Luquillo Mountains

Contributions of dust to phosphorus cycling in tropical forests of the Luquillo Mountains, Puerto Rico

Pett-Ridge, Julie C. 2009. Contributions of dust to phosphorus cycling in tropical forests of the luquillo mountains, puerto rico. Biogeochemistry 94 (1) (MAY): 63-80.

Abstract: 
The input of phosphorus (P) through mineral aerosol dust deposition may be an important component of nutrient dynamics in tropical forest ecosystems. A new dust deposition calculation is used to construct a broad analysis of the importance of dust-derived P to the P budget of a montane wet tropical forest in the Luquillo Mountains of Puerto Rico. The dust deposition calculation used here takes advantage of an internal geochemical signal (Sr isotope mass balance) to provide a spatially integrated longer-term average dust deposition flux. Dust inputs of P (0.23 ± 0.08 kg ha-1 year-1) are compared with watershed-average inputs of P to the soil through the conversion of underlying saprolite into soil (between 0.07 and 0.19 kg ha-1 year-1), and with watershed-average losses of soil P through leaching (between 0.02 and 0.14 kg ha-1 year-1) and erosion (between 0.04 and 1.38 kg ha-1 year-1). The similar magnitude of dust-derived P inputs to that of other fluxes indicates that dust is an important component of the soil and biomass P budget in this ecosystem. Dust-derived inputs of P alone are capable of completely replacing the total soil and biomass P pool on a timescale of between 2.8 ka and 7.0 ka, less than both the average soil residence time (*15 ka) and the average landslide recurrence interval (*10 ka).

Ca/Sr and 87Sr/86Sr ratios as tracers of Ca and Sr cycling in the Rio Icacos watershed, Luquillo Mountains, Puerto Rico

Pett-Ridge, Julie C., Louis A. Derry, and Jenna K. Barrows. 2009. Ca/Sr and (87)sr/(86)sr ratios as tracers of ca and sr cycling in the rio icacos watershed, luquillo mountains, puerto rico. Chemical Geology 267 (1-2) (SEP 15): 32-45.

Abstract: 
We investigated Ca and Sr cycling in a humid tropical forest by analyzing Ca/Sr ratios and 87Sr/86Sr ratios in soil minerals, soil exchangeable cations, soil porewater, and plant roots, wood and leaves, and calculating the relative contributions of Sr from atmospheric inputs and weathering of local bedrock. An unexpectedly large contribution of bedrock-derived Sr and presumably Ca is cycled through the vegetation, reflecting the important role of geological processes in controlling the cycling of base cation nutrients even in a system with intensely weathered soil. This is surprising because over 99% of the Ca and Sr that was originally in the bedrock is leached out of the soil and saprolite during early stages of weathering at this site, and because there are large atmospheric inputs to the site of both sea salt and Saharan dust. Substantial differences in Ca and Sr cycling are seen on small spatial scales between a ridgetop and an adjacent steep hillslope site. Measured Ca/Sr ratios reflect fractionation between these elements during biogeochemical cycling. Fractionation was particularly evident between wood and foliar tissue, but fractionation during soil exchange processes is also likely. In comparing the Ca/Sr ratios of plants, exchangeable cations, and bulk soils, we found that foliar Ca/Sr ratios were greater than exchangeable cation Ca/Sr ratios, which in turn were greater than soil Ca/Sr ratios, similar to patterns observed at other highly weathered tropical sites.

Contributions of dust to phosphorus cycling in tropical forests of the Luquillo Mountains, Puerto Rico

Pett-Ridge, J. C. 2009. Contributions of dust to phosphorus
cycling in tropical forests of the Luquillo Mountains, Puerto
Rico. Biogeochemistry 94:63-80.

Abstract: 
The input of phosphorus (P) through mineral aerosol dust deposition may be an important component of nutrient dynamics in tropical forest ecosystems. A new dust deposition calculation is used to construct a broad analysis of the importance of dust-derived P to the P budget of a montane wet tropical forest in the Luquillo Mountains of Puerto Rico. The dust deposition calculation used here takes advantage of an internal geochemical signal (Sr isotope mass balance) to provide a spatially integrated longer-term average dust deposition flux. Dust inputs of P (0.23 ± 0.08 kg ha-1 year-1) are compared with watershed-average inputs of P to the soil through the conversion of underlying saprolite into soil (between 0.07 and 0.19 kg ha-1 year-1), and with watershed-average losses of soil P through leaching (between 0.02 and 0.14 kg ha-1 year-1) and erosion (between 0.04 and 1.38 kg ha-1 year-1). The similar magnitude of dust-derived P inputs to that of other fluxes indicates that dust is an important component of the soil and biomass P budget in this ecosystem. Dust-derived inputs of P alone are capable of completely replacing the total soil and biomass P pool on a timescale of between 2.8 ka and 7.0 ka, less than both the average soil residence time (*15 ka) and the average landslide recurrence interval (*10 ka).

