Soil Survey of Caribbean National Forest and Luquillo Experimental Forest, Commonwealth of Puerto Rico

Huffaker L (2002) Soil Survey of the Caribbean National Forest and Luquillo
Experimental Forest, Commonwealth of Puerto Rico (Interim Publication).
US Department of Agriculture, Natural Resource Conservation Service,
Washington, DC, US.

This soil survey contains information that affects land use planning in this survey area. It contains predictions of soil behavior for selected land uses. The survey also highlights soil limitations, improvements needed to overcome the limitations, and the impact of selected land uses on the environment. This soil survey is designed for many different users. Foresters, land use planners, and researchers can use it to evaluate the potential of the soil and the management needed for maximum use and production. Planners, community officials, engineers, and builders can use the survey to plan land use, select sites for construction, and identify special practices needed to ensure proper performance. Conservationists, teachers, students, and specialists in recreation, wildlife management, waste disposal, and pollution control can use the survey to help them understand, protect, and enhance the environment. Various land use regulations of Federal, Commonwealth, and local governments may impose special restrictions on land use or land treatment. The information in this report is intended to identify soil properties that are used in making various land use or land treatment decisions. Statements made in this report are intended to help the land users identify and minimize the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations. Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are shallow to bedrock. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations. These and many other soil properties that affect land use are described in this soil survey. Broad areas of soils are shown on the general soil map. The location of each soil is shown on the detailed soil maps. Each soil in the survey area is described. Information on specific uses is given for each soil. Help in using this publication and additional information are available at the local office of the Natural Resources Conservation Service, the Forest Service, or the Cooperative Extension Service.

Global and local variations in tropical montane cloud forest soils

Roman L, Scatena FN, Bruijnzeel LA. 2010. In Tropical Montane Cloud Forests: Science for Conservation and Management, Bruijnzeel LA, Scatena FN, Hamilton LS (eds).

Although soil resources are widely considered as a major factor that reduces the productivity, stature, and diversity of tropical montane cloud forests (TMCF), systematic comparisons of soil resources within and between TMCF are lacking. This study combines published reports on TMCF soils with new data on the soils and forest structure of the Luquillo Mountains in Puerto Rico to assess the current state of knowledge regarding global and local-scale variation in TMCF soils. At the global scale, soils from 33 TMCF sites and over 150 pedons are reviewed. Compared to soils in humid lowland tropical forests, TMCF soils are relatively acidic, have higher organic matter content, and are relatively high in total nitrogen and extractable phosphorus. Across all sites, significant correlations also exist between mean annual precipitation and soil pH and base saturation, but not between any soil chemical factor and canopy height, site elevation, or air temperature. Although comparisons between TMCF are limited by inconsistent sampling protocols, analysis of available data does indicates that lower montane cloud forests (LMCF) have taller canopies, higher soil pH, lower soil nitrogen, and higher C/N ratios than upper montane cloud forests (UMCF). Within an UMCF in NE Puerto Rico, the abundance of soil nitrogen, carbon, and potassium accounted for 25% to 54% of the variation in canopy height. However, as much as 68% of the variation in stand height could be accounted for when site exposure, slope gradient, and the percent coverage of surface roots were also included in the analysis.


Kristofer Dee Johnson, "Modeling spatial and temporal patterns of soil organic carbon in two montane landscapes: The northern hardwoods, Vermont and the tabonuco forest, Puerto Rico" (January 1, 2008). Dissertations available from ProQuest. Paper AAI3328590.

