P. A. Burrowes, R. L. Joglar and D. E. Green, Potential causes for
amphibian declines in Puerto Rico, Herpetologica, 2004, 60, 141–154.

We monitored 11 populations of eight species of Eleutherodactylus in Puerto Rico from 1989 through 2001. We determined relative abundance of active frogs along transects established in the Caribbean National Forest (El Yunque), Carite Forest, San Lorenzo, and in the vicinity of San Juan. Three species (Eleutherodactylus karlschmidti, E. jasperi, and E. eneidae) are presumed to be extinct and eight populations of six different species of endemic Eleutherodactylus are significantly declining at elevations above 400 m. Of the many suspected causes of amphibian declines around the world, we focused on climate change and disease. Temperature and precipitation data from 1970–2000 were analyzed to determine the general pattern of oscillations and deviations that could be correlated with amphibian declines. We examined a total of 106 tissues taken from museum specimens collected from 1961–1978 and from live frogs in 2000. We found chytrid fungi in two species collected at El Yunque as early as 1976, this is the first report of chytrid fungus in the Caribbean. Analysis of weather data indicates a significant warming trend and an association between years with extended periods of drought and the decline of amphibians in Puerto Rico. The 1970’s and 1990’s, which represent the periods of amphibian extirpations and declines, were significantly drier than average. We suggest a possible synergistic interaction between drought and the pathological effect of the chytrid fungus on amphibian populations.

Possible Environmental Factors Underlying Amphibian Decline in Eastern Puerto Rico: Analysis of U.S.Government Data Archives

STALLARD, R. F. 2001. Possible environmental factors
underlying amphibian decline in eastern Puerto Rico:
analysis of U.S. government data archives. Conservation
Biology 15:943–953.

The past three decades have seen major declines in populations of several species of amphibians at high elevations in eastern Puerto Rico, a region unique in the humid tropics because of the degree of environmental monitoring that has taken place through the efforts of U.S. government agencies. I examined changes in environmental conditions by examining time-series data sets that extend back at least into the 1980s, a period when frog populations were declining. The data include forest cover; annual mean, minimum, and maximum daily temperature; annual rainfall; rain and stream chemistry; and atmospheric-dust transport. I examined satellite imagery and air-chemistry samples from a single National Aeronautics and Space Administration aircraftflight across the Caribbean showing patches of pollutants, described as thin sheets or lenses, in the lower troposphere. The main source of these pollutants appeared to be fires from land clearing and deforestation, primarily in Africa. Some pollutant concentrations were high and, in the case of ozone, approached health limits set for urban air. Urban pollution impinging on Puerto Rico, dust generation from Africa (potential soil pathogens), and tropical forest burning (gaseous pollutants) have all increased during the last three decades, overlapping the timing of amphibian declines in eastern Puerto Rico. None of the data sets pointed directly to changes so extreme that they might be considered a direct lethal cause of amphibian declines in Puerto Rico. More experimental research is required to link any of these environmentalfactors to this problem.

Top-down effects of a terrestrial frog on forest nutrient dynamics

Beard,Karen H.; Vogt, Kristiina A.; Kulmatiski,Andrew 2002. Top-down effects of a terrestrial frog on forest nutrient dynamics.. Oecologia 133 :583 593.

Many studies have found top-down effects of predators on prey, but few studies have linked top-down effects of vertebrate predators to nutrient cycling rates in terrestrial systems. In this study, large and significant effects of a terrestrial frog, Eleutherodactylus coqui (coqu), were recorded on nutrient concentrations and fluxes in a subtropical wet forest. In a manipulative experiment, coqus at natural densities were contained in or excluded from 1 m3 enclosures for 4 months. Chemistry of leaf wash (throughfall), foliage, and decomposed leaf litter in the enclosures were measured as indicators of coqu effects on nutrient cycling. Coqu exclusion decreased elemental concentrations in leaf washes by 83% for dissolved organic C, 71% for NH4 +, 33% for NO3 –, 60% for dissolved organic N, and between 60 and 100% for Ca, Fe, Mg, Mn, P, K, and Zn. Coqu exclusion had no effect on foliar chemistry of plants transplanted into the enclosures. However, coqu exclusion decreased nutrient availability in decomposing mixed leaf litter by 12% and 14% for K and P, respectively, and increased C:N ratios by 13%. Changes in nutrient concentrations that occurred with coqu exclusion appear to be due to concentrations of nutrients in coqu waste products and population turnover. The results supported our hypothesis that coqus have an observable effect on nutrient dynamics in this forest. We suggest that the primary mechanism through which they have this effect is through the
Syndicate content