Luquillo Experimental Forest

Relationship between aboveground biomass and multiple measures of biodiversity in subtropical forest of Puerto Rico

Vance-Chalcraft, Heather D.; Willig, Michael R.; Cox, Stephen B.; Lugo, Ariel E.; Scatena, Frederick N. 2010. Relationship between aboveground biomass and multiple measures of biodiversity in subtropical forest of Puerto Rico. Biotropica. 42(3):290-299.

Abstract: 
Anthropogenic activities have accelerated the rate of global loss of biodiversity, making it more important than ever to understand the structure of biodiversity hotspots. One current focus is the relationship between species richness and aboveground biomass (AGB) in a variety of ecosystems. Nonetheless, species diversity, evenness, rarity, or dominance represent other critical attributes of biodiversity and may have associations with AGB that are markedly different than that of species richness. Using data from large trees in four environmentally similar sites in the Luquillo Experimental Forest of Puerto Rico, we determined the shape and strength of relationships between each of five measures of biodiversity (i.e., species richness, Simpson’s diversity, Simpson’s evenness, rarity, and dominance) and AGB. We quantified these measures of biodiversity using either proportional biomass or proportional abundance as weighting factors. Three of the four sites had a unimodal relationship between species richness and AGB, with only the most mature site evincing a positive, linear relationship. The differences between the mature site and the other sites, as well as the differences between our richness–AGB relationships and those found at other forest sites, highlight the crucial role that prior land use and severe storms have on this forest community. Although the shape and strength of relationships differed greatly among measures of biodiversity and among sites, the strongest relationships within each site were always those involving richness or evenness.

Relationship Between Aboveground Biomass and Multiple Measures of Biodiversity in Subtropical Forest of Puerto Rico

Vance-Chalcraft, Heather D.; Willig, Michael R.; Cox, Stephen B.; Lugo, Ariel E.; Scatena, Frederick N. 2010. Relationship between aboveground biomass and multiple measures of biodiversity in subtropical forest of Puerto Rico. Biotropica. 42(3):290-299.

Abstract: 
Anthropogenic activities have accelerated the rate of global loss of biodiversity, making it more important than ever to understand the structure of biodiversity hotspots. One current focus is the relationship between species richness and aboveground biomass (AGB) in a variety of ecosystems. Nonetheless, species diversity, evenness, rarity, or dominance represent other critical attributes of biodiversity and may have associations with AGB that are markedly different than that of species richness. Using data from large trees in four environmentally similar sites in the Luquillo Experimental Forest of Puerto Rico, we determined the shape and strength of relationships between each of five measures of biodiversity (i.e., species richness, Simpson’s diversity, Simpson’s evenness, rarity, and dominance) and AGB. We quantified these measures of biodiversity using either proportional biomass or proportional abundance as weighting factors. Three of the four sites had a unimodal relationship between species richness and AGB, with only the most mature site evincing a positive, linear relationship. The differences between the mature site and the other sites, as well as the differences between our richness–AGB relationships and those found at other forest sites, highlight the crucial role that prior land use and severe storms have on this forest community. Although the shape and strength of relationships differed greatly among measures of biodiversity and among sites, the strongest relationships within each site were always those involving richness or evenness.

Estimating soil turnover rate from tree uprooting during hurricanes in Puerto Rico

Lenart, Melanie T.; Falk, D.A.; Scatena, F.N.; Osterkamp, W.R. 2010. Estimating soil turnover rate from tree uprooting during hurricanes in Puerto Rico. Forest Ecology and Management. 259:1076-1084.

Abstract: 
Soil turnover by tree uprooting in primary and secondary forests on the island of Puerto Rico was measured in 42 study plots in the months immediately after the passage of a Category 3 hurricane. Trunk basal area explained 61% of the variability of mound volume and 53% of the variability of mound area. The proportion of uprooted trees, the number of uprooted trees, or the proportion of uprooted basal area explained 84–85% of the variation in hurricane-created mound area. These same variables explain 79–85% of the variation in mound volume. The study indicates that the soil turnover period from tree uprooting by Puerto Rican hurricanes is between 1600 and 4800 years. These rates are faster than soil turnover by landslides and background treefall in the same area and provide a useful age constraint on soil profile development and soil carbon sequestration in these dynamic landscapes.

