Invertebrate communities in a tropical rain forest canopy in Puerto Rico following Hurricane Hugo

Schowalter, T. W., and L. M. Ganio. 1999. Invertebrate communities
in a tropical rain forest canopy in Puerto Rico
following Hurricane Hugo. Ecological Entomology 24:

1. Canopy invertebrate responses to Hurricane Hugo, tree species, and recovery time were examined at the Luquillo Experimental Forest in Puerto Rico during 1991–92 and 1994–95. Six tree species representing early and late successional stages were examined in paired plots representing severe hurricane disturbance (most trees toppled) and light hurricane disturbance (all trees standing and most branches intact). 2. Hurricane disturbance affected invertebrate abundances significantly. Sap-suckers and molluscs were more abundant, and defoliators, detritivores, and emergent aquatic insects were less abundant in recovering tree-fall gaps than in intact forest during this 5-year period. These changes in functional organisation are consistent with comparable studies of arthropod responses to canopy removal during harvest in temperate forests. 3. Tree species also affected invertebrate abundances significantly, but invertebrate communities did not differ significantly between the three early successional and three later successional tree species. 4. Most taxa showed significant annual variation in abundances, but only two Homoptera species showed a significant linear decline in abundance through time, perhaps reflecting long-term trends during recovery. 5. Leaf area missing, an indicator of herbivore effect on canopy processes, showed significant seasonal and annual trends, as well as differences among tree species and hurricane treatments. Generally, leaf area missing peaked during the wet season each year, but reached its highest levels during an extended drought in 1994. Leaf area missing also tended to be higher on the more abundant tree species in each disturbance treatment. 6. Herbivore abundances and leaf area missing were not related to concentrations of nitrogen, phosphorous, potassium, or calcium in the foliage. 7. This study demonstrated that invertebrate community structure and herbivory are dynamic processes that reflect the influences of host species and variable environmental conditions.

Experimental Removal of Insectivores from Rain Forest Canopy: Direct and Indirect Effects

Dial, Roman, and Jonathan Roughgarden. 1995. Experimental Removal of Insectivores from Rain Forest Canopy: Direct and Indirect Effects. Ecology 76:1821–1834

This study considered the effects of insectivorous Anolis lizards on a large, complex food web of arthropods and associated herbivory in a tropical rain forest canopy. We excluded Anolis lizards for 6 mo from 20—30 m high tree crowns in Puerto Rican rain forest. Simultaneous with lizard exclusion, we sampled orb spiders, airborne arthropods, and leaf arthropods in lizard removal crowns and in controls. We also sampled herbivory at the end of the experiment. Lizard removal had strong, statistically significant, positive effects on arthropods >2 mm in length and weak negative effects on arthropods <2 mm. Parameters of arthropod body size distributions differed between removals and controls for leaf arthropods, but not for airborne arthropods. Among arthropod taxa >2 mm, both predatory, i.e., orb spiders and parasitic Hymenoptera, and nonpredatory forms, i.e. Diptera, Coleoptera, Orthoptera, and Blattaria, showed strong significant and positive responses to lizard removal. Large Psocoptera, Homoptera, leaf spiders, and ants did not show significant overall responses to lizard removal. Frequency of herbivore damage on new leaves was positively correlated with abundance of Orthoptera and Blattaria. This damage was significantly greater in lizard removal crowns than in controls, indicating an indirect effect of anoles on plants. The indirect effect of lizards on small arthropods through the predatory anthropod pathway appeared weak. Results of lizard removal shown by this study corroborate other lizard removal studies from more xeric, ground—level habitats with simpler food webs in the West Indies, particularly with respect to orb spiders and herbivory. Taken together with the results of similar experiments performed in trophically less complex systems, this experiment suggests that food web size is less important than body size in determining interaction strength between community members.
Syndicate content