controlling their distribution are not well understood. Our study documents abiotic variables controlling the distribution and abundance of the diadromous snail Neritina virginea (Gastropoda:Neritidae) in the Caribbean island of Puerto Rico. An intensive survey of N. virginea density and shell size, and channel substrate, velocity, and depth was conducted at microhabitat, habitat, and reach scales of a coastal plain reach of the Río Mameyes between August and December 2000. In addition, the inland extent of distribution (stream-network scale) and presence (regional scale) of N. virginea were surveyed in 32 coastal rivers around the island during summer 2001 and 2003. At the microhabitat scale, snail density and microhabitat electivity were greater in patches consisting of a mix of boulders and cobbles than in other types of substrate. At the habitat scale, snail density increased with depth. At the reach scale, snail density increased with fast and turbulent flows (riffle > pools > pond), whereas snail size showed the opposite pattern. At the regional scale, populations were present in 13 of 32 streams. Populations of N. virginea were not found in rivers that were disconnected from the ocean for most of the year because of channel dewatering, formation of sediment bars at their mouths, and low mean monthly discharge (Q=0.69 m3/s). In contrast, rivers with N. virginea populations had a permanent (Q=4.04 m3/s) or seasonal (Q=2.88 m3/s) connection to the ocean over the year. At the regional scale, the inland distribution of populations was not correlated with stream gradient, but was negatively correlated with concentrations of SiO2, P, and acid neutralizing capacity of the water. Populations colonized montane reaches in only 5 rivers, all of which were forested and protected. Our study highlights the importance of taking a hierarchical approach in managing tropical coastal rivers, and the usefulness of neritid snails as biological indicators of the physical and chemical integrity of rivers.

Asynchronous fluctuation of soil microbial biomass and plant litterfall

Ruan, H.H., Zou, X.M., Scatena, F.N., Zimmerman, J.K.,
2004. Asynchronous fluctuations of soil microbial
biomass and plant litterfall in a tropical wet forest.
Plant Soil 260, 147–154.

Abstract: 
Carbon availability often controls soil microbial growth and there is evidence that at regional scales soil microbial biomass is positively correlated with aboveground forest litter input. We examined the influence of plant litterfall on annual variation of soil microbial biomass in control and litter-excluded plots in a tropical wet forest of Puerto Rico. We also measured soil moisture, soil temperature, and plant litterfall in these treatment plots. Aboveground plant litter input had no effect on soil microbial biomass or on its pattern of fluctuation. Monthly changes in soil microbial biomass were not synchronized with aboveground litter inputs, but rather preceeded litterfall by one month. Soil microbial biomass did not correlate with soil temperature, moisture, or rainfall. Our results suggest that changes in soil microbial biomass are not directly regulated by soil temperature, moisture, or aboveground litter input at local scales within a tropical wet forest, and there were asynchronous fluctuation between soil microbial biomass and plant litterfall. Potential mechanisms for this asynchronous fluctuation include soil microbial biomass regulation by competition for soil nutrients between microorganisms and plants, and regulation by below-ground carbon inputs associated with the annual solar and drying-rewetting cycles in tropical wet forests.

Extreme storm events, landscape denudation, and carbon sequestration: Typhoon Mindulle, Choshui River, Taiwan

Goldsmith, S. T.; Carey, A. E.; Lyons, W. B.; Kao, S. J.; Lee, T. Y.;
Chen, J. Extreme storm events, landscape denudation, and
carbon sequestration: Typhoon Mindulle, Choshui River, Taiwan.
Geology 2008, 36 (6), 483–486.

Abstract: 
We have performed the fi rst known semicontinuous monitoring of particulate organic carbon (POC) fl uxes and dissolved Si concentrations delivered to the ocean during a typhoon. Sampling of the Choshui River in Taiwan during Typhoon Mindulle in 2004 revealed a POC fl ux of 5.00 × 105 t associated with a sediment fl ux of 61 Mt during a 96 h period. The linkage of high amounts of POC with sediment concentrations capable of generating a hyperpycnal plume upon reaching the ocean provides the fi rst known evidence for the rapid delivery and burial of POC from the terrestrial system. These fl uxes, when combined with storm-derived CO2 consumption of 1.65 × 108 mol from silicate weathering, elucidate the important role of these tropical cyclone events on small mountainous rivers as a global sink of CO2.
Syndicate content