Modeling the spatial and temporal variability in climate and primary productivity across the Luquillo Mountains, Puerto Rico

Wanga, Hongqing; Halla, Charles A.S.; Scatenab, Frederick N.; Fetcherc, Ned; Wua, Wei 2003. Modeling the spatial and temporal variability in climate and primary productivity across the Luquillo Mountains, Puerto Rico.. Forest Ecology and Management 179 :69-94l.

Abstract: 
There are few studies that have examined the spatial variability of forest productivity over an entire tropical forested landscape. In this study, we used a spatially-explicit forest productivity model, TOPOPROD, which is based on the FORESTBGC model, to simulate spatial patterns of gross primary productivity (GPP), net primary productivity (NPP), and respiration over the entire Luquillo Experimental Forest (LEF) in the mountains of northeastern Puerto Rico.We modeled climate variables (e.g. solar insolation, temperature, rainfall and transpiration) using a topography-based climate model, TOPOCLIM. The simulated GPP ranged from 8 to 92 t C/ha per year with a mean of 51 t C/ha per year. The simulated NPP ranged from 0.5 to 24 t C/ha per year with a mean of 9.4 t C/ha per year. The simulated plant respiration ranged from 31 to 68 with a mean of 42 t C/ha per year. Simulated GPP and respiration declined with increased elevation whereas simulated NPP increased from low to middle elevation but decreased from middle to high elevations. Statistical analyses indicate that variation in solar insolation, which decreases with increase in elevation, is the most important factor controlling the spatial variation of forest productivity in the LEF. Validation with the limited spatial empirical data indicated that our simulations overestimated GPP by 2% for a middle elevation test site, and by 43% for a mountain peak site. Our simulations also overestimated NPP in the middle elevation Colorado forest and higher elevation Dwarf forest by 32 and 36%, respectively, but underestimated NPP in the Tabonuco and Palm forests at low to middle elevations by 9–15% and 18%, respectively. Simulated GPP and NPP would decrease under CO2 doubling as projected temperatures increase and precipitation decreases. Different forest types respond differently to potential climate change and CO2 doubling. Comparison with other tropical forests suggests that the LEF as a whole has higher GPP (51 tC/ha per year versus 40 t C/ha per year) but lower NPP (9.4 t C/ha per year versus 11 t C/ha per year) than other tropical rain forests.

CONTROLS OF PRIMARY PRODUCTIVITY: LESSONS FROM THE LUQUILLO MOUNTAINS IN PUERTO RICO

Controls of Primary Productivity: Lessons from the Luquillo Mountains in Puerto Rico
Robert B. Waide, Jess K. Zimmerman and F. N. Scatena
Ecology
Vol. 79, No. 1 (Jan., 1998), pp. 31-37

Abstract: 
The Luquillo Mountains of eastern Puerto Rico are used as a case study to evaluate possible single- or multiple-factor controls of productivity in montane forests. A review of published studies from the Luquillo Mountains revealed that canopy height, productivity, and species richness decline while stem density increases with elevation, as is typical of other montane forests. A mid-elevation floodplain palm stand with high levels of productivity provides a notable exception to this pattern. Previous basic and applied studies of productivity in the Luquillo Mountains have consistently considered the overall gradient in productivity to be important in understanding forest structure and function. Recent observational and experimental studies have determined that disturbance of all types is an important factor mediating productivity in both low- and high-elevation (cloud) forests. For example, low-elevation forest recovers more quickly from hurricane disturbance and is more responsive to nutrient additions than is cloud forest. All of the factors proposed for limiting productivity are supported in one way or another by research in the Luquillo Mountains. What is critically lacking is both an appreciation for the way that these factors interact and experiments appropriate to evaluate multiple controls acting simultaneously.

A decade of belowground reorganization following multiple disturbances in a subtropical wet forest

Teh, Y.A.; Silver, W.L.; Scatena, F.N. 2009. A decade of belowground reorganization following multiple disturbances in a subtropical wet forest. Plant and Soil. 323: 197-212.

Abstract: 
Humid tropical forests are dynamic ecosystems that experience multiple and overlapping disturbance events that vary in frequency, intensity, and spatial extent. Here we report the results of a 10-year study investigating the effects of forest clearing and multiple hurricanes on ecosystem carbon reservoirs, nutrient pools and vegetation. The aboveground plant community was most heavily affected by multiple disturbances, with the 9-year-old stands showing high rates of hurricane-induced mortality relative to surrounding forest. Belowground pools were less affected. Live fine root biomass fluctuated in response to multiple disturbances, but returned to pre-disturbance levels after 10 years. Soil C was resilient to clearing and hurricanes, probably due to the large pool size and high clay content. Soil P fluctuated over time, declining during periods of rapid plant recovery and growth. With the exception of K, base cations recovered within 2 years following clearing and showed little response to hurricane disturbance.
Syndicate content