Seasonal changes in sea surface temperature and salinity during the little ice age in the caribbean sea deduced from Mg/Ca and O-18/O-16 ratios in corals

Watanabe, T., A. Winter, and T. Oba. 2001. Seasonal changes in sea surface temperature and salinity during the little ice age in the caribbean sea deduced from Mg/Ca and O-18/O-16 ratios in corals. Marine Geology 173 (1-4) (MAR 15): 21-35.

The oxygen isotropic composition (delta 18O) of coral skeletons reflects a combination of sea surface temperature (SST) and the delta 18O of seawater, which is related to sea surface salinity (SSS). In contrast, the magnesium/Calcium (Mg/Ca) ratio of a coral skeleton reflects SST independent of Salinity. by using the relationships among coral Mg/Ca ratios, coral delta 18), seawater delta 18O and SST, it is possible to determine past SST and SS uniquely. Such determinations were made and calibrated using the Mg/Ca ratio and the delta 18O of the modern part of a 3 m long coral core (Monastrea faveolata) collected from the southwest coast of Puerto Rico in the Caribbean Sea where both SST and SSS changes seasonally and the seawater delta 18O measured at the coral site....

Sediment production from unpaved roads in a sub-tropical dry setting — Southwestern Puerto Rico

Carlos E. Ramos Scharrón
Sediment production from unpaved roads in a sub-tropical dry setting — Southwestern Puerto Rico
Volume 82, Issue 3, 15 September 2010, Pages 146-158

The threat imposed by increased sediment loading rates ranks among the most important stressors affecting coral reef ecosystems worldwide. This study represents an effort to quantify the effects of unpaved roads on erosion rates in a dry sub-tropical area of Puerto Rico and is intended to aid in developing scientifically-based erosion mitigation strategies. Hence, the specific objectives of this study were to: (1) measure sediment production rates from unpaved roads; (2) evaluate the effect of precipitation, rainfall erosivity, slope, plot length, and vegetation cover on sediment production rates; and (3) compare measured sediment production rates to published surface erosion data from roaded and natural sites in the Eastern Caribbean. Sediment production from nine abandoned road segments with varying slopes and plot lengths were measured with sediment traps in southwestern Puerto Rico from August 2003 to September 2005. The overall average sediment production rate was 0.84 Mg ha−1 yr−1, and the range of observed values was 15–50 times higher than locally-measured natural erosion rates. Only four of the nine study sites had a statistically significant correlation between sediment production and total rainfall and this is attributed to progressive changes in some of the conditions controlling erosion rates. Sediment production rates were dependent on slope raised to the 1.6th power, as well as to the product of plot length times slope1.6. Average erosion rates were inversely but poorly related to vegetation cover. An observed decline in sediment production rates was observed for all nine study segments, and this amounted to a statistically significant difference between observations made during the early stages of monitoring (Period 1: August 2003–April 2004) relative to those during the latter parts of the study (Period 2: May 2004– September 2005). Annual erosion rates during Period 1 amounted to 0.18 to 4.0 Mg ha−1 yr−1 for road segments with 1% and 22% slopes, respectively; rates during Period 2 were between 0.024 and 0.52Mg ha−1 yr−1, or only 13% of those during Period 1. Differences in sediment production rates between the two periods are attributed to more intense rainfall during Period 1 and to a notably higher vegetation cover during Period 2. Rainfall appears to play a paradoxical role in controlling surface erosion rates on abandoned road surfaces in a sub-tropical dry region.While ample rainfall is needed to generate erosion by rainsplash and overland flow, once rainfall satisfies soil moisture requirements for sustaining vegetation colonization it may also contribute to declining sediment production rates. Therefore, any model that attempts to properly address the temporal variation in erosion rates occurring on abandoned roads in a climatic setting where moisture availability is a limiting factor must not only follow the more traditional surface armoring-based approach but must also integrate the effects of re-vegetation. Such types of modelswill eventually become useful tools to properly assess the effects of past, current, and future land use practices on erosion rates, and to improve mitigation and land development strategies to lessen the impact on vital marine habitats

Wind characteristics on the Caribbean island of Puerto Rico

Altaii, K. and R.N. Farrugia (2003), “Wind characteristics on the Caribbean island of Puerto
Rico”, Renewable Energy, 2003. 28(11): 1701-1710.

