Forest Regeneration in a chronosequence of tropical abandoned pastures: implications for restoration ecology

Forest Regeneration in a chronosequence of tropical abandoned pastures: implications for restoration ecology

During the mid-1900s, most of the island of Puerto Rico was deforested, but a shift in the economy from agriculture to small industry beginning in the 1950s resulted in the abandonment of agricultural lands and recovery of secondary forest. This unique history provides an excellent opportunity to study secondary forest succession and suggest strategies for tropical forest restoration. To determine the pattern of secondary succession, we describe the woody vegetation in 71 abandoned pastures and forest sites in four regions of Puerto Rico. The density, basal area, aboveground biomass, and species richness of the secondary forest sites were similar to those of the old growth forest sites (>80 yr) after approximately 40 years. The dominant species that colonized recently abandoned pastures occurred over a broad elevational range and are widespread in the neotropics. The species richness of Puerto Rican secondary forests recovered rapidly, but the species composition was quite different in comparison with old growth forest sites, suggesting that enrichment planting will be necessary to restore the original composition. Exotic species were some of the most abundant species in the secondary forest, but their long-term impact depended on life history characteristics of each species. These data demonstrate that one restoration strategy for tropical forest in abandoned pastures is simply to protect the areas from fire, and allow natural regeneration to produce secondary forest. This strategy will be most effective if remnant forest (i.e., seed sources) still exist in the landscape and soils have not been highly degraded. Patterns of forest recovery also suggest strategies for accelerating natural recovery by planting a suite of generalist species that are common in recently abandoned pastures in Puerto Rico and throughout much of the neotropics.

Hurricane Disturbance Alters Secondary Forest Recovery in Puerto Rico

Flynn DFB, Uriarte M, Crk T et al (2009) Hurricane disturbance
alters secondary forest recovery in Puerto Rico.
Biotropica 42:149–157

Land-use history and large-scale disturbances interact to shape secondary forest structure and composition. How introduced species respond to disturbances such as hurricanes in post-agriculture forest recovery is of particular interest. To examine the effects of hurricane disturbance and previous land use on forest dynamics and composition, we revisited 37 secondary forest stands in former cattle pastures across Puerto Rico representing a range of exposure to the winds of Hurricane Georges in 1998. Stands ranged from 21 to480 yr since agricultural abandonment and were measured 9 yr posthurricane. Stem density decreased as stands aged, while basal area and species richness tended to increase. Hurricane disturbance exerted contrasting effects on stand structure, contingent on stand age. In older stands, the basal area of large trees fell, shifting to a stand structure characteristic of younger stands, while the basal area of large trees tended to rise in younger stands with increasing hurricane disturbance. These results demonstrate that large-scale natural disturbances can alter the successional trajectory of secondary forest stands recovering from human land use, but stand age, precipitation and soil series were better predictors of changes in stand structure across all study sites. Species composition changed substantially between census intervals, but neither age nor hurricane disturbance consistently predicted species composition change. However, exposure to hurricane winds tended to decrease the abundance of the introduced tree Spathodea campanulata, particularly in smaller size classes. In all sites the abundance of the introduced tree Syzygium jambos showed a declining trend, again most strongly in smaller size classes, suggesting natural thinning through succession.


Boose, E.R., Serrano, M.I. & Foster, D.R. (2004) Landscape
and regional impacts of hurricanes in Puerto Rico. Ecological
Monographs, 74, 335–352.

Puerto Rico is subject to frequent and severe impacts from hurricanes, whose long-term ecological role must be assessed on a scale of centuries. In this study we applied a method for reconstructing hurricane disturbance regimes developed in an earlier study of hurricanes in New England. Patterns of actual wind damage from historical records were analyzed for 85 hurricanes since European settlement in 1508. A simple meteorological model (HURRECON) was used to reconstruct the impacts of 43 hurricanes since 1851. Long-term effects of topography on a landscape scale in the Luquillo Experimental Forest (LEF) were simulated with a simple topographic exposure model (EXPOS). Average return intervals across Puerto Rico for F0 damage (loss of leaves and branches) and F1 damage (scattered blowdowns, small gaps) on the Fujita scale were 4 and 6 years, respectively. At higher damage levels, a gradient was created by the direction of the storm tracks and the weakening of hurricanes over the interior mountains. Average return intervals for F2 damage (extensive blowdowns) and F3 damage (forests leveled) ranged from 15 to 33 years and 50 to 150 years, respectively, from east to west. In the LEF, the combination of steep topography and constrained peak wind directions created a complex mosaic of topographic exposure and protection, with average return intervals for F3 damage ranging from 50 years to .150 years. Actual forest damage was strongly dependent on land-use history and the effects of recent hurricanes. Annual and decadal timing of hurricanes varied widely. There was no clear centennial-scale trend in the number of major hurricanes over the historical period.



