roots

Litterfall and Decomposition in Relation to Soil Carbon Pools Along a Secondary Forest Chronosequence in Puerto Rico

Ostertag, R.; Marín-Spiotta, E.; Silver, W.L.; Schulten, J. 2008. Litterfall and decomposition in relation to soil carbon pools along a secondary forest chronosequence in Puerto Rico. Ecosystems. 11:701-714.

Abstract: 
Secondary forests are becoming increasingly widespread in the tropics, but our understanding of how secondary succession affects carbon (C) cycling and C sequestration in these ecosystems is limited. We used a well-replicated 80-year pasture to forest successional chronosequence and primary forest in Puerto Rico to explore the relationships among litterfall, litter quality, decomposition, and soil C pools. Litterfall rates recovered rapidly during early secondary succession and averaged 10.5 (± 0.1 SE) Mg/ha/y among all sites over a 2-year period. Although forest plant community composition and plant life form dominance changed during succession, litter chemistry as evaluated by sequential C fractions and by 13C-nuclear magnetic resonance spectroscopy did not change significantly with forest age, nor did leaf decomposition rates. Root decomposition was slower than leaves and was fastest in the 60-year-old sites and slowest in the 10- and 30-year-old sites. Common litter and common site experiments suggested that site conditions were more important controls than litter quality in this chronosequence. Bulk soil C content was positively correlated with hydrophobic leaf compounds, suggesting that there is greater soil C accumulation if leaf litter contains more tannins and waxy compounds relative to more labile compounds. Our results suggest that most key C fluxes associated with litter production and decomposition re-establish rapidly—within a decade or two—during tropical secondary succession. Therefore, recovery of leaf litter C cycling processes after pasture use are faster than aboveground woody biomass and species accumulation, indicating that these young secondary forests have the potential to recover litter cycling functions and provide some of the same ecosystem services of primary forests.

At What Temporal Scales Does Disturbance Affect Belowground Nutrient Pools?

At What Temporal Scales Does Disturbance Affect Belowground Nutrient Pools?
Whendee L. Silver, Fred N. Scatena, Arthur H. Johnson, Thomas G. Siccama and Fiona Watt
Biotropica
Vol. 28, No. 4, Part A. Special Issue: Long Term Responses of Caribbean Ecosystems to Disturbances (Dec., 1996), pp. 441-457

Abstract: 
We monitored the effects of both harvesting aboveground biomass and Hurricane Hugo on soil chemical and physical properties, and live and dead root biomass over 6 yr in a subtropical wet forest in Puerto Rico. Our goal was to determine how belowground processes changed at different temporal scales including the immediate period prior to revegetation (9 wk), the intermediate period of initial regrowth (9 mo), and the longer-term reorganization of the vegetation and biogeochemical cycling (6 yr). Harvesting resulted in temporary increases in the availability of exchangeable nutrients, but forest floor and soil nutrient pools had generally returned to pre-harvest values over a 9 wk period. Significant amounts of K moved through the soil over this time period, amounting to 29-46 kg/ha-1, and resulting in a reduction in the size of the exchangeable soil K pool. The hurricane deposited approximately 845 kg/ha-1 of forest floor mass and considerable nutrients on the soil surface, and increased soil NO3-N and exchangeable K pools, but in all cases, pool sizes had returned to pre-hurricane values within 9 mo. Examination of the data on an annual time step over the 6 yr period revealed an increase in soil cation pools and a significant decrease in soil pH. No change in soil organic matter was detected at any time step following the disturbances. Live fine root biomass was dramatically reduced as a result of the hurricane, and was only beginning to show signs of recovery near the end of the 6 yr experiment.

Ecological Consequences of Root Grafting in Tabonuco (Dacryodes excelsa) Trees in the Luquillo Experimental Forest, Puerto Rico

Ecological Consequences of Root Grafting in Tabonuco (Dacryodes excelsa) Trees in the Luquillo Experimental Forest, Puerto Rico
Khadga Basnet, F. N. Scatena, Gene E. Likens and Ariel E. Lugo
Biotropica
Vol. 25, No. 1 (Mar., 1993), pp. 28-35

Abstract: 
Root grafting was commonly found in tabonuco (Dacryodes excelsa Vahl), a dominant tree species of tabonuco forest in the subtropical wet forest of Puerto Rico. Over 60 percent of all stems and basal area of tabonuco occurred in unions, clumps of trees interconnected by root grafts. Self and intraspecific grafting were extensive, while interspecific grafting was not common in tabonuco trees. Seedlings and saplings did not show any grafting, probably because of their size or age. Grafted trees were taller and had a smaller crown/DBH ratio. Hurricane damage was significantly higher in isolated individual tabonuco trees than those in unions. Weak relationships between diameter class, area, and size of union, and inter-tree distances and the sum of the trunk circumferences of the two nearest neighbors suggested that a noncompetitive force such as root grafting was more important than competitive forces in maintaining the unions of tabonuco, and thus the forest community. A conceptual model of the costs and gains of tabonuco in unions is presented.
Syndicate content