A numerical groundwater model was constructed to simulate groundwater flow in the Yauco Alluvial Valley aquifer. The groundwater flow model was constructed to evaluate future management options, including the potential to increase aquifer firm yield through a conjunctive management of ground and surface water. The aquifer within the Yauco Valley consists of river alluvium deposited over the incised Juana Díaz formation and Ponce limestone. A finite-difference, numerical model was developed to simulate ground water flow in the Yauco Valley. The single-layer model encompasses the entire alluvial deposits of the valley which extends from the Yauco town to the Caribbean Sea. The model was calibrated to October 1960 and 1970 to 1974 water levels. Different management scenarios were modeled to analyze and determine how much water can be extracted from the aquifer and evaluate the conjunctive use potential. Results demonstrate that the aquifer could be subjected to a total extraction in the order of 4.6 to 4.8 mgd (1-1.25 mgd above current extractions) without reducing the water levels to a point that could produce saltwater intrusion. Simulations showed that groundwater extractions could be increased by 5 mgd to 6 mgd during the dry season (March-August) if artificial recharge is provided in the range of 1.3 mgd to 1.95 mgd on a year-around basis. This demonstrates that the potential exists to conjunctively use ground and surface water to increase aquifer yield


Boose, E.R., Serrano, M.I. & Foster, D.R. (2004) Landscape
and regional impacts of hurricanes in Puerto Rico. Ecological
Monographs, 74, 335–352.

Puerto Rico is subject to frequent and severe impacts from hurricanes, whose long-term ecological role must be assessed on a scale of centuries. In this study we applied a method for reconstructing hurricane disturbance regimes developed in an earlier study of hurricanes in New England. Patterns of actual wind damage from historical records were analyzed for 85 hurricanes since European settlement in 1508. A simple meteorological model (HURRECON) was used to reconstruct the impacts of 43 hurricanes since 1851. Long-term effects of topography on a landscape scale in the Luquillo Experimental Forest (LEF) were simulated with a simple topographic exposure model (EXPOS). Average return intervals across Puerto Rico for F0 damage (loss of leaves and branches) and F1 damage (scattered blowdowns, small gaps) on the Fujita scale were 4 and 6 years, respectively. At higher damage levels, a gradient was created by the direction of the storm tracks and the weakening of hurricanes over the interior mountains. Average return intervals for F2 damage (extensive blowdowns) and F3 damage (forests leveled) ranged from 15 to 33 years and 50 to 150 years, respectively, from east to west. In the LEF, the combination of steep topography and constrained peak wind directions created a complex mosaic of topographic exposure and protection, with average return intervals for F3 damage ranging from 50 years to .150 years. Actual forest damage was strongly dependent on land-use history and the effects of recent hurricanes. Annual and decadal timing of hurricanes varied widely. There was no clear centennial-scale trend in the number of major hurricanes over the historical period.

Mudslide-caused ecosystem degradation following Wenchuan earthquake 2008

Ren, D., et al., 2009. Mudslide-caused ecosystem degradation following Wenchuan earthquake 2008. Geophysical Research Letters 36, L05401.

We have applied a scalable and extensible geo-fluid model that considers soil mechanics, vegetation transpiration and root mechanical reinforcement, and hydrological processes to simulate two dimensional maps of the landslides occurrence following the 2008 Wenchuan earthquake. Modeled locations and areas generally agree with observations. The model suggests that the potential energy of earth was lowered by 1.52×1015 J by these landslides. With this, the vegetation destroyed transfer ~235 Tg C to the dead respiring pool and transforms 5.54×10-2 Tg N into unavailable sediments pools and the atmosphere. The cumulative CO2 release to the atmosphere over the coming decades is comparable to that caused by hurricane Katrina 2005 (~105 Tg) and equivalent to ~2% of current annual carbon emissions from global fossil fuel combustion. The nitrogen loss is twice as much as that released by the 2007 California Fire (~2.5×10-2 Tg). A significant proportion of the nitrogen loss (14%) is in the form of nitrous oxide, which can affect the atmospheric ozone layer.

Hurricane Effects on Soil Organic Matter Dynamics and Forest Production in the Luquillo Experimental Forest, Puerto Rico: Results of Simulation Modeling

Hurricane Effects on Soil Organic Matter Dynamics and Forest Production in the Luquillo Experimental Forest, Puerto Rico: Results of Simulation Modeling
Robert L. Sanford, Jr., William J. Parton, Dennis S. Ojima and D. Jean Lodge
Vol. 23, No. 4, Part A. Special Issue: Ecosystem, Plant, and Animal Responses to Hurricanes in the Caribbean (Dec., 1991), pp. 364-372

The forests and soils at Luquillo Experimental Forest (LEF), Puerto Rico, are frequently disturbed by hurricanes occurring at various frequencies and intensities. We have derived a forest version of the Century soil organic matter model to examine the impact of hurricanes on soil nutrient availability and pool sizes, and forest productivity in the tabonuco forest at Luquillo. The model adequately predicted aboveground plant production, soil carbon, and soil nitrogen levels for forest conditions existing before Hurricane Hugo. Simulations of Hurricane Hugo and of an historical sequence of hurricanes indicated a complex pattern of recovery, especially for the first 10 yr after the hurricanes. After repeated hurricanes, forest biomass was reduced, while forest productivity was enhanced. Soil organic matter, and phosphorus and nitrogen mineralization stabilized at higher levels for the LEF than for hurricane-free tabonuco forest, and organic soil phosphorus was substantially increased by hurricanes. Results from these simulations should be regarded as hypotheses. At present there is insufficient data to validate the results of hurricane model simulations.

Modelling the impact of recent land-cover changes on the stream flows in northeastern Puerto Rico

Wu W, Hall CAS, Scatena FN. Modelling the impact of recent
land-cover changes on the stream flows in northeastern Puerto
Rico. Hydrol Process 2007; 21: 2944-2956.

We investigated the influence of recent and future land-cover changes on stream flow of a watershed northeastern Puerto Rico using hydrological modeling and simulation analysis. Monthly and average annual stream flows were compared between an agricultural period (1973–1980) and an urbanized/reforested period (1988–1995) using the revised Generalized Watershed Loading Function model. Our validated results show that a smaller proportion of rainfall became stream flows in the urbanized/forested period compared with the agricultural period, apparently because of reforestation. Sensitivity analysis of the model showed that evapotranspiration, precipitation, and curve number were the most significant factors influencing stream flow. Simulations of projected land-cover scenarios indicate that annual stream flows would increase by 9Ð6% in a total urbanization scenario, decrease by 3Ð6% in a total reforestation scenario, and decrease by 1Ð1% if both reforestation and urbanization continue at their current rates to 2020. An imposed hurricane event that was similar in scale to the largest recent event on the three land-cover scenarios would increase the daily stream flow by 62Ð1%, 68Ð4% and 67Ð1% respectively. Owing to the environmental setting of eastern Puerto Rico, where sea breezes caused by temperature differences between land surface and the ocean dominate the local climate, we suggest that managing local land-cover changes can have important consequences for water management. Copyright  2007 John Wiley & Sons, Ltd.

Spatial modelling of evapotranspiration in the Luquillo experimental forest of Puerto Rico using remotely-sensed data

Wu, Wei; Hall, Charles A.S.; Scatena, Frederick N.; Quackenbush, Lindi J. 2006. Spatial modelling of evapotranspiration in the Luquillo experimental forest of Puerto Rico using remotely-sensed data.. Journal of Hydrology 328, 733- 752.

Actual evapotranspiration (aET) and related processes in tropical forests can explain 70% of the lateral global energy transport through latent heat, and therefore are very important in the redistribution of water on the Earth’s surface [Mauser, M., Scha¨dlich, S., 1998. Modelling the spatial distribution of evapotranspiration on different scales using remote sensing data. J. Hydrol. 212–213, 250–267]. Unfortunately, there are few spatial studies of these processes in tropical forests. This research integrates one Landsat Thematic Mapper (TM) image and three Moderate Resolution Imaging Spectroradiometer (MODIS) images with a hydrological model [Granger, R.J., Gray, D.M., 1989. Evaporation from natural nonsaturated surfaces. J. Hydrol. 111, 21–29] to estimate the spatial pattern of aET over the Luquillo Experimental Forest (LEF) – a tropical forest in northeastern Puerto Rico – for the month of January, the only month that these remotely sensed images were acquired. The derived aETs ranged from 0 to 7.22 mm/day with a mean of 3.08 ± 1.35 mm/day which were comparable to other estimates. Simulated aET was highest in the low elevation forest and decreased progressively toward higher elevations. Because of differences in solar radiation at different elevations, aspects and topographic positions, aET tended to be higher on south slopes and along ridges than on north slopes and in valleys. In addition, the Bowen ratio (the ratio of sensible heat to latent heat) varied across different vegetation types and increased with elevation, thus reflecting differences in the distribution of net solar radiation incident on the earth’s surface. Over a day, the highest simulated aET occurred at around noon. We also applied this model to simulate the average monthly aET over an entire year based on the cloud patterns derived from at least two MODIS images for each month. The highest simulated aET occurred in February and March and the lowest in May. These observations are consistent with long term data. The simulated values were compared with field measurements of the sap flow velocity of trees at different elevations and in different forest types. These comparisons had good agreement in the low elevation forest but only moderate agreement in the elfin forest at high elevations. ª 2006 Elsevier B.V. All rights reserved.