To evaluate the current status of instream flow practices in streams that drain into the Caribbean Basin, a voluntary survey of practising water resource managers was conducted. Responses were received from 70% of the potential continental countries, 100% of the islands in the Greater Antilles, and 56% of all the Caribbean island nations. Respondents identified ‘effluent discharges’, ‘downstream water quality’ and ‘existing extraction permits’ to be the most common sources of instream flow conflicts. In 75% of the countries, some type of ‘formal procedures’ exist for reviewing permit applications for freshwater extraction. In 82% of the countries, effluent discharge permits state the amount of effluent that can be discharged into a water body while only 69% require that surface water extraction permits explicitly state the quantity of water that can be extracted. In setting instream flow requirements, record low flow is used over 83% of the time. Freshwater fish were identified as the most important aquatic organism but no country ‘always’ considers the ecology or habitat requirements of aquatic species in their instream flow determinations and nearly 70% of the respondents indicated that multivariate, ecological-based methods are ‘never’ used in their country. Survey responses also indicate there is a notable lack of public involvement during the issuing of water permits. Moreover, over 80% of the countries do not provide public announcements or hearings during the permit process. In summary, this survey indicates that while there is a widespread recognition of the need for instream flows, there is a general lack of regionally based information and public involvement regarding stream flow determination.

Measurement and prediction of natural and anthropogenic sediment sources, St. John, U.S. Virgin Islands

Ramos- Scharrón, C.E., and L.H. MacDonald. 2007.
Measurement and prediction of natural and
anthropogenic sediment sources, St. John, U.S.
Virgin Island. Catena. 71: 250-266.

A quantitative understanding of both natural and anthropogenic sediment sources is needed to accurately assess and predict the potentially adverse effects of land development on aquatic ecosystems. The main objective of this study was to quantify sediment production and delivery rates in a dry tropical environment on the island of St. John in the eastern Caribbean. One to three years of measurements were used to determine values and empirical functions for estimating sediment production from streambanks, treethrow, undisturbed hillslopes, zero-order subcatchments, unpaved road surfaces, and road cutslopes. Sediment production also was measured from both undisturbed and roaded first-order subcatchments. Among natural sources of sediment, streambanks had the highest mean erosion rate at 100 Mg ha−1 yr−1. The uprooting of trees along stream margins is estimated to generate approximately of 0.2 Mg of sediment per kilometer of stream per year, or about 0.1 Mg ha−1 yr−1 for a stream corridor that consists of a 9-m wide channel and a 3-m wide buffer zone. Undisturbed 40 m2 hillslope plots generated 0.01 to 0.27 Mg ha−1 yr−1. Mean sediment yields from undisturbed zero- and first-order catchments were only 0.01 and 0.08 Mg ha−1 yr−1, respectively. Unpaved roads that were graded at least every other year had sediment production rates ranging from 57 Mg ha−1 yr−1 for a road with a 2% slope to 580 Mg ha−1 yr−1 for a road with a 21% slope. Sediment production rates from ungraded roads were about 40% lower than those from recently graded roads, while production rates from steep abandoned roads were only 12 Mg ha−1 yr−1. Cutslope sediment production rates ranged from 20 to 170 Mg ha−1 yr−1, but their contribution to sediment yields at the road segment scale was relatively small. Since unpaved roads increase hillslope-scale sediment production rates by several orders of magnitude, the first-order catchments with unpaved roads had sediment yields that were at least five times higher than undisturbed catchments. The relative importance of each sediment source varies from catchment to catchment as a result of the abundance and spatial distribution of landscape types. The values and predictive functions developed in this study have been incorporated into a GIS-based model to predict catchmentscale sediment yields. Application of this model to three basins in St. John suggest that unpaved roads are currently the dominant sediment source, and that they are responsible for increasing watershed-scale sediment yields by 3–9 times relative to undisturbed conditions. Both the data from the present study and the GIS model can help estimate sediment production and catchment-scale sediment yields in similar environments. © 2007 Elsevier B.V. All rights reserved.