Instream-Flow Analysis for the Luquillo Experimental Forest, Puerto Rico: Methods and Analysis

Scatena, F.N.; Johnson, S.L. 2001. Instream-Flow Analysis for the Luquillo Experimental Forest, Puerto Rico: Methods and Analysis. Gen. Tech. Rep. IITF-GTR-11. Rio Piedras, PR: U.S. Department of Agriculture, Forest Service, International Institute of Tropical Forestry. 30 p.

Abstract: 
This study develops two habitat-based approaches for evaluating instream-flow requirements within the Luquillo Experimental Forest in northeastern Puerto Rico. The analysis is restricted to instream-flow requirements in upland streams dominated by the common communities of freshwater decapods. In headwater streams, pool volume was the most consistent factor in predicting the abundance of common freshwater shrimp. In second- and third-order tributaries, both water depth and velocity can be used to define their habitats. The most common species of shrimp are reclusive during the day; at night they prefer areas of low velocity (<0.09 m/s) and areas shallower than 0.4 m. In headwater streams, total usable shrimp habitat declines rapidly when water depth in the deepest pools is less than 0.5 m. In second-and third-order tributaries, the amount of habitat declines rapidly when discharge is within one standard deviation of the average annual 7-day minimum flow. These dis-charges are typically exceeded between 95 and 99 percent of the time. Analysis of habitat loss associated with different instream-flow constraints showed that habitat loss increases greatly when water extraction is equal to or greater than Q98. Among-reach differences in the amount of usable habitat resulting from differences in channel morphology can be as high as 35 percent. Therefore, site-specific studies should be conducted when using habitat-preference relations in a particular area.

An EMERGY Evaluation of Puerto Rico and the Luquillo Experimental Forest

Scatena, F.N.; Doherty, S.J.; Odum, H.T.; Kharecha, P. 2002. An EMERGY
evaluation of Puerto Rico and the Luquillo Experimental Forest. Gen. Tech. Rep.
IITF-GTR-9. Río Piedras, PR: U.S. Department of Agriculture, Forest Service,
International Institute of Tropical Forestry. 79 p.

Abstract: 
The many functions of Puerto Rico and the Luquillo Experimental Forest (the Forest) were evaluated in units of solar EMERGY, an energy-based measure of resource contribution and influence, defined as the energy of one type required to produce a flow or storage of another type. Rainfall and tectonic uplift are the largest environmental inputs into the Forest. The interaction of these inputs results in an erosional landscape where the EMERGY of biological processes is less than the EMERGY associated with the physical and chemical sculpturing of the landscape. The environmental work that built the natural capital of these forests is 9 to 50 times their current dollar market values. Of the investments evaluated in this study, the effects associated with water extraction are the largest. Tectonic inputs and the hydrologic cycle also provide most of the environmental EMERGY flows in the island of Puerto Rico. The ratio of societal inputs to environmental inputs, however, is 45 for Puerto Rico and 3.5 for the Forest. Per capita EMERGY- use is typical of moderately developed economies, but the island has one of the most investment-intensive, least self-sufficient economies known and an EMERGY signature that resembles a city-state.

Water Withdrawn From the Luquillo Experimental Forest, 2004

Crook, Kelly E.; Scatena, Fred N.; Pringle, Catherine M. 2007. Water Withdrawn From the Luquillo Experimental Forest, 2004. U.S. Department of Agriculture, Forest Service, International Institute of Tropical Forestry. Gen. Tech. Rep. IITF-GTR-34.

Abstract: 
This study quantifies the amount of water withdrawn from the Luqillo Experimental Forest (LEF) in 2004. Spatially averaged mean monthly water budgets were generated for watersheds draining the LEF by combining long-term data from various government agencies with estimated extraction data. Results suggest that, on a typical day, 70 percent of water generated within the forest is diverted before reaching the ocean. This is up from an estimated 54 percent in 1994. Analysis showed that up to 63 percent of average monthly stream runoff is diverted from individual watersheds during drier months. Watersheds with large water intakes have the most dramatic decrease in streamflow, particularly the Río Espiritu Santo watershed, where 82 percent of median flow is diverted.

SLOPEWASH, SURFACE RUNOFF AND FINE-LITTER TRANSPORT IN FOREST AND LANDSLIDE SCARS IN HUMID- TROPICAL STEEPLANDS, LUQUILLO EXPERIMENTAL FOREST, PUERTO RICO

Larsen, M.C., Torres-Sánchez, A.J., and Concepción, I.M., 1998, Slopewash, surface runoff, and fine-litter transport in forest and landslide scars in humid-tropical steeplands, Luquillo Experimental Forest, Puerto Rico [abs] EOS, Transactions American Geophysical Union, vol. 80.