Forest soils contribute to a significant portion of the world’s carbon flux due to both natural and anthropogenic changes. In terms of human management of carbon pools, forest soil organic matter (SOM) is important because it potentially stores carbon more permanently than living vegetation. Yet, this potential is poorly understood or managed for because of the difficulty in measuring changes in SOM pools over time and space. Modeling combined with intensive field sampling can help overcome these limitations because it extracts from empirically observed relationships to account for the components of SOM formation (topography, time, parent material, organisms and climate[fns2]). This study utilizes intensive field data, statistical models and process-based ecosystem models to investigate the spatial distribution and dynamics of soil organic carbon dynamics in two contrasting ecosystems – the northern hardwood forest in the Green Mountains, VT and the tabonuco forest in the Luquillo Experimental Forest, PR. In both forests landscape position emerged as the dominate factor in explaining SOM distribution. In Vermont, additional variation was explained by aspect and slope and in Puerto Rico additional variation was explained by landscape factors interrelated to soil drainage. Process-based modeling proved to be a useful management and experimental tool in cases were empirical approaches were impractical for both forests. In Vermont, three ecosystem models demonstrated a substantial reduction of soil organic carbon and harvestable biomass due to the removal of woody carbon by logging after 240 years of rotations. In Puerto Rico, the Century model showed that changes in litter quality and quantity were not likely responsible in explaining landscape level SOM differences. Overall, well drained soils located in colder climates stored the highest SOM whereas poorly drained and highly disturbed soils in steep humid climates stored the lowest SOM. This research demonstrates that although SOM amounts are highly variable over many spatial and temporal scales, intuitive relationships are borne out with modeling tools and by careful investigation of the five soil forming factors. Results also raise questions about how these ecosystems and their SOM pools may change in response to changing climate conditions of the future.

Soil properties and microbial functional diversity of surface soils in the Luquillo Experimental Forest of Puerto Rico

Cox, S. B. 1999. Soil properties and microbial functional diversity of surface soils in the Luquillo Experimental Forest of Puerto Rico. Ph.D. Dissertation, Texas Tech University.

Microbial communities represent an important, yet poorly understood component of the biodiversity of tropical forest ecosystems. Nonetheless, methodological difficulties associated with sampling and identifying microbes prevents obtaining answers to many questions related to fundamental issues in microbial ecology. One such issue is whether or not patterns in soil microbial communities are discernible at broad spatial scales (e.g., hectares). I assessed microbial functional diversity (MFD) in the Luquillo Experimental Forest of Puerto Rico based on the differential catabolism of 95 carbon sources (Biolog method). Specifically, I: (1) examined the influence of extreme soil types associated with topography (ridges and riparian valleys) and soil nutrient characteristics in determining MFD, and (2) elucidated broad-scale patterns of MFD with respect to forest type (elevation) and landuse within a landscape modified by agricultural and forestry practices. I included abandoned pastures as a "forest type" in order to assess the impacts of clearcutting and cattle grazing on microbial diversity and nutrient status. Considerable spatial variation characterized soils of the LEF, and differences between sites within each combination of forest type and topographic position accounted for 11-60% of the total variation in soil properties. Considerable spatial variation also characterized indexes of MFD, and differences between sites within each combination of forest type and topographic position were significant in 22 of 28 analyses. Nevertheless, mean soil properties differed significantly among forest types, between topographic positions (ridge vs. valley), and between seasons (wet vs. dry). In contrast, indexes of MFD were not different among forest types and between topographic positions. Of the 14 soil characteristics examined, P, Ca, and pH accounted for unique variation in MFD, and when variation in MFD due to these dominant soil parameters was removed, the interaction between forest type and topography was significant for diversity, evenness, and richness, and approached significance for total activity. Mantel analyses and Metric Multi-Dimensional Scaling revealed that microbial communities of different forest types and topographic positions exhibited distinct profiles of substrate utilization; however, differences among forest types depended on topographic position. Functional diversity of bacterial communities does exhibit distinctive patterns at the scale of the entire LEF, with the soil environment mediating the mechanisms related to forest type, topography, and season.


Borges, S. and M. Alfaro. 1997. The earthworms of
Baño de Oro, Luquillo Experimental Forest, Puerto
Rico. Soil Biol. Biochem. 29:231-234.

The earthworm fauna of the four forest types at the Batio de Oro region of the Luquillo Experimental Forest was sampled over 6 months. Eight species were found: two Glossoscolecidae, one Ocnerodrilidae, