Biogeochemistry

Metabolism of a tropical rainforest stream

Ortiz-Zayas, J.R. et al. Metabolism of a tropical rainforest stream. Journal of the North American Benthological Society, Volume 24, No. 4, pages 769–783.

Abstract: 
Gradients in photosynthesis (P) and respiration (R) were measured on an unperturbed portion of the Rio Mameyes, a tropical stream in the Luquillo Experimental Forest, northeastern Puerto Rico. Rates of P, which were similar to those of streams in temperate-deciduous forests, were low in the heavily canopied headwaters (<70 g O2 m−2 y−1) and were higher (453–634 g O2 m−2 y−1) in middle and lower reaches. Periphyton biomass did not show the expected increase as the canopy opened downstream, probably because of increasing herbivory in downstream reaches. Rates of R, which were much higher than in most temperate streams, also were lower in the headwaters (767 g O2 m−2 y−1) than in the middle and lower reaches (1550–1660 g O2 m−2 y−1). High rates of R and suppressed periphyton abundance caused annual P/R to be <<1 from headwaters to lower reaches. Results for the Rio Mameyes suggest that intense herbivory, which is favored by the presence of large herbivores and consistently high temperatures, may be more typical of tropical than temperate streams. Results also show that the tropical rainforest provides the stream with sufficient amounts of labile organic C to support high rates of respiration over long distances across the basin.

Can uptake length in strams be determined by nutrient addition experiments? Results from an interbiome comparison study

Mulholland, P. J; Tanks, J. L.; Webster, J. R.; Bowden, W. B.; Dodds, W. K; Gregory, S. V.; Grimm, N. B; Meriam, J. L.; Meyer, J. L.; Peterson, B. J.; Valett, H. M.; Wollheim, W. M. 2002. Can uptake length in strams be determined by nutrient addition experiments? Results from an interbiome comparison study. J. N. Am. Bethol. Soc. 2002, 21(4): 544-560.

Abstract: 
Nutrient uptake length is an important parnmeter tor quantifying nutrient cycling in streams. Although nutrient tracer additions are the preierred method for measuring uptake length under ambient nutrient concentrations, short-term nutrient addition experiments have more irequently been used to estimate uptake length in streams. Theoretical analysis of the relationship between uptake length determined by nutrient addition experiments (Sw') and uptake length determined by tracer additions (Sw)predicted that Sw' should be consistently longer than 5,", and that the overestimate of uptake length by Sw( should be related to the level of nutrient addition above ambient concentrations and the degree of nutrient limitation. To test these predictions, we used data irom an interbiorne study of NH,- uptake length in which 15NH,- tracer and short-term NH,-a ddition experiments were performed in 10 streams using a uniform experimental approach. The experimental results largely contirmed the theoretical predictions: sw' was consistently longer than Sw and Sw':Sw ratios were directly related to the level of NH,- addition and to indicatvrs of N limitation. The experimentally derived Sw':Sw, ratios were used with the theoretical results to infer the N limitation status of each stream. Together, the theoretical and experimental results showed the tracer experiments should be used whenever possible to determine nutrient uptake length in streams. Nutrient addition experiments may be useful for comparing uptake lengths between different streams or cliiferent times in the same stream. however, provided that nutrient additions are kept as low as possible and of similar miagnitude.

Characterizing nitrogen dynamics, retention and transport in a tropical rainforest stream using an in situ 15N addition

Merriam, J. L. , McDowell, W. H. , Tank, J. L. , Wollheim, W. M. , Crenshaw, C. L. and Johnson, S. L. (2002), Characterizing nitrogen dynamics, retention and transport in a tropical rainforest stream using an in situ15N addition. Freshwater Biology, 47: 143–160. doi: 10.1046/j.1365-2427.2002.00785.x

Abstract: 
1. This study was part of the Lotic Intersite Nitrogen eXperiment (LINX); a series of identical 15NH4 tracer additions to streams throughout North America. 15NH4Cl was added at tracer levels to a Puerto Rican stream for 42 days. Throughout the addition, and for several weeks afterwards, samples were collected to determine the uptake, retention and transformation pathways of nitrogen in the stream. 2. Ammonium uptake was very rapid. Nitrification was immediate, and was a very significant transformation pathway, accounting for over 50% of total NH4 uptake. The large fraction of NH4 uptake accounted for by nitrification (a process that provides energy to the microbes involved) suggests that energy limitation of net primary production, rather than N limitation, drives N dynamics in this stream. 3. There was a slightly increased 15N label in dissolved organic nitrogen (DON) the day after the 15NH4 addition was stopped. This DO15N was < 0.02% of DON concentration in the stream water at the time, suggesting that nearly all of the DON found in-stream is allochthonous, or that in-stream DON production is very slow. 4. Leptophlebiidae and Atya appear to be selectively feeding or selectively assimilating a very highly labelled fraction of the epilithon, as the label found in the consumers became much higher than the label found in the food source. 5. A large spate (>20-fold increase in discharge) surprisingly removed only 37% of in-stream fine benthic organic matter (FBOM), leaves and epilithon. The fraction that was washed out travelled downstream a long distance (>220 m) or was washed onto the stream banks. 6. While uptake of 15NH4 was very rapid, retention was low. Quebrada Bisley retained only 17.9% of the added 15N after 42 days of 15N addition. Most of this was in FBOM and epilithon. Turnover rates for these pools were about 3 weeks. The short turnover times of the primary retention pools suggest that long-term retention (>1 month) is minimal, and is probably the result of N incorporation into shrimp biomass, which accounted for < 1% of the added 15N.

Riparian Nitrogen Dynamics in Two Geomorphologically Distinct Tropical Rain Forest Watersheds: Subsurface Solute Patterns

Riparian Nitrogen Dynamics in Two Geomorphologically Distinct Tropical Rain Forest Watersheds: Subsurface Solute Patterns
William H. McDowell, William B. Bowden and Clyde E. Asbury
Biogeochemistry
Vol. 18, No. 2 (1992), pp. 53-75

Abstract: 
Nitrate, ammonium, dissolved organic N, and dissolved oxygen were measured in stream water and shallow groundwater in the riparian ones of two tropical watersheds with different soils and geomorphology. At both sites, concentrations of dissolved inorganic N (DIN: NH-4+ and NO-3-N) were low in stream water lt 110 mu-g/L). Markedly different patterns in DIN were observed in groundwater collected at the two sites. At the first site (Icacos watershed), DIN in upslope groundwater was dominated by NO-3-N (550 mu-g/L) and oxygen concentrations were high (5.2 mg/l). As groundwater moved through the floodplain and to the stream, DIN shifted to dominance by NH-4+-N (200-700 mu-g/L) and groundwater was often anoxic. At the second site (Bisley watershed), average concentrations of total dissolved nitrogen were considerably lower (300 mu-g/L) than at Icacos (600 mu-g/L), and the dominant form of nitrogen was DON rather than inorganic N. Concentrations of NH-4+ and NO-3- were similar throughout the riparian zone at Bisley, but concentrations of DON declined from upslope wells to stream water. Differences in speciation and concentration of nitrogen in groundwater collected at the two sites appears to be controlled by differences in redox conditions and accessibility of dissolved N to plant roots, which are themselves the result of geomorphological differences between the two watersheds. At the Icacos site, a deep layer of coarse sand conducts subsurface water to the stream below the rooting zone of riparian vegetation and through zones of strong horizontal redox zonation. At the Bisley site, infiltration is impeded by dense clays and saturated flow passes though the variably oxidized rooting zone. At both sites, hydrologic export of nitrogen is controlled by intense biotic activity in the riparian zones. However, geomorphology appears to strongly modify the importance of specific biotic components.

Effects of Hurricane Disturbance on Groundwater Chemistry and Riparian Function in a Tropical Rain Forest

Effects of Hurricane Disturbance on Groundwater Chemistry and Riparian Function in a Tropical Rain Forest
William H. McDowell, Claire P. McSwiney and William B. Bowden
Biotropica
Vol. 28, No. 4, Part A. Special Issue: Long Term Responses of Caribbean Ecosystems to Disturbances (Dec., 1996), pp. 577-584

Abstract: 
The long-term response of shallow groundwater chemistry to the canopy disturbance and defoliation associated with Hurricane Hugo was studied at two sites in the Luquillo Experimental Forest, Puerto Rico. The sites differed in bedrock type, dominant vegetation, and availability of pre-hurricane data. At the primary study site, the Bisley catchment, hurricane disturbance resulted in increased concentrations of NO3 -, NH4 +, dissolved organic N, base cations, Cl-, and SiO2 in groundwater within 5 mo of the hurricane. The largest relative change in concentration occurred for K+, which increased from 0.7 to as high as 13 mg/L, concentrations were still 1.3 mg/L 5.5 yr after the hurricane. Most other solutes had returned to background levels within 1-2 yr of the hurricane. At the secondary study site, the Icacos catchment, NO3 - concentrations peaked at 1.1 mg/L one yr after the hurricane and decreased to nearly zero 5.5 yr after the hurricane. At both sites, NO3 - concentrations were higher in upslope wells than in those closer to the stream. Overall, riparian processes appear to reduce but not eliminate hydrologic losses of N following catastrophic disturbance. The nature of the long-term biogeochemical response to disturbance in this tropical rain forest ecosystem is similar to that observed in some montane temperate forests, and the time course of recovery appears to be associated with the speed with which vegetation regrows following disturbance.

