cloud forest

Water and energy budgets of rain forests along an elevation gradient under maritime tropical conditions

Holwerda, F., 2005. Water and Energy Budgets of Rain Forests Along an Elevational Gradient Under Maritime Tropical Conditions. PhD Thesis, VU University, Amsterdam, The Netherlands.

Abstract: 
From the hydrological point of view, mountains present somewhat of a paradox. Although they provide the bulk of the Earth’s freshwater resources, knowledge of the hydrological functioning of mountainous areas is generally much less extensive, reliable, and precise than that of other, often more easily accessible physiographic regions. Indeed, mountain regions have been referred to as ‘the blackest of black boxes in the hydrological cycle’ (Bandyopadhyay et al., 1997). Data collection networks are more difficult to set up and maintain in complex mountainous terrain, particularly in uninhabited forested headwater areas without road access, and minimum recommended instrumental densities are rarely met (Manley and Askew, 1993). Whilst the hydrological knowledge base on mountains in general has increased considerably in the last few decades, most montane research work has focused on determining catchment water and sediment outputs and their distribution in time and space; snow cover and glacier dynamics; or flood frequencies (Molnar, 1990; Lang and Musy, 1990; Bergmann et al., 1991; Young, 1992; Hofer, 1998), as opposed to the underlying hydrological processes (cf. Bonell, 1993). Until very recently (e.g. Motzer, 2003; Schellekens et al., 2004; Goller et al., 2005), the vast majority of this work dealt with mountains in the temperate zone, with very little pertaining to forested tropical mountains (see summaries of early research by Bruijnzeel and Proctor (1995) and Bruijnzeel (2001)). Knowledge of such processes would serve as a basis for increased understanding of how streamflows emanating from tropical mountains might change as a result of changes in climate, including the lifting condensation level, frequency and density of clouds and, by implication, water inputs and evaporative losses (Bruijnzeel, 2001). The average cloud condensation level on tropical islands can be as low as 600-800 m (Malkus, 1955), although on larger mountains situated further inland this may be closer to 2,000 m (Stadtmüller, 1987). Above this condensation level, the hydrology of the forest changes profoundly because of contributions of cloud water (i.e. fog) deposited to the forest canopy (Bruijnzeel, 2001). There is circumstantial evidence that complete conversion of these ‘tropical montane cloud forests’ (TMCF) to pasture or vegetable cropping may have an adverse effect on dry season flows or even on total water yield because of strongly diminished fog interception after clearing (Ingwersen, 1985; Brown et al., 1996). Similar effects may be expected when the average cloud condensation level is raised because of warming of the atmosphere due to global climate change (Still et al., 1999; Foster, 2001), or clearing of forest at lower elevations (Lawton et al., 2001; Van der Molen, 2002).

Lack of Ecotypic Differentiation: Plant Response to Elevation, Population Origin, and Wind in the Luquillo Mountains, Puerto Rico

Fetcher, Ned; Cordero, Roberto A.; Voltzow, Janice 2000. Lack of Ecotypic Differentiation: Plant Response to Elevation, Population Origin, and Wind in the Luquillo Mountains, Puerto Rico. BIOTROPICA 32(2) :225-234 .

Abstract: 
How important is ecotypic differentiation along elevational gradients in the tropics? Reciprocal transplants of two shrubs, Clibadium erosum (Asteraceae) and Psychotria berteriana (Rubiaceae), and a palm, Prestoea acuminata var. montana (Palmaceae), were used to test for the effect of environment and population origin on growth and physiology in the Luquillo Experimental Forest of Puerto Rico. Two sites were used, one at Pico del Este (1000 m in cloud forest) and one at El Verde (350 m in lower montane rain forest). At the cloud forest site, plastic barriers were erected around a subset of the plants to examine if protection from wind affected survival or biomass accumulation. Survival of C. erosum and P. berteriana was not affected by site, population origin, or the presence of barriers. For P. acuminata var. montana, survival was higher for plants with barriers, but not affected by site and population origin. Plants of C. erosum and P. berteriana at El Verde grew larger than at Pico del Este, but there was no effect of population origin or barrier treatment on biomass accumulation for these species. For P. acuminata var. montana, there was no effect of environment, population origin, or barrier treatment on biomass accumulation. Light-saturated photosynthetic rate (Amax) of C. erosum, P. berteriana, and P. acuminata var. montana, as well as leaf anatomical characteristics of C. erosum, were unaffected by environment, population origin, and barrier treatment. On balance, there seems to be little evidence of ecotypic differentiation in these species along the gradient.

CONTROLS OF PRIMARY PRODUCTIVITY: LESSONS FROM THE LUQUILLO MOUNTAINS IN PUERTO RICO

Controls of Primary Productivity: Lessons from the Luquillo Mountains in Puerto Rico
Robert B. Waide, Jess K. Zimmerman and F. N. Scatena
Ecology
Vol. 79, No. 1 (Jan., 1998), pp. 31-37

Abstract: 
The Luquillo Mountains of eastern Puerto Rico are used as a case study to evaluate possible single- or multiple-factor controls of productivity in montane forests. A review of published studies from the Luquillo Mountains revealed that canopy height, productivity, and species richness decline while stem density increases with elevation, as is typical of other montane forests. A mid-elevation floodplain palm stand with high levels of productivity provides a notable exception to this pattern. Previous basic and applied studies of productivity in the Luquillo Mountains have consistently considered the overall gradient in productivity to be important in understanding forest structure and function. Recent observational and experimental studies have determined that disturbance of all types is an important factor mediating productivity in both low- and high-elevation (cloud) forests. For example, low-elevation forest recovers more quickly from hurricane disturbance and is more responsive to nutrient additions than is cloud forest. All of the factors proposed for limiting productivity are supported in one way or another by research in the Luquillo Mountains. What is critically lacking is both an appreciation for the way that these factors interact and experiments appropriate to evaluate multiple controls acting simultaneously.

Hydrometeorology of tropical montane cloud forests: emerging patterns

Bruijnzeel LA, Mulligan M, Scatena FN. 2010. Hydrometeorology of
tropical montane cloud forests: emerging patterns. Hydrological
Processes. DOI: 10.1002/hyp.7974.

Abstract: 
altitudinal limits between which TMCF generally occur (800–3500 m.a.s.l. depending on mountain size and distance to coast) their current areal extent is estimated at ¾215 000 km2 or 6Ð6% of all montane tropical forests. Alternatively, on the basis of remotely sensed frequencies of cloud occurrence, fog-affected forest may occupy as much as 2Ð21 Mkm2. Four hydrologically distinct montane forest types may be distinguished, viz. lower montane rain forest below the cloud belt (LMRF), tall lower montane cloud forest (LMCF), upper montane cloud forest (UMCF) of intermediate stature and a group that combines stunted sub-alpine cloud forest (SACF) and ‘elfin’ cloud forest (ECF). Average throughfall to precipitation ratios increase from 0Ð72 š 0Ð07 in LMRF (n D 15) to 0Ð81 š 0Ð11 in LMCF (n D 23), to 1Ð0 š 0Ð27 (n D 18) and 1Ð04 š 0Ð25 (n D 8) in UMCF and SACF–ECF, respectively. Average stemflow fractions increase from LMRF to UMCF and ECF, whereas leaf area index (LAI) and annual evapotranspiration (ET) decrease along the same sequence. Although the data sets for UMCF (n D 3) and ECF (n D 2) are very limited, the ET from UMCF (783 š 112 mm) and ECF (547 š 25 mm) is distinctly lower than that from LMCF (1188 š 239 mm, n D 9) and LMRF (1280 š 72 mm; n D 7). Field-measured annual ‘cloud-water’ interception (CWI) totals determined with the wet-canopy water budget method (WCWB) vary widely between locations and range between 22 and 1990 mm (n D 15). Field measured values also tend to be much larger than modelled amounts of fog interception, particularly at exposed sites. This is thought to reflect a combination of potential model limitations, a mismatch between the scale at which the model was applied (1 ð 1 km) and the scale of the measurements (small plots), as well as the inclusion of near-horizontal wind-driven precipitation in the WCWB-based estimate of CWI. Regional maps of modelled amounts of fog interception across the tropics are presented, showing major spatial variability. Modelled contributions by CWI make up less than 5% of total precipitation in wet areas to more than 75% in low-rainfall areas. Catchment water yields typically increase from LMRF to UMCF and SACF–ECF reflecting concurrent increases in incident precipitation and decreases in evaporative losses. The conversion of LMCF (or LMRF) to pasture likely results in substantial increases in water yield. Changes in water yield after UMCF conversion are probably modest due to trade-offs between concurrent changes in ET and CWI. General circulation model (GCM)-projected rates of climatic drying under SRES greenhouse gas scenarios to the year 2050 are considered to have a profound effect on TMCF hydrological functioning and ecology, although different GCMs produce different and sometimes opposing results. Whilst there have been substantial increases in our understanding of the hydrological processes operating in TMCF, additional research is needed to improve the quantification of occult precipitation inputs (CWI and wind-driven precipitation), and to better understand the hydrological impacts of climate- and land-use change. Copyright  2010 John Wiley & Sons, Ltd.