Abstract: 
Slopewash, surface runoff, and fine-litter transport in forest and landslide scars in humid-tropical steeplands, Luquillo Experimental Forest, Puerto Rico Rainfall, slopewash (the erosion of soil particles), surface runoff, and fine-litter transport at humid-tropical steepland sites in the Luquillo Experimental Forest, Puerto Rico (18° 20' N, 65° 45' W) were measured from 1991 to 1995. Hillslopes underlain by: 1) Cretaceous tuffaceous sandstone and siltstone in subtropical rain (tabonuco) forest with vegetation recovering from Hurricane Hugo (1989); and underlain by 2) Tertiary quartz diorite in subtropical lower montane wet (colorado and dwarf) forest with undisturbed forest canopy were compared to recent landslide scars. Monthly surface runoff on these very steep hillslopes (24° to 43°) was only 0.2 to 0.5 percent of monthly rainfall. Slopewash was higher in sandy loam soils whose parent material is quartz diorite (averaging 46 g m-2 a-1) than in silty-clay loam soils derived from tuffaceous sandstone and siltstone where the average was 9 g m-2 a-1. Annual slopewash of 100 to 349 g m-2 on the surfaces of two recent, small landslide scars was measured initially but slopewash decreased to only 3 to 4 g m-2 a-1 by the end of the study. The mean annual mass of fine litter (mainly leaves and twigs) transported downslope at the forested sites ranged from 5 to 8 g m-2 and was lower at the tabonuco forest site, where post-Hurricane Hugo recovery is still in progress. Mean annual fine-litter transport was 2.5 g m-2 on the two landslide scars.

STRUCTURAL AND FUNCTIONAL RESPONSES OF A SUBTROPICAL FOREST TO 10 YEARS OF HURRICANES AND DROUGHTS

Beard, Karen H., Kristiina A. Vogt, Daniel J. Vogt, Frederick N. Scatena, Alan P. Covich, Ragnhildur Sigurdardottir, Thomas G. Siccama, and Todd A. Crowl. 2005. STRUCTURAL AND FUNCTIONAL RESPONSES OF A SUBTROPICAL FOREST TO 10 YEARS OF HURRICANES AND DROUGHTS. Ecological Monographs 75:345–361. [doi:10.1890/04-1114]

Abstract: 
Little is known about ecosystem-level responses to multiple, climatic disturbance events. In the subtropical forests of Puerto Rico, the major natural disturbances are hurricanes and droughts. We tested the ecosystem-level effects of these disturbances in sites with different land use histories. From 1989 to 1992, data were collected to determine the effects of Hurricane Hugo and two droughts on litterfall inputs, fine-root biomass, and decomposition rates in three topographic locations (stream, riparian, upslope) within two watersheds. From 1994 to 1998, we added a third watershed and an experiment in which coarse-wood levels were manipulated to simulate hurricane inputs. Data were collected on tree and palm growth rates, litterfall inputs, fine-root biomass, and decomposition rates. From 1994 to 1998, four hurricanes and three droughts were recorded. Measured parameters had unique responses and recovery rates to hurricanes and droughts. Litterfall inputs returned to long-term mean rates within one month following droughts and small-to-moderate hurricanes but required five years to recover after an intense hurricane. In contrast, fine-root biomass recovered seven months after an intense hurricane but failed to recover after five years following a severe drought. Despite the dramatic effects of these weather events on some ecosystem parameters, we found that aboveground measures of tree and palm growth were more affected by preexisting site conditions (e.g., nitrogen availability due to past land use activities) than hurricanes or droughts. The addition of coarse woody debris increased tree and palm growth, fine-root biomass, and litter production; however, in the case of tree and palm growth, this effect was least measurable in the sites with the highest productivity. We found that decomposition rates were more controlled by litter quality than weather conditions. In conclusion, we found that certain ecosystem structures (e.g., canopy structure and fine-root biomass) generally recovered more slowly from disturbance events than certain ecosystem processes (e.g., plant growth rates, decomposition rates). We also found that past land use activities and disturbance legacies were important in determining the responses and recovery rates of the ecosystem to disturbance.

Effects of an invasive tree on community structure and diversity in a tropical forest in Puerto Rico

Brown, K. A. ; Scatena, F. N., and Gurevitch, J. 2006. Effects of an invasive tree on community structure and diversity in a tropical forest in Puerto Rico. . Forest Ecology and Management . 2006; 226:145-152.