Wind data was measured at a number of sites on the Caribbean island of Puerto Rico over a 24 calendar-month time frame. The wind data gathered at four sites is envisaged to shed new light on the wind characteristics of this tropical island with an emphasis on the climate’s suitability for wind energy technology applications. Characteristics such as the diurnal, monthly and annual wind speed are subjectively investigated to determine the sites’ potential for further studies in the wind measurement field. Reasonable wind conditions for wind energy conversion system installation seem to exist in and around Aguadilla and Ponce.

The Status of Puerto Rico’s Forests, 2003

Brandeis, Thomas J.; Helmer, Eileen H.; Oswalt, Sonja N. 2007. The status of Puerto Rico's forests, 2003. Resour. Bull. SRS-119. Asheville, NC: U.S. Department of Agriculture Forest Service, Southern Research Station. 72 p.

Puerto Rico’s forest cover continues to increase and is now 57 percent for mainland Puerto Rico, 85 percent for Vieques, and 88 percent for Culebra. Subtropical dry forest occupies 50 346 ha, 6832 ha, 2591 ha, and 6217 ha on the islands of Puerto Rico, Vieques, Culebra, and Mona, respectively. Subtropical moist forest, the most prevalent forested life zone on mainland Puerto Rico, had 49 percent forest cover or 258 861 ha of forest. Subtropical wet and rain forest occupies 161 503 ha, lower montane wet and rain forest occupies 11 723 ha at the highest elevations, and mangrove forest occupies 7920 ha in coastal areas. Puerto Rico’s forests were found to have over 1,602,378,689 trees over 2.5 cm in diameter and 10 607 847 m2 of basal area, and to hold 36.6 million Mg of sequestered carbon. There were 3,112 trees, 19.2 m2 of basal area, 68.25 m3 of merchantable stem volume, and 80 Mg of aboveground biomass in an average hectare of forest. The subtropical moist and wet and rain secondary forests inventoried in 1990 are still young and increasing in average basal area, which rose from 13.2 mm2/ha in 1980, to 15.2 m2/ha in 1990, to the current level of 20.9 mm2/ha. The most important tree species were the African tuliptree [Spathodea campanulata] Beauv., American muskwood [<="" i="">] (L.) Sleumer, cabbagebark tree [Andira inermis] (W. Wright) Kunth ex DC., and pumpwood [Cecropia schreberiana] Miq. Few unhealthy, stressed trees werenoted and widespread pest and disease problems were not observed. Only 12.9 percent of live trees had some type of damage or disease. Average per-hectare amounts of down woody material, forest floor duff, and forest floor litter generally increased as the forest environment became more humid. Small-to-medium forest fire fuels were most common in subtropical dry forests, while medium-to-large fuels were most common in more humid forest life zones.

Climate influence on dengue epidemics in Puerto Rico

Jury, M., 2008: Climate influences on dengue epidemics in Puerto
Rico. Int. J. Environ. Health Res., 18, 323–334.

The variability of the insect-borne disease dengue in Puerto Rico was studied in relation to climatic variables in the period 1979–2005. Annual and monthly reported dengue cases were compared with precipitation and temperature data. Results show that the incidence of dengue in Puerto Rico was relatively constant over time despite global warming, possibly due to the offsetting effects of declining rainfall, improving health care and little change in population. Seasonal fluctuations of dengue were driven by rainfall increases from May to November. Year-to-year variability in dengue cases was positively related to temperature, but only weakly associated with local rainfall and an index of El Nin˜ o Southern Oscillation (ENSO). Climatic conditions were mapped with respect to dengue cases and patterns in high and low years were compared. During epidemics, a low pressure system east of Florida draws warm humid air over the northwestern Caribbean. Long-term trends in past observed and future projected rainfall and temperatures were studied. Rainfall has declined slowly, but temperatures in the Caribbean are rising with the influence of global warming. Thus, dengue may increase in the future, and it will be necessary to anticipate dengue epidemics using climate forecasts, to reduce adverse health impacts.