Export of Carbon, Nitrogen, and Major Ions from Three Tropical Montane Watersheds

Export of Carbon, Nitrogen, and Major Ions from Three Tropical Montane Watersheds
William H. McDowell and Clyde E. Asbury
Limnology and Oceanography
Vol. 39, No. 1 (Jan., 1994), pp. 111-125

Abstract: 
Annual exports of suspended sediment, dissolved and particulate C and N, dissolved N and P, and major cations and anions were measured in three montane tropical rain forest watersheds in Puerto Rico during 1983-1986. Organic C was primarily exported in the form of DOC, and DOC export (33-94 kg ha-1 yr-1) was similar to values in larger tropical watersheds with similar runoff. Particulate and dissolved organic N accounted for 60-70% of the 4-9 kg ha-1 yr-1 of total N exported. Export of base cations and rates of weathering varied with bedrock geology in the three watersheds. Concentrations of suspended sediment, particulate C and N, and DOC increased as a function of discharge in all three streams. NH4+, NO3-, SO42-, and K+ concentrations showed little or no response to variations in discharge; Na-, Ca2+, Mg2+, Cl-, HCO3-, and SiO2 all decreased at high flows. After removing the effects of discharge, residual NO, concentrations in each stream were inversely related to estimated rates of leaf fall. On a watershed basis, export and accumulation of N in biomass were greater than precipitation inputs, suggesting that unmeasured inputs (8-16 kg ha-1 yr-1) were large.

Fine Litterfall and Related Nutrient Inputs Resulting From Hurricane Hugo in Subtropical Wet and Lower Montane Rain Forests of Puerto Rico

Fine Litterfall and Related Nutrient Inputs Resulting From Hurricane Hugo in Subtropical Wet and Lower Montane Rain Forests of Puerto Rico
D. Jean Lodge, F. N. Scatena, C. E. Asbury and M. J. Sanchez
Biotropica
Vol. 23, No. 4, Part A. Special Issue: Ecosystem, Plant, and Animal Responses to Hurricanes in the Caribbean (Dec., 1991), pp. 336-342

Abstract: 
On 18 September 1989 Hurricane Hugo defoliated large forested areas of northeastern Puerto Rico. In two severely damaged subtropical wet forest sites, a mean of 1006-1083 g/m$^2$, or 419-451 times the mean daily input of fine litter (leaves, small wood, and miscellaneous debris) was deposited on the forest floor. An additional 928 g/m$^2$ of litter was suspended above the ground. A lower montane rain forest site received 682 times the mean daily fine litterfall. The concentrations of N and P in the hurricane leaf litter ranged from 1.1 to 1.5 and 1.7 to 3.3 times the concentrations of N and P in normal leaffall, respectively. In subtropical wet forest, fine litterfall from the hurricane contained 1.3 and 1.5-2.4 times the mean annual litterfall inputs of N and P, respectively. These sudden high nutrient inputs apparently altered nutrient cycling.

SLOPEWASH, SURFACE RUNOFF AND FINE-LITTER TRANSPORT IN FOREST AND LANDSLIDE SCARS IN HUMID- TROPICAL STEEPLANDS, LUQUILLO EXPERIMENTAL FOREST, PUERTO RICO

Larsen, M.C., Torres-Sánchez, A.J., and Concepción, I.M., 1998, Slopewash, surface runoff, and fine-litter transport in forest and landslide scars in humid-tropical steeplands, Luquillo Experimental Forest, Puerto Rico [abs] EOS, Transactions American Geophysical Union, vol. 80.

Abstract: 
Slopewash, surface runoff, and fine-litter transport in forest and landslide scars in humid-tropical steeplands, Luquillo Experimental Forest, Puerto Rico Rainfall, slopewash (the erosion of soil particles), surface runoff, and fine-litter transport at humid-tropical steepland sites in the Luquillo Experimental Forest, Puerto Rico (18° 20' N, 65° 45' W) were measured from 1991 to 1995. Hillslopes underlain by: 1) Cretaceous tuffaceous sandstone and siltstone in subtropical rain (tabonuco) forest with vegetation recovering from Hurricane Hugo (1989); and underlain by 2) Tertiary quartz diorite in subtropical lower montane wet (colorado and dwarf) forest with undisturbed forest canopy were compared to recent landslide scars. Monthly surface runoff on these very steep hillslopes (24° to 43°) was only 0.2 to 0.5 percent of monthly rainfall. Slopewash was higher in sandy loam soils whose parent material is quartz diorite (averaging 46 g m-2 a-1) than in silty-clay loam soils derived from tuffaceous sandstone and siltstone where the average was 9 g m-2 a-1. Annual slopewash of 100 to 349 g m-2 on the surfaces of two recent, small landslide scars was measured initially but slopewash decreased to only 3 to 4 g m-2 a-1 by the end of the study. The mean annual mass of fine litter (mainly leaves and twigs) transported downslope at the forested sites ranged from 5 to 8 g m-2 and was lower at the tabonuco forest site, where post-Hurricane Hugo recovery is still in progress. Mean annual fine-litter transport was 2.5 g m-2 on the two landslide scars.

