body size

Moisture as a determinant of habitat quality for a nonbreeding Neotropical migratory songbird

Smith, Joseph A. M., Leonard R. Reitsma, and Peter P. Marra. 2010. Moisture as a determinant of habitat quality for a nonbreeding neotropical migratory songbird. Ecology 91 (10) (OCT): 2874-82.

Abstract: 
Identifying the determinants of habitat quality for a species is essential for understanding how populations are limited and regulated. Spatiotemporal variation in moisture and its influence on food availability may drive patterns of habitat occupancy and demographic outcomes. Nonbreeding migratory birds in the neotropics occupy a range of habitat types that vary with respect to moisture. Using carbon isotopes and a satellite-derived measure of habitat moisture, we identified a moisture gradient across home ranges of radiotracked Northern Waterthrush (Seiurus noveboracensis). We used this gradient to classify habitat types and to examine whether habitat moisture correlates with overwinter mass change and spring departure schedules of Northern Waterthrush over the late-winter dry season in the tropics. The two independent indicators of moisture revealed similar gradients that were directly proportional to body mass change as the dry season progressed. Birds occupying drier habitats declined in body mass over the study period, while those occupying wetter habitats increased in body mass. Regardless of habitat, birds lost an average of 7.6% of their mass at night, and mass recovery during the day trended lower in dry compared with wet habitats. This suggests that daily incremental shortfalls in mass recovery can lead to considerable season-long declines in body mass. These patterns resulted in consequences for the premigratory period, with birds occupying drier habitats having a delayed rate of fat deposition compared with those in wet habitats. Taken together with the finding that males, which are significantly larger than females, are also in better condition than females regardless of habitat suggests that high-quality habitats may be limited and that there may be competition for them. The habitat-linked variation in performance we observed suggests that habitat limitation could impact individual and population-level processes both during and in subsequent periods of the annual cycle. The linkage between moisture and habitat quality for a migratory bird indicates that the availability of high-quality habitats is dynamic due to variation in precipitation among seasons and years. Understanding this link is critical for ascertaining the impact of future climate change, particularly in the Caribbean basin, where a much drier future is predicted.

Experimental Removal of Insectivores from Rain Forest Canopy: Direct and Indirect Effects

Dial, Roman, and Jonathan Roughgarden. 1995. Experimental Removal of Insectivores from Rain Forest Canopy: Direct and Indirect Effects. Ecology 76:1821–1834

Abstract: 
This study considered the effects of insectivorous Anolis lizards on a large, complex food web of arthropods and associated herbivory in a tropical rain forest canopy. We excluded Anolis lizards for 6 mo from 20—30 m high tree crowns in Puerto Rican rain forest. Simultaneous with lizard exclusion, we sampled orb spiders, airborne arthropods, and leaf arthropods in lizard removal crowns and in controls. We also sampled herbivory at the end of the experiment. Lizard removal had strong, statistically significant, positive effects on arthropods >2 mm in length and weak negative effects on arthropods <2 mm. Parameters of arthropod body size distributions differed between removals and controls for leaf arthropods, but not for airborne arthropods. Among arthropod taxa >2 mm, both predatory, i.e., orb spiders and parasitic Hymenoptera, and nonpredatory forms, i.e. Diptera, Coleoptera, Orthoptera, and Blattaria, showed strong significant and positive responses to lizard removal. Large Psocoptera, Homoptera, leaf spiders, and ants did not show significant overall responses to lizard removal. Frequency of herbivore damage on new leaves was positively correlated with abundance of Orthoptera and Blattaria. This damage was significantly greater in lizard removal crowns than in controls, indicating an indirect effect of anoles on plants. The indirect effect of lizards on small arthropods through the predatory anthropod pathway appeared weak. Results of lizard removal shown by this study corroborate other lizard removal studies from more xeric, ground—level habitats with simpler food webs in the West Indies, particularly with respect to orb spiders and herbivory. Taken together with the results of similar experiments performed in trophically less complex systems, this experiment suggests that food web size is less important than body size in determining interaction strength between community members.
Syndicate content