Fine Litterfall and Related Nutrient Inputs Resulting From Hurricane Hugo in Subtropical Wet and Lower Montane Rain Forests of Puerto Rico

Fine Litterfall and Related Nutrient Inputs Resulting From Hurricane Hugo in Subtropical Wet and Lower Montane Rain Forests of Puerto Rico
D. Jean Lodge, F. N. Scatena, C. E. Asbury and M. J. Sanchez
Vol. 23, No. 4, Part A. Special Issue: Ecosystem, Plant, and Animal Responses to Hurricanes in the Caribbean (Dec., 1991), pp. 336-342

On 18 September 1989 Hurricane Hugo defoliated large forested areas of northeastern Puerto Rico. In two severely damaged subtropical wet forest sites, a mean of 1006-1083 g/m$^2$, or 419-451 times the mean daily input of fine litter (leaves, small wood, and miscellaneous debris) was deposited on the forest floor. An additional 928 g/m$^2$ of litter was suspended above the ground. A lower montane rain forest site received 682 times the mean daily fine litterfall. The concentrations of N and P in the hurricane leaf litter ranged from 1.1 to 1.5 and 1.7 to 3.3 times the concentrations of N and P in normal leaffall, respectively. In subtropical wet forest, fine litterfall from the hurricane contained 1.3 and 1.5-2.4 times the mean annual litterfall inputs of N and P, respectively. These sudden high nutrient inputs apparently altered nutrient cycling.

Estimating fog deposition at a Puerto Rican elfin cloud forest site: comparison of the water budget and eddy covariance methods

Holwerda, F., R. Burkard, W. Eugster, F. N. Scatena, A. G. C. A. Meesters,
and L. A. Bruijnzeel (2006), Estimating fog deposition at a Puerto
Rican elfin cloud forest site: Comparison of the water budget and eddy
covariance methods, Hydrol. Processes, 20, 2669– 2692.

The deposition of fog to a wind-exposed 3 m tall Puerto Rican cloud forest at 1010 m elevation was studied using the water budget and eddy covariance methods. Fog deposition was calculated from the water budget as throughfall plus stemflow plus interception loss minus rainfall corrected for wind-induced loss and effect of slope. The eddy covariance method was used to calculate the turbulent liquid cloud water flux from instantaneous turbulent deviations of the surface-normal wind component and cloud liquid water content as measured at 4 m above the forest canopy. Fog deposition rates according to the water budget under rain-free conditions (0Ð11 š 0Ð05 mm h1) and rainy conditions (0Ð24 š 0Ð13 mm h1) were about three to six times the eddy-covariance-based estimate (0Ð04 š 0Ð002 mm h1). Under rain-free conditions, water-budget-based fog deposition rates were positively correlated with horizontal fluxes of liquid cloud water (as calculated from wind speed and liquid water content data). Under rainy conditions, the correlation became very poor, presumably because of errors in the corrected rainfall amounts and very high spatial variability in throughfall. It was demonstrated that the turbulent liquid cloud water fluxes as measured at 4 m above the forest could be only ¾40% of the fluxes at the canopy level itself due to condensation of moisture in air moving upslope. Other factors, which may have contributed to the discrepancy in results obtained with the two methods, were related to effects of footprint mismatch and methodological problems with rainfall measurements under the prevailing windy conditions. Best estimates of annual fog deposition amounted to ¾770 mm year1 for the summit cloud forest just below the ridge top (according to the water budget method) and ¾785 mm year1 for the cloud forest on the lower windward slope (using the eddy-covariance-based deposition rate corrected for estimated vertical flux divergence). Copyright  2006 John Wiley & Sons, Ltd.

Throughfall in a Puerto Rican lower montane rain forest: A comparison of sampling strategies

Holwerda, F.; Scatena, F.N.; Bruijnzeel, L.A. 2006. Throughfall in a Puerto Rican lower montane rain forest: A comparison of sampling strategies. Journal of Hydrology 327, :592- 602.