Urban influences on the nitrogen cycle in Puerto Rico

Ortiz-Zayas, J. R., E. Cuevas, O. L. Mayol-Bracero, L.
Donoso, I. Trebs, D. Figueroa-Nieves, and W. H. Mcdowell.
2006. Urban influences on the nitrogen cycle in Puerto Rico.
Biogeochemistry 79:109–133.

Anthropogenic actions are altering fluxes of nitrogen (N) in the biosphere at unprecedented rates. Efforts to study these impacts have concentrated in the Northern hemisphere, where experimental data are available. In tropical developing countries, however, experimental studies are lacking. This paper summarizes available data and assesses the impacts of human activities on N fluxes in Puerto Rico, a densely populated Caribbean island that has experienced drastic landscape transformations over the last century associated with rapid socioeconomic changes. N yield calculations conducted in several watersheds of different anthropogenic influences revealed that disturbed watersheds export more N per unit area than undisturbed forested watersheds. Export of N from urban watersheds ranged from 4.8 kg ha)1 year)1 in the Rı´o Bayamo´ n watershed to 32.9 kg ha)1 year)1 in the highly urbanized Rı´o Piedras watershed and 33.3 kg ha)1 year)1 in the rural-agricultural Rı´o Grande de An˜ asco watershed. Along with land use, mean annual runoff explained most of the variance in fluvial N yield. Wastewater generated in the San Juan Metropolitan Area receives primary treatment before it is discharged into the Atlantic Ocean. These discharges are N-rich and export large amounts of N to the ocean at a rate of about 140 kg ha)1 year)1. Data on wet deposition of inorganic N (NHþ4 þ NO 3 ) suggest that rates of atmospheric N deposition are increasing in the pristine forests of Puerto Rico. Stationary and mobile sources of NOx (NO+NO2) and N2O generated in the large urban centers may be responsible for this trend. Comprehensive measurements are required in Puerto Rico to quantitatively characterize the local N cycle. More research is required to assess rates of atmospheric N deposition, N fixation in natural and human-dominated landscapes, N-balance associated with food and feed trade, and denitrification.

Development of a Landforms Model for Puerto Rico and its Application for Land Cover Change Analysis

MARTNUZZI, SEBASTIÁN; GOULD, WILLIAM A.; RAMOS GONZÁLEZ, OLGA M.; EDWARDS, BROOK E. 2007. Development of a Landforms Model for Puerto Rico and its Application for Land Cover Change Analysis.. Caribbean Journal of Science, Vol. 43, No. 2, :161-171.

Comprehensive analysis of land morphology is essential to supporting a wide range environmental studies. We developed a landforms model that identifies eleven landform units for Puerto Rico based on parameters of land position and slope. The model is capable of extracting operational information in a simple way and is adaptable to different environments and objectives. The implementation of the landforms model for land cover change analysis represents an advanced step towards understanding the expansion of urban areas and forest cover in Puerto Rico between 1977 and 1994. Expansion of urban areas has typically been associated with low and flat topographies. Forest recovery, on the other hand, has been associated with high elevations and steep slopes. Our study revealed that (1) nearly half of new developments occurred outside the plains, (2) almost all new forests occurred in mountain regions (but not on the steepest slopes), and (3) there are transitional and very dynamic landforms (the side slopes) that experience both important land development and forest recovery. Finally, we present additional examples of the landforms model applications, including vegetation mapping, physiography, and the modeling of vertebrate habitat distributions.

Forest conservation and land development in Puerto Rico

Helmer, E.H., 2004. Forest conservation and land development in Puerto Rico.
Landscape Ecol. 19, 29–40.