Abstract: 
We report the effects of an invasive tree (Syzygium jambos, Myrtaceace) on species composition, plant diversity patterns, and forest regeneration in primary and secondary forest in the Luquillo Mountains of northeastern Puerto Rico, including the area in and around the Caribbean National Forest (CNF) and the Luquillo Long Term Ecological Research site (Luquillo LTER). Land use history was reconstructed using aerial photographs from 1936 to 1989 and study sites were categorized into four groups that corresponded to their status in 1936: unforested, young secondary, mature secondary, and primary forests. In randomly selected forest stands in each forest type, we measured the abundance of invasive and native tree species, seedling recruitment for S. jambos as well as soil nutrient pools and tested for the effects of land use history on S. jambos density and diversity. A partial Mantel test was used to control for historical and elevational differences across study sites. The results indicate that S. jambos density was highest in habitats classified in 1936 as unforested, young, or mature secondary forests. Compared to all other forest classes, species diversity was significantly higher in primary forests. However, there was no statistically significant difference between observed and estimated species richness across the four forest types. S. jambos density and species diversity were strongly negatively correlated, even after controlling for land use history and elevation. There was significantly higher S. jambos seedling recruitment in areas that were either unforested or had young secondary forests in 1936. The results also indicate that S. jambos is able to establish viable populations in habitats with different soil nutrient status. S. jambos has also altered vegetation composition and diversity patterns in habitats where it is the dominant tree species. After nearly 185 years since its introduction to the island, S. jambos is not only well established within 30 m of stream channels, its presence does not appear to be limited by topographic, soil nutrient, or elevational conditions. This study suggests that land use change and subsequent plant invasions have produced a new vegetation assemblage that has led to potentially long-term changes in community structure, species composition, and successional trajectory in regenerating secondary forests in the Luquillo Mountains.

STRUCTURAL AND FUNCTIONAL RESPONSES OF A SUBTROPICAL FOREST TO 10 YEARS OF HURRICANES AND DROUGHTS

Beard, Karen H., Kristiina A. Vogt, Daniel J. Vogt, Frederick N. Scatena, Alan P. Covich, Ragnhildur Sigurdardottir, Thomas G. Siccama, and Todd A. Crowl. 2005. STRUCTURAL AND FUNCTIONAL RESPONSES OF A SUBTROPICAL FOREST TO 10 YEARS OF HURRICANES AND DROUGHTS. Ecological Monographs 75:345–361. [doi:10.1890/04-1114]

Abstract: 
Little is known about ecosystem-level responses to multiple, climatic disturbance events. In the subtropical forests of Puerto Rico, the major natural disturbances are hurricanes and droughts. We tested the ecosystem-level effects of these disturbances in sites with different land use histories. From 1989 to 1992, data were collected to determine the effects of Hurricane Hugo and two droughts on litterfall inputs, fine-root biomass, and decomposition rates in three topographic locations (stream, riparian, upslope) within two watersheds. From 1994 to 1998, we added a third watershed and an experiment in which coarse-wood levels were manipulated to simulate hurricane inputs. Data were collected on tree and palm growth rates, litterfall inputs, fine-root biomass, and decomposition rates. From 1994 to 1998, four hurricanes and three droughts were recorded. Measured parameters had unique responses and recovery rates to hurricanes and droughts. Litterfall inputs returned to long-term mean rates within one month following droughts and small-to-moderate hurricanes but required five years to recover after an intense hurricane. In contrast, fine-root biomass recovered seven months after an intense hurricane but failed to recover after five years following a severe drought. Despite the dramatic effects of these weather events on some ecosystem parameters, we found that aboveground measures of tree and palm growth were more affected by preexisting site conditions (e.g., nitrogen availability due to past land use activities) than hurricanes or droughts. The addition of coarse woody debris increased tree and palm growth, fine-root biomass, and litter production; however, in the case of tree and palm growth, this effect was least measurable in the sites with the highest productivity. We found that decomposition rates were more controlled by litter quality than weather conditions. In conclusion, we found that certain ecosystem structures (e.g., canopy structure and fine-root biomass) generally recovered more slowly from disturbance events than certain ecosystem processes (e.g., plant growth rates, decomposition rates). We also found that past land use activities and disturbance legacies were important in determining the responses and recovery rates of the ecosystem to disturbance.
Syndicate content