a census of cumulus-cloud height versus precipitation in the vicinity of puerto rico during the winter and spring of 1953-1954

Byers, H. R., and R. K. Hall, 1955: A census of cumulus-
cloud height versus precipitation in the vicinity
of Puerto Rico during the winter and spring of
1953–1954. J. Meteor., 12, 176–178.

The analysis of fifteen cloud-census flights confirms the common existence of warm precipitation from trade-wind cumuli. A probability that over-water clouds of certain vertical developments will contain precipitation is presented. Since the examined over-water clouds with tops higher than 11,500 feet always contained precipitation and yet were well below the freezing level, the futility of initiating rain by seeding clouds with freezing reagents becomes obvious.

Cloud-Free Satellite Image Mosaics with Regression Trees and Histogram Matching

E.H. Helmer and B. Ruefenacht 2005. Cloud-Free Satellite Image Mosaics with Regression Trees and Histogram Matching.. Photogrammetric Engineering & Remote Sensing Vol. 71, No. 9, September 2005, :1079-1089.

Cloud-free optical satellite imagery simplifies remote sensing, but land-cover phenology limits existing solutions to persistent cloudiness to compositing temporally resolute, spatially coarser imagery. Here, a new strategy for developing cloud-free imagery at finer resolution permits simple automatic change detection. The strategy uses regression trees to predict pixel values underneath clouds and cloud shadows in reference scenes from other scene dates. It then applies improved histogram matching to adjacent scenes. In the study area, the islands of Puerto Rico, Vieques, and Culebra, Landsat image mosaics resulting from this strategy permit accurate detection of land development with only spectral data and maximum likelihood classification. Between about 1991 and 2000, urban/built-up lands increased by 7.2 percent in Puerto Rico and 49 percent in Vieques and Culebra. The regression tree modeling and histogram matching require no manual interpretation. Consequently, they can support large volume processing to distribute cloud-free imagery for simple change detections with common classifiers.

Cloud water in windward and leeward mountain forests: The stable isotope signature of orographic cloud water

Scholl, M. A., T. W. Giambelluca, S. B. Gingerich, M. A. Nullet, and L. L. Loope (2007), Cloud water in windward
and leeward mountain forests: The stable isotope signature of orographic cloud water, Water Resour. Res., 43, W12411,

Cloud water can be a significant hydrologic input to mountain forests. Because it is a precipitation source that is vulnerable to climate change, it is important to quantify amounts of cloud water input at watershed and regional scales. During this study, cloud water and rain samples were collected monthly for 2 years at sites on windward and leeward East Maui. The difference in isotopic composition between volume-weighted average cloud water and rain samples was 1.4% d18O and 12% d2H for the windward site and 2.8% d18O and 25% d2H for the leeward site, with the cloud water samples enriched in 18O and 2H relative to the rain samples. A summary of previous literature shows that fog and/or cloud water is enriched in 18O and 2H compared to rain at many locations around the world; this study documents cloud water and rain isotopic composition resulting from weather patterns common to montane environments in the trade wind latitudes. An end-member isotopic composition for cloud water was identified for each site and was used in an isotopic mixing model to estimate the proportion of precipitation input from orographic clouds. Orographic cloud water input was 37% of the total precipitation at the windward site and 46% at the leeward site. This represents an estimate of water input to the forest that could be altered by changes in cloud base altitude resulting from global climate change or deforestation.

Clouds and aerosols in Puerto Rico – a new evaluation

Allan, J.D., et al., 2007. Clouds and aerosols in Puerto Rico — a new evaluation. Atmos.
Chem. Phys. Discuss. 7, 12573–12616.

The influence of aerosols, both natural and anthropogenic, remains a major area of uncertainty when predicting the properties and behaviour of clouds and their influence on climate. In an attempt to better understand warm cloud formation in a tropical 5 marine environment, a period of intensive measurements using some of the latest developments in online instrumentation took place in December 2004 in Puerto Rico. Simultaneous online measurements of aerosol size distributions, composition, hygroscopicity and optical properties were made near the lighthouse of Cape San Juan in the north-eastern corner of the island and at the top of East Peak mountain (1040m 10 a.s.l.), the two sites separated by 17 km. Additional measurements of the cloud droplet residual and interstitial aerosol properties were made at the mountain site, accompanied by measurements of cloud droplet size distributions, liquid water content and the chemical composition of cloud and rain water samples. Both aerosol composition and cloud properties were found to be sensitive to wind 15 sector. Air from the east-northeast (ENE) was mostly free of anthropogenic influences, the submircron fraction being mainly composed of non-sea salt sulphate, while that from the east-southeast (ESE) was found to be moderately influenced by populated islands upwind, adding smaller (<100 nm), externally mixed, carbonaceous particles to the aerosol that increased the number concentrations by over a factor of 3. This 20 change in composition was also accompanied with a reduction in the measured hygroscopicity and fractional cloud activation potential of the aerosol. At the mountain site, the average cloud droplet concentrations increased from 193 to 519 cm−3, median volume diameter decreased from 20 to 14 μm and the liquid water content increased from 0.24 to 0.31 gm−3 when the winds shifted from the ENE to ESE. Larger numbers 25 of interstitial particles were recorded, most notably at sizes greater than 100 nm, which were absent during clean conditions. The average size of the residual particles and concentrations of cloudwater nitrate, sulphate and insoluble material increased during polluted conditions.
Syndicate content