Historical phytogeography of the Greater Antilles

Historical Phytogeography of the Greater Antilles
Alan Graham
Vol. 55, No. 4 (Sep. - Dec., 2003), pp. 357-383

An understanding of the phytogeographic history of a region depends upon an adequate fossil record to reveal migrational histories and the timing and direction(s) of introductions and extinctions, and to augment or circumvent undue reliance on molecular clocks. It further depends upon an accurate phylogeny of the taxa to establish real patterns of geographic affinities (phylogeography), and a relatively detailed geologic history to assess the relative roles of dispersal and vicariance in populating the islands. For the Greater Antilles new information is slowly emerging on the plant fossil record through study of new floras such as the Eocene Saramaguaca´n palynoflora from Cuba, and more is potentially available from the middle Oligocene San Sebastian megafossil flora of Puerto Rico that has not been revised since the early 1900s. Phylogeographic studies and area cladograms are still meager for plants, but data from various animal groups are providing a context for the general biotic history of the Antilles. Perhaps the area of greatest advance is being made in achieving an adequate plate tectonic model for the Caribbean region. There is now some convergence toward a mobilist model that depicts a Cretaceous volcanic island arc that extended from the Mexico/Chortis block in the north to Ecuador in the south, and gradually moved through the developing portal between North and South America to collide with the Bahamas Platform in the middle Eocene. Throughout this 70-million-year history there was an immensely complex pattern of collision/separation and submergence/emergence that provided opportunity both for vicariance and dispersal in the migration, evolution, and speciation of the flora of the Greater Antilles.

Background and Catastrophic Tree Mortality in Tropical Moist, Wet, and Rain Forests

Background and Catastrophic Tree Mortality in Tropical Moist, Wet, and Rain Forests
Ariel E. Lugo and F. N. Scatena
Vol. 28, No. 4, Part A. Special Issue: Long Term Responses of Caribbean Ecosystems to Disturbances (Dec., 1996), pp. 585-599

The process of tree mortality has dimensions of intensity, spatial, and temporal scales that reflect the characteristics of endogenic processes (i.e., senescence) and exogenic disturbances (i.e., severity, frequency, duration, spatial scale, and points of interaction with the ecosystem). Tree mortality events expressed as percent of stems or biomass per unit area, range in intensity from background (<5% yr-1) to catastrophic (>5% yr-1), in spatial scale from local to massive, and in temporal scale from gradual to sudden (hours to weeks). Absolute annual rates of background tree mortality (biomass or stem ha-1 yr-1) can vary several fold depending on stand conditions and tend to increase with stem density. The ecological effects of a catastrophic, massive, and sudden tree mortality event contrast with those of background, local, and gradual tree mortality in terms of the direction of succession after the event, community dynamics, nutrient cycling, and possibly selection on trees. When standardized for the return frequency of disturbance events, area, and topography, the ranking of tree mortality events (trees ha-1 century-1) in the Luquillo Experimental Forest is: background > hurricanes > individual tree fall gaps > landslides. Estimates of vegetation turnover rates require long-term and spatial analysis to yield accurate results.

A Comparison of Two Sampling Strategies to Assess Discomycete Diversity in Wet Tropical Forests

CANTRELL, SHARON A. 2004. A Comparison of Two Sampling Strategies to Assess Discomycete Diversity in Wet Tropical Forests. Caribbean Journal of Science, Vol. 40, No. 1, 8-16, .

Most of the fungal diversity studies that have used a systematic collecting scheme have not included the discomycetes, so optimal sampling methods are not available for this group. In this study, I tested two sampling methods at each sites in the Caribbean National Forest, Puerto Rico and Ebano Verde Reserve, Dominican Republic. For a plot-based sampling method, 10 × 10 m plots were established and divided into one hundred 1 × 1 m subplots. For each sample, 12 subplots were selected at random with replacement. For a transect-based sampling method, 60 m long transects were established with twelve 1 × 1 m subplots randomly placed on either side of the transect line at 5 m intervals at the beginning of the study. The study was conducted from October 2001 to September 2002. For Puerto Rico, 46 and 51 morpho-species were identified in the transects and plots, respectively. There was a 32% overlap (68% complementarity) between sites. The Sorensen Similarity Coefficient between sites was 0.50 for both methods, and 0.55-0.63 between methods within sites. For the Dominican Republic, 25 and 26 morpho-species were identified in the transects and plots, respectively. There was a 24-31% overlap (69-76% complementarity) between sites. The Sørensen Similarity Coefficient between sites was 0.40-0.47 for transects and plots, respectively, and 0.40-0.70 between methods within sites. The species accumulation curve indicates that the minimum number of subplots needed is 10 per transect and 60-70 per plot to obtain between 70-80% of the species. In terms of sampling effort, I concluded that at least 12 samples distributed throughout a year but with shorter intervals during the rainy season are needed. There was no difference between using transects or plots based on the number of species and similarity indexes. Based on a Chi-Square analysis using the frequencies of species, however, transects were better that plots because the distribution of species is more homogeneous.
Syndicate content