In the Caribbean island of Puerto Rico, rapid land-use changes over the past century have included recent land-cover conversion to urban/built-up lands. Observations of this land development adjacent to reserves or replacing dense forest call into question how the changes relate to forests or reserved lands. Using existing maps, this study first summarizes island-wide land-cover change between 1977-78 and 1991-92. Then, using binomial logit modeling, it seeks evidence that simple forest cover attributes, reserve locations, or existing land cover influence land development locations. Finally, this study quantifies land development, reserve protection and forest cover by ecological zone. Results indicate that 1) pasture is more likely to undergo land development than shrubland plus forest with low canopy density, 2) forest condition and conservation status appear unimportant in that development locations neither distinguish between classes of forest canopy development nor relate to forest patch size or reserve proximity, and 3) most land development occurs in the least-protected ecological zones. Outside the boundaries of strictly protected forest and other reserves, accessibility, proximity to existing urban areas, and perhaps desirable natural settings, serve to increase land development. Over the coming century, opportunities to address ecological zone gaps in the island’s forest reserve system could be lost more rapidly in lowland ecological zones, which are relatively unprotected.

Mapping the Forest Type and Land Cover of Puerto Rico, a Component of the Caribbean Biodiversity Hotspot

ELMER,E. H.; RAMOS, O.; LÓPEZ, T. DEL M.; QUIÑONES, M.; DIAZ, W. 2002. Mapping the Forest Type and Land Cover of Puerto Rico, a Component of the Caribbean Biodiversity Hotspot. Caribbean Journal of Science, Vol. 38, No. 3-4, 165-183, .

The Caribbean is one of the world’s centers of biodiversity and endemism. As in similar regions, many of its islands have complex topography, climate and soils, and ecological zones change over small areas. A segmented, supervised classification approach using Landsat TM imagery enabled us to develop the most detailed island-wide map of Puerto Rico’s extremely complex natural vegetation cover. Many Caribbean forest formations that are not spectrally distinct had distributions approximately separable using climatic zone, geology, elevation, and rainfall. Classification accuracy of 26 land cover and woody vegetation classes was 71 % overall and 83 % after combining forest successional stages within image mapping zones. In 1991-92, Puerto Rico had about 364,000 ha of closed forest, which covered 41.6 % of the main island. Unlike previous island-wide mapping, this map better identifies the spatial distributions of forest formations where certain groups of endemic species occur. Approximately 5 % of Puerto Rico’s forest area is under protection, but the reserve system grossly underrepresents lowland moist, seasonal evergreen forests.


P. A. Burrowes, R. L. Joglar and D. E. Green, Potential causes for
amphibian declines in Puerto Rico, Herpetologica, 2004, 60, 141–154.

We monitored 11 populations of eight species of Eleutherodactylus in Puerto Rico from 1989 through 2001. We determined relative abundance of active frogs along transects established in the Caribbean National Forest (El Yunque), Carite Forest, San Lorenzo, and in the vicinity of San Juan. Three species (Eleutherodactylus karlschmidti, E. jasperi, and E. eneidae) are presumed to be extinct and eight populations of six different species of endemic Eleutherodactylus are significantly declining at elevations above 400 m. Of the many suspected causes of amphibian declines around the world, we focused on climate change and disease. Temperature and precipitation data from 1970–2000 were analyzed to determine the general pattern of oscillations and deviations that could be correlated with amphibian declines. We examined a total of 106 tissues taken from museum specimens collected from 1961–1978 and from live frogs in 2000. We found chytrid fungi in two species collected at El Yunque as early as 1976, this is the first report of chytrid fungus in the Caribbean. Analysis of weather data indicates a significant warming trend and an association between years with extended periods of drought and the decline of amphibians in Puerto Rico. The 1970’s and 1990’s, which represent the periods of amphibian extirpations and declines, were significantly drier than average. We suggest a possible synergistic interaction between drought and the pathological effect of the chytrid fungus on amphibian populations.
Syndicate content