Modeling the spatial and temporal variability in climate and primary productivity across the Luquillo Mountains, Puerto Rico

Wanga, Hongqing; Halla, Charles A.S.; Scatenab, Frederick N.; Fetcherc, Ned; Wua, Wei 2003. Modeling the spatial and temporal variability in climate and primary productivity across the Luquillo Mountains, Puerto Rico.. Forest Ecology and Management 179 :69-94l.

There are few studies that have examined the spatial variability of forest productivity over an entire tropical forested landscape. In this study, we used a spatially-explicit forest productivity model, TOPOPROD, which is based on the FORESTBGC model, to simulate spatial patterns of gross primary productivity (GPP), net primary productivity (NPP), and respiration over the entire Luquillo Experimental Forest (LEF) in the mountains of northeastern Puerto Rico.We modeled climate variables (e.g. solar insolation, temperature, rainfall and transpiration) using a topography-based climate model, TOPOCLIM. The simulated GPP ranged from 8 to 92 t C/ha per year with a mean of 51 t C/ha per year. The simulated NPP ranged from 0.5 to 24 t C/ha per year with a mean of 9.4 t C/ha per year. The simulated plant respiration ranged from 31 to 68 with a mean of 42 t C/ha per year. Simulated GPP and respiration declined with increased elevation whereas simulated NPP increased from low to middle elevation but decreased from middle to high elevations. Statistical analyses indicate that variation in solar insolation, which decreases with increase in elevation, is the most important factor controlling the spatial variation of forest productivity in the LEF. Validation with the limited spatial empirical data indicated that our simulations overestimated GPP by 2% for a middle elevation test site, and by 43% for a mountain peak site. Our simulations also overestimated NPP in the middle elevation Colorado forest and higher elevation Dwarf forest by 32 and 36%, respectively, but underestimated NPP in the Tabonuco and Palm forests at low to middle elevations by 9–15% and 18%, respectively. Simulated GPP and NPP would decrease under CO2 doubling as projected temperatures increase and precipitation decreases. Different forest types respond differently to potential climate change and CO2 doubling. Comparison with other tropical forests suggests that the LEF as a whole has higher GPP (51 tC/ha per year versus 40 t C/ha per year) but lower NPP (9.4 t C/ha per year versus 11 t C/ha per year) than other tropical rain forests.

Bivergent thrust wedges surrounding oceanic island arcs: Insight from observations and sandbox models of the northeastern Caribbean plate

ten Brink U, Marshak S, Granja JL (2009) Bivergent thrust wedges
surrounding oceanic island arcs: insights from observations and
sandbox models in the north-eastern Caribbean plate. Geol Soc
Am Bull 121:1522–1536

