evaporation

Wet canopy evaporation from a Puerto Rican lower montane rain forest: the importance of realistically estimated aerodynamic conductance

Holwerda F., Bruijnzeel L.A., Scatena F.N., Vugts H.F., Meesters A.G.C.A 2011. Wet canopy evaporation from a Puerto Rican lower montane rain forest: the importance of realistically estimated aerodynamic conductance. In press Journal of Hydrology

Abstract: 
Rainfall interception (I) was measured in 20 m tall Puerto Rican tropical forest with complex topography for a one-year period using totalizing throughfall (TF) and stemflow (SF) gauges that were measured every 2–3 days. Measured values were then compared to evaporation under saturated canopy conditions (E) determined with the Penman-Monteith (P-M) equation, using (i) measured (eddy covariance) and (ii) calculated (as a function of forest height and wind speed) values for the aerodynamic conductance to momentum flux (ga,M). E was also derived using the energy balance equation and the sensible heat flux measured by a sonic anemometer (Hs). I per sampling occasion was strongly correlated with rainfall (P): I = 0.21P + 0.60 (mm), r2 = 0.82, n = 121. Values for canopy storage capacity (S = 0.37 mm) and the average relative evaporation rate (E/R = 0.20) were derived from data for single events (n = 51). Application of the Gash analytical interception model to 70 multiple-storm sampling events using the above values for S and E/R gave excellent agreement with measured I. For E/R = 0.20 and an average rainfall intensity (R) of 3.16 mm h-1, the TF-based E was 0.63 mm h-1, about four times the value derived with the P-M equation using a conventionally calculated ga,M (0.16 mm h-1). Estimating ga,M using wind data from a nearby but more exposed site yielded a value of E (0.40 mm h-1) that was much closer to the observed rate, whereas E derived using the energy balance equation and Hs was very low (0.13 mm h-1), presumably because Hs was underestimated due to the use of too short a flux-averaging period (5-min). The best agreement with the observed E was obtained when using the measured ga,M in the P-M equation (0.58 mm h-1). The present results show that in areas with complex topography, ga,M, and consequently E, can be strongly underestimated when calculated using equations that were derived originally for use in flat terrain; hence, direct measurement of ga,M using eddy covariance is recommended. The currently measured ga,M (0.31 m s-1) was at least several times, and up to one order of magnitude higher than values reported for forests in areas with flat or gentle topography (0.03–0.08 m s-1, at wind speeds of about 1 m s-1). The importance of ga,M at the study site suggests a negative, downward, sensible heat flux sustains the observed high evaporation rates during rainfall. More work is needed to better quantify Hs during rainfall in tropical forests with complex topography.

Evaporation from a tropical rain forest, Luquillo Experimental Forest, eastern Puerto Rico

Schellekens, J., L. A. Bruijnzeel, F. N. Scatena, N. J. Bink, and F. Holwerda (2000), Evaporation from a tropical rain forest, Luquillo Experimental Forest, eastern Puerto Rico, Water Resour. Res., 36(8), 2183–2196, doi:10.1029/2000WR900074.

Abstract: 
Evaporation losses from a watertight 6.34 ha rain forest catchment under wet maritime tropical conditions in the Luquillo Experimental Forest, Puerto Rico, were determined using complementary hydrological and micrometeorological techniques during 1996 and 1997. At 6.6 mm d−1 for 1996 and 6.0 mm d−1 for 1997, the average evapotranspiration (ET) of the forest is exceptionally high. Rainfall interception (Ei), as evaluated from weekly throughfall measurements and an average stemflow fraction of 2.3%, accounted for much (62–74%) of the ET at 4.9 mm d−1 in 1996 and 3.7 mm d−1 in 1997. Average transpiration rates (Et) according to a combination of the temperature fluctuation method and the Penman-Monteith equation were modest at 2.2 mm d−1 and 2.4 mm d−1 in 1996 and 1997, respectively. Both estimates compared reasonably well with the water-budget-based estimates (ET − Ei) of 1.7 mm d−1 and 2.2 mm d−1. Inferred rates of wet canopy evaporation were roughly 4 to 5 times those predicted by the Penman-Monteith equation, with nighttime rates very similar to daytime rates, suggesting radiant energy is not the dominant controlling factor. A combination of advected energy from the nearby Atlantic Ocean, low aerodynamic resistance, plus frequent low-intensity rain is thought to be the most likely explanation of the observed discrepancy between measured and estimated Ei.

Hydrometeorology of tropical montane cloud forests: emerging patterns

Bruijnzeel LA, Mulligan M, Scatena FN. 2010. Hydrometeorology of
tropical montane cloud forests: emerging patterns. Hydrological
Processes. DOI: 10.1002/hyp.7974.