During a one-year period, the variability of throughfall and the standard errors of the means associated with different gauge arrangements were studied in a lower montane rain forest in Puerto Rico. The following gauge arrangements were used: (1) 60 fixed gauges, (2) 30 fixed gauges, and (3) 30 roving gauges. Stemflow was measured on 22 trees of four different species. An ANOVA indicated that mean relative throughfall measured by arrangements 1 (77%), 2 (74%), and 3 (73%) were not significantly different at the 0.05 level. However, the variability of the total throughfall estimate was about half as high for roving gauges (23%) as for fixed gauges (48–49%). The variability of stemflow ranged from 36% to 67% within tree species and was 144% for all sampled trees. Total stemflow was estimated at 4.1% of rainfall, of which palms contributed about 66%. Comparative analysis indicated that while fixed and roving gauge arrangements can give similar mean values, least 100 fixed gauges are required to have an error at the 95% confidence level comparable to that obtained by 30 roving gauges.

Disturbance and long-term patterns of rainfall and throughfall nutrient fluxes in a subtropical wet forest in Puerto Rico

Heartsill-Scalley, T.; Scatena,F.N.; Estrada,C.; McDowell,W.H.;Lugo,A.E. 2007. Disturbance and long-term patterns of rainfall and throughfall nutrient fluxes in a subtropical wet forest in Puerto Rico. Journal of Hydrology 333, :472- 485.

Nutrient fluxes in rainfall and throughfall were measured weekly in a mature subtropical wet forest in NE Puerto Rico over a 15-year period that included the effects of 10 named tropical storms, several prolonged dry periods, and volcanic activity in the region. Mean annual rainfall and throughfall were 3482 and 2131 mm yr1, respectively. Average annual rainfall and throughfall fluxes of K, Ca, Mg, Cl, Na, and SO4–S were similar but somewhat larger than those reported for most tropical forests. Rainfall inputs of nitrogen were comparatively low and reflect the relative isolation of the airshed. More constituents had seasonal differences in rainfall fluxes (6 out of 12) than throughfall fluxes (4 out of 12) and all volume weighted throughfall enrichment ratios calculated for the 15-year period were greater than one. However, median weekly enrichment ratios were less than 1 for sea salts and dissolved organic carbon, between 1 and 2 for Mg, Ca, SiO2 and SO4–S, and greater than 10 for NH4–N, PO4–P, and K. Droughts tended to reduce enrichment ratios of cations and sea-salts, but increased enrichment ratios of NH4–N, PO4–P, and K. In the weeks following hurricanes and tropical storms, relative throughfall tended to be higher and enrichment ratios tended to be lower. Saharan dust and the activity of Caribbean volcanoes can also be detected in the time series. Nevertheless, the impacts of particular events are variable and modified by the magnitude of the event, the preand post-event rainfall, and the time since the previous event. Rainfall, throughfall, rainfall pH, and rainfall fluxes of seven constituents had decreasing trends over the 15-year period. However, these decreases were small, less than inter-annual and annual varia-tions, and not considered to be ecologically significant. These long-term observations indicate that physical and biological processes associated with water passing through the canopy act to buffer internal nutrient cycles from inter-annual and seasonal variations in rainfall inputs.

Infiltration on mountain slopes: a comparison of three environments

Harden,Carol P.; Scruggs, P. Delmas 2003. Infiltration on mountain slopes: a comparison of three environments.. Geomorphology 55 ;5 -24.

Water is well established as a major driver of the geomorphic change that eventually reduces mountains to lower relief landscapes. Nonetheless, within the altitudinal limits of continuous vegetation in humid climates, water is also an essential factor in slope stability. In this paper, we present results from field experiments to determine infiltration rates at forested sites in the Andes Mountains (Ecuador), the southern Appalachian Mountains (USA), and the Luquillo Mountains (Puerto Rico). Using a portable rainfall simulator–infiltrometer (all three areas), and a single ring infiltrometer (Andes), we determined infiltration rates, even on steep slopes. Based on these results, we examine the spatial variability of infiltration, the relationship of rainfall runoff and infiltration to landscape position, the influence of vegetation on infiltration rates on slopes, and the implications of this research for better understanding erosional processes and landscape change. Infiltration rates ranged from 6 to 206 mm/h on lower slopes of the Andes, 16 to 117 mm/h in the southern Appalachians, and 0 to 106 mm/h in the Luquillo Mountains. These rates exceed those of most natural rain events, confirming that surface runoff is rare in montane forests with deep soil/regolith mantles. On well-drained forested slopes and ridges, apparent steadystate infiltration may be controlled by the near-surface downslope movement of infiltrated water rather than by characteristics of the full vertical soil profile. With only two exceptions, the local variability of infiltration rates at the scale of 10j m overpowered other expected spatial relationships between infiltration, vegetation type, slope position, and soil factors. One exception was the significant difference between infiltration rates on alluvial versus upland soils in the Andean study area. The other exception was the significant difference between infiltration rates in topographic coves compared to other slope positions in the tabonuco forest of one watershed in the Luquillo Mountains. Our research provides additional evidence of the ability of forests and forest soils to preserve geomorphic features from denudation by surface erosion, documents the importance of subsurface flow in mountain forests, and supports the need for caution in extrapolating infiltration rates.