At several localities around the world, thrust belts have developed on both sides of oceanic island arcs (e.g., Java-Timor, Panama, Vanuatu, and the northeastern Caribbean). In these localities, the overall vergence of the backarc thrust belt is opposite to that of the forearc thrust belt. For example, in the northeastern Caribbean, a north-verging accretionary prism lies to the north of the Eastern Greater Antilles arc (Hispaniola and Puerto Rico), whereas a south-verging thrust belt called the Muertos thrust belt lies to the south. Researchers have attributed such bivergent geometry to several processes, including: reversal of subduction polarity; subduction-driven mantle fl ow; stress transmission across the arc; gravitational spreading of the arc; and magmatic infl ation within the arc. New observations of deformational features in the Muertos thrust belt and of fault geometries produced in sandbox kinematic models, along with examination of published studies of island arcs, lead to the conclusion that the bivergence of thrusting in island arcs can develop without reversal of subduction polarity, without subarc mantle fl ow, and without magmatic infl ation. We suggest that the Eastern Greater Antilles arc and comparable arcs are simply crustalscale bivergent (or “doubly vergent”) thrust wedges formed during unidirectional subduction. Sandbox kinematic modeling suggests, in addition, that a broad retrowedge containing an imbricate fan of thrusts develops only where the arc behaves relatively rigidly. In such cases, the arc acts as a backstop that transmits compressive stress into the backarc region. Further, modeling shows that when arcs behave as rigid blocks, the strike-slip component of oblique convergence is accommodated entirely within the prowedge and the arc—the retrowedge hosts only dip-slip faulting (“frontal thrusting”). The existence of large retrowedges and the distribution of faulting in an island arc may, therefore, be evidence that the arc is relatively rigid. The rigidity of an island arc may arise from its mafi c composition and has implications for seismic-hazard analysis.

Modelling rainfall interception by a lowland tropical rain forest in northeastern Puerto Rico

Schellekensa, J.; Scatenab,F.N.; Bruijnzeela,L.A.; Wickela,A.J. 1999. Modelling rainfall interception by a lowland tropical rain forest in northeastern Puerto Rico. Journal of Hydrology 225 :168-184.

Recent surveys of tropical forest water use suggest that rainfall interception by the canopy is largest in wet maritime locations. To investigate the underlying processes at one such location—the Luquillo Experimental Forest in eastern Puerto Rico—66 days of detailed throughfall and above-canopy climatic data were collected in 1996 and analysed using the Rutter and Gash models of rainfall interception. Throughfall occurred on 80% of the days distributed over 80 rainfall events. Measured interception loss was 50% of gross precipitation. When Penman–Monteith based estimates for the wet canopy evaporation rate (0.11 mm h21 on average) and a canopy storage of 1.15 mm were used, both models severely underestimated measured interception loss. A detailed analysis of four storms using the Rutter model showed that optimizing the model for the wet canopy evaporation component yielded much better results than increasing the canopy storage capacity. However, the Rutter model failed to properly estimate throughfall amounts during an exceptionally large event. The analytical model, on the other hand, was capable of representing interception during the extreme event, but once again optimizing wet canopy evaporation rates produced a much better fit than optimizing the canopy storage capacity. As such, the present results support the idea that it is primarily a high rate of evaporation from a wet canopy that is responsible for the observed high interception losses.

Hydrological Processes in a humid Tropical Rain Forest: A Combined Experimental and Modelling Approach

Schellekens, J. 2000. Hydrological processes in a humid tropical rain
forest: a combined experimental and modeling approach. Ph.D.
Thesis, Free University of Amsterdam, Amsterdam University
Press, 158 p.

With populations growing explosively in the tropical parts of the world, and the per capita water demands increasing where living standards improve, optimisation of water resources is becoming increasingly important [Bonell et al., 1993]. Similarly, the strong demands for industrial wood (pulpwood, saw and veneer logs), fuelwood and charcoal, require the establishment of large areas of fast-growing plantation forests, often on land that is currently not forested [Evans, 1992; Brown et al., 1997]. Coupled with (i) the continued indiscriminate clearing of the world’s tropical forests [Jepma, 1995; Nepstad et al., 1999] which in many areas serve as the traditional supplier of high quality water; (ii) the associated deterioration of soil and water quality due to erosion and pollution [Oldeman, 1994], plus (iii) the possibility of gradually less dependable precipitation inputs and (in certain ‘maritime’ tropical areas away from the equator) an increasing frequency of devastating hurricanes due to ‘global change’ [Wasser and Harger, 1992], a sound understanding of the hydrological functioning of tropical forests is arguably even more important nowadays than ever before [cf. Bruijnzeel, 1990, 2000a]. Bruijnzeel and Abdul Rahim [1992] suggested that in a time of dwindling resources, additional forest hydrological research in the humid tropics could best be carried out at a limited number of carefully selected data-rich key locations that could be loosely joined together in a network that captures the environmental variability encountered in the humid tropics. Furthermore, Bruijnzeel [1993] and Bonell and Balek [1993] considered a catchment-based approach to offer the best framework for such research as this allows for the integration of hydrological, geomorphological, pedological and ecological observations in a spatial context, particularly if supplemented by process studies and physicallybased distributed modelling.
Syndicate content