MODELING SPATIAL AND TEMPORAL PATTERNS OF SOIL ORGANIC CARBON IN TWO MONTANE LANDSCAPES: THE NORTHERN HARDWOODS, VERMONT AND THE TABONUCO FOREST, PUERTO RICO

Kristofer Dee Johnson, "Modeling spatial and temporal patterns of soil organic carbon in two montane landscapes: The northern hardwoods, Vermont and the tabonuco forest, Puerto Rico" (January 1, 2008). Dissertations available from ProQuest. Paper AAI3328590.

Abstract: 
Forest soils contribute to a significant portion of the world’s carbon flux due to both natural and anthropogenic changes. In terms of human management of carbon pools, forest soil organic matter (SOM) is important because it potentially stores carbon more permanently than living vegetation. Yet, this potential is poorly understood or managed for because of the difficulty in measuring changes in SOM pools over time and space. Modeling combined with intensive field sampling can help overcome these limitations because it extracts from empirically observed relationships to account for the components of SOM formation (topography, time, parent material, organisms and climate[fns2]). This study utilizes intensive field data, statistical models and process-based ecosystem models to investigate the spatial distribution and dynamics of soil organic carbon dynamics in two contrasting ecosystems – the northern hardwood forest in the Green Mountains, VT and the tabonuco forest in the Luquillo Experimental Forest, PR. In both forests landscape position emerged as the dominate factor in explaining SOM distribution. In Vermont, additional variation was explained by aspect and slope and in Puerto Rico additional variation was explained by landscape factors interrelated to soil drainage. Process-based modeling proved to be a useful management and experimental tool in cases were empirical approaches were impractical for both forests. In Vermont, three ecosystem models demonstrated a substantial reduction of soil organic carbon and harvestable biomass due to the removal of woody carbon by logging after 240 years of rotations. In Puerto Rico, the Century model showed that changes in litter quality and quantity were not likely responsible in explaining landscape level SOM differences. Overall, well drained soils located in colder climates stored the highest SOM whereas poorly drained and highly disturbed soils in steep humid climates stored the lowest SOM. This research demonstrates that although SOM amounts are highly variable over many spatial and temporal scales, intuitive relationships are borne out with modeling tools and by careful investigation of the five soil forming factors. Results also raise questions about how these ecosystems and their SOM pools may change in response to changing climate conditions of the future.

Fine Litterfall and Related Nutrient Inputs Resulting From Hurricane Hugo in Subtropical Wet and Lower Montane Rain Forests of Puerto Rico

Fine Litterfall and Related Nutrient Inputs Resulting From Hurricane Hugo in Subtropical Wet and Lower Montane Rain Forests of Puerto Rico
D. Jean Lodge, F. N. Scatena, C. E. Asbury and M. J. Sanchez
Biotropica
Vol. 23, No. 4, Part A. Special Issue: Ecosystem, Plant, and Animal Responses to Hurricanes in the Caribbean (Dec., 1991), pp. 336-342

Abstract: 
On 18 September 1989 Hurricane Hugo defoliated large forested areas of northeastern Puerto Rico. In two severely damaged subtropical wet forest sites, a mean of 1006-1083 g/m$^2$, or 419-451 times the mean daily input of fine litter (leaves, small wood, and miscellaneous debris) was deposited on the forest floor. An additional 928 g/m$^2$ of litter was suspended above the ground. A lower montane rain forest site received 682 times the mean daily fine litterfall. The concentrations of N and P in the hurricane leaf litter ranged from 1.1 to 1.5 and 1.7 to 3.3 times the concentrations of N and P in normal leaffall, respectively. In subtropical wet forest, fine litterfall from the hurricane contained 1.3 and 1.5-2.4 times the mean annual litterfall inputs of N and P, respectively. These sudden high nutrient inputs apparently altered nutrient cycling.
Syndicate content