Abstract: 
altitudinal limits between which TMCF generally occur (800–3500 m.a.s.l. depending on mountain size and distance to coast) their current areal extent is estimated at ¾215 000 km2 or 6Ð6% of all montane tropical forests. Alternatively, on the basis of remotely sensed frequencies of cloud occurrence, fog-affected forest may occupy as much as 2Ð21 Mkm2. Four hydrologically distinct montane forest types may be distinguished, viz. lower montane rain forest below the cloud belt (LMRF), tall lower montane cloud forest (LMCF), upper montane cloud forest (UMCF) of intermediate stature and a group that combines stunted sub-alpine cloud forest (SACF) and ‘elfin’ cloud forest (ECF). Average throughfall to precipitation ratios increase from 0Ð72 š 0Ð07 in LMRF (n D 15) to 0Ð81 š 0Ð11 in LMCF (n D 23), to 1Ð0 š 0Ð27 (n D 18) and 1Ð04 š 0Ð25 (n D 8) in UMCF and SACF–ECF, respectively. Average stemflow fractions increase from LMRF to UMCF and ECF, whereas leaf area index (LAI) and annual evapotranspiration (ET) decrease along the same sequence. Although the data sets for UMCF (n D 3) and ECF (n D 2) are very limited, the ET from UMCF (783 š 112 mm) and ECF (547 š 25 mm) is distinctly lower than that from LMCF (1188 š 239 mm, n D 9) and LMRF (1280 š 72 mm; n D 7). Field-measured annual ‘cloud-water’ interception (CWI) totals determined with the wet-canopy water budget method (WCWB) vary widely between locations and range between 22 and 1990 mm (n D 15). Field measured values also tend to be much larger than modelled amounts of fog interception, particularly at exposed sites. This is thought to reflect a combination of potential model limitations, a mismatch between the scale at which the model was applied (1 ð 1 km) and the scale of the measurements (small plots), as well as the inclusion of near-horizontal wind-driven precipitation in the WCWB-based estimate of CWI. Regional maps of modelled amounts of fog interception across the tropics are presented, showing major spatial variability. Modelled contributions by CWI make up less than 5% of total precipitation in wet areas to more than 75% in low-rainfall areas. Catchment water yields typically increase from LMRF to UMCF and SACF–ECF reflecting concurrent increases in incident precipitation and decreases in evaporative losses. The conversion of LMCF (or LMRF) to pasture likely results in substantial increases in water yield. Changes in water yield after UMCF conversion are probably modest due to trade-offs between concurrent changes in ET and CWI. General circulation model (GCM)-projected rates of climatic drying under SRES greenhouse gas scenarios to the year 2050 are considered to have a profound effect on TMCF hydrological functioning and ecology, although different GCMs produce different and sometimes opposing results. Whilst there have been substantial increases in our understanding of the hydrological processes operating in TMCF, additional research is needed to improve the quantification of occult precipitation inputs (CWI and wind-driven precipitation), and to better understand the hydrological impacts of climate- and land-use change. Copyright  2010 John Wiley & Sons, Ltd.

Wet canopy evaporation from a Puerto Rican lower montane rain forest: the importance of realistically estimated aerodynamic conductance

Abstract: 
Rainfall interception (I) was measured in 20 m tall Puerto Rican tropical forest with 4 complex topography for a one-year period using totalizing throughfall (TF) and stemflow 5 (SF) gauges that were measured every 23 days. Measured values were then compared to 6 evaporation under saturated canopy conditions (E) determined with the Penman-Monteith 7 (P-M) equation, using (i) measured (eddy covariance) and (ii) calculated (as a function of 8 forest height and wind speed) values for the aerodynamic conductance to momentum flux 9 (ga,M). E was also derived using the energy balance equation and the sensible heat flux 10 measured by a sonic anemometer (Hs). I per sampling occasion was strongly correlated with rainfall (P): I = 0.21P + 0.60 (mm), r2 11 = 0.82, n = 121. Values for canopy storage 12 capacity (S = 0.37 mm) and the average relative evaporation rate (E/R = 0.20) were 13 derived from data for single events (n = 51). Application of the Gash analytical 14 interception model to 70 multiple-storm sampling events using the above values for S and 15 E/R gave excellent agreement with measured I. For E/R = 0.20 and an average rainfall intensity (R) of 3.16 mm h-1, the TF-based E was 0.63 mm h-116 , about four times the value derived with the P-M equation using a conventionally calculated ga,M (0.16 mm h-117 ). 18 Estimating ga,M using wind data from a nearby but more exposed site yielded a value of E (0.40 mm h-119 ) that was much closer to the observed rate, whereas E derived using the energy balance equation and Hs was very low (0.13 mm h-120 ), presumably because Hs was 21 underestimated due to the use of too short a flux-averaging period (5-min). The best 22 agreement with the observed E was obtained when using the measured ga,M in the P-M equation (0.58 mm h-123 ). The present results show that in areas with complex topography, 1 strongly underestimated when calculated using 2 equations that were derived originally for use in flat terrain; hence, direct measurement of ga,M using eddy covariance is recommended. The currently measured ga,M (0.31 m s-13 ) 4 was at least several times, and up to one order of magnitude higher than values reported for forests in areas with flat or gentle topography (0.03–0.08 m s-15 , at wind speeds of about 1 m s-16 ). The importance of ga,M at the study site suggests a negative, downward, 7 sensible heat flux sustains the observed high evaporation rates during rainfall. More work 8 is needed to better quantify Hs during rainfall in tropical forests with complex 9 topography.
Syndicate content