Rainfall, Runoff and Elevation Relationships in the Luquillo Mountains of Puerto Rico

Garcia, A.R. Warner, G.S. Scatena, F. and Civco, D.L. 2002. Bisley Rainfall and
Throughfall Rainfall, Runoff and Elevation Relationships in the Luquillo
mountains of Puerto Rico. Caribbean Journal of Science. 2002 (In press).
Published as Scientific Contribution No. 1642 of the Storrs Agricultural
Experiment Station.

Long-terrn rainfall and discharge data from the Luquillo Experimental Forest (LEF) were analysed to develop relationships between rainfall, stream-runoff and elevation. These relationships were then used with a Geographic Information System (GIS) to determine spatially-averaged, mean annual hydrologic budgets for watersheds and forest types within the study area. A significant relationship exists between 1) elevation and mean annual rainfall; 2) elevation and the average number of days per year without rainfall; 3) annual stream runoff and the weighted mean elevation of a watershed; and 4) annual stream runoff and the elevation of the gaging station. A comparison of rainfall patterns between a high and a low elevation station indicated that annual and seasonal variations in rainfall are similiar along the elevational gradient. However, the upper elevation station had greater annual mean rainfall (4436 mm/yr compared to 3524 mn/yr) while the lower station had a greater variation in daily, monthly, and annual totals. Model estimates indicate that a total of 3864 mm/yr (444 hm3) of rainfall falls on the forest in an average year. The Tabonuco, Colorado, Palm, and Dwarf forest types receive an estimated annual rainfall of 3537, 4191, 4167, and 4849 mm/yr, respectively. Of the average annual rainfall input, 65% (2526 mm/yr) is converted to runoff and the remainding 35% (1338 mm/yr) is lost from the system by evapotranspiration and other abstractions. In comparsion to other tropical forests, the LEF as a whole has more evapotranspiration than many tropical montane forests but less than many lowland tropical forests.

C and N dynamics in the riparian and hyporheic zones of a tropical stream, Luquillo Mountains, Puerto Rico

C and N Dynamics in the Riparian and Hyporheic Zones of a Tropical Stream, Luquillo Mountains, Puerto Rico
Tamara J. Chestnut and William H. McDowell
Journal of the North American Benthological Society
Vol. 19, No. 2 (Jun., 2000), pp. 199-214

Hydrologic and chemical characteristics were determined for both riparian and hyporheic subsurface flow along a 100-m reach of a sandy-bottom tributary of the Rio Icacos in the Luquillo Experimental Forest, Puerto Rico. Hydrologic data (vertical hydraulic gradient and hydraulic conductivity of streambed sediments) and the topographic and morphological features of the watershed indicated diffuse inputs of groundwater from the near-stream riparian zone along this site. Cumulative groundwater discharge, determined by tracer dilution techniques, was ∼1.5 L/s or 10% of the total stream discharge. Spatial heterogeneity in hydrologic and chemical properties of riparian and hyporheic sediments was large. Hydraulic conductivity explained much of the variation in NH<sub>4</sub>-N and dissolved organic carbon (DOC) concentrations, with highest concentrations in sites having low conductivity. A mass-balance approach was used to examine the influence of the near-stream zone on nutrient transport and retention. Outwelling riparian groundwater had the potential to increase stream N concentrations by up to 84% and DOC concentrations by up to 38% along our 100-m reach. Because stream concentrations were constant downstream despite this input, we conclude that significant N and C retention or loss were occurring in the near-stream zone. Lotic ecosystems and their associated riparian groundwater can have a quantitatively significant impact on the nutrient budgets of tropical headwater catchments.
Syndicate content