Comparison of passive fog gages for determining fog duration and fog interception by a Puerto Rican elfin cloud forest

Holwerda, F.; Bruijnzeel, L.A.; Scatena, F.N. 2010. Comparison of passive fog gages for determining fog duration and fog interception by a Puerto Rican elfin cloud forest. Bruijnzeel, L.A.; Scatena, F.N.; Hamilton, L.S., eds. Tropical Montane Cloud Forests: Science for Conservation and Management. Cambridge, UK: Cambridge University Press. p. 275-281.

Abstract: 
Rates and amounts of fog interception by vegetation depend on wind speed, fog liquid water 4 content (LWC) and duration, as well as surface area and geometry of the vegetation 5 (Schemenauer, 1986). Information on the timing and duration of fog can be obtained with 6 passive fog gages, provided these are protected from rainfall and equipped with a recording 7 device (Bruijnzeel et al., 2005). Fog LWC may also be evaluated from collections by passive 8 gages when information on their collection efficiency and prevailing wind speeds is available 9 (e.g. Schemenauer and Joe, 1989). A variety of passive gages is available, and there has been 10 some discussion as to what is the most suitable type of gage to characterize local fog 11 conditions (Juvik and Nullet, 1995a; Schemenauer and Cereceda, 1995; cf. Delay and 12 Giambelluca, in press; Frumau et al., this issue). For example, a cylindrical gage is considered 13 superior to a flat screen, because it has uniform exposure to all wind directions (Juvik and 14 Nullet, 1995a; cf. García Santos and Bruijnzeel, this issue; Giambelluca et al., this issue). On 15 the other hand, a flat screen generally has a much larger collection area than a cylindrical 16 gage, and may thus measure fog when LWC or wind speeds are low (Schemenauer and 17 Cereceda, 1995).

Estimating fog deposition at a Puerto Rican elfin cloud forest site: comparison of the water budget and eddy covariance methods

Holwerda, F., R. Burkard, W. Eugster, F. N. Scatena, A. G. C. A. Meesters,
and L. A. Bruijnzeel (2006), Estimating fog deposition at a Puerto
Rican elfin cloud forest site: Comparison of the water budget and eddy
covariance methods, Hydrol. Processes, 20, 2669– 2692.

Abstract: 
The deposition of fog to a wind-exposed 3 m tall Puerto Rican cloud forest at 1010 m elevation was studied using the water budget and eddy covariance methods. Fog deposition was calculated from the water budget as throughfall plus stemflow plus interception loss minus rainfall corrected for wind-induced loss and effect of slope. The eddy covariance method was used to calculate the turbulent liquid cloud water flux from instantaneous turbulent deviations of the surface-normal wind component and cloud liquid water content as measured at 4 m above the forest canopy. Fog deposition rates according to the water budget under rain-free conditions (0Ð11 š 0Ð05 mm h1) and rainy conditions (0Ð24 š 0Ð13 mm h1) were about three to six times the eddy-covariance-based estimate (0Ð04 š 0Ð002 mm h1). Under rain-free conditions, water-budget-based fog deposition rates were positively correlated with horizontal fluxes of liquid cloud water (as calculated from wind speed and liquid water content data). Under rainy conditions, the correlation became very poor, presumably because of errors in the corrected rainfall amounts and very high spatial variability in throughfall. It was demonstrated that the turbulent liquid cloud water fluxes as measured at 4 m above the forest could be only ¾40% of the fluxes at the canopy level itself due to condensation of moisture in air moving upslope. Other factors, which may have contributed to the discrepancy in results obtained with the two methods, were related to effects of footprint mismatch and methodological problems with rainfall measurements under the prevailing windy conditions. Best estimates of annual fog deposition amounted to ¾770 mm year1 for the summit cloud forest just below the ridge top (according to the water budget method) and ¾785 mm year1 for the cloud forest on the lower windward slope (using the eddy-covariance-based deposition rate corrected for estimated vertical flux divergence). Copyright  2006 John Wiley & Sons, Ltd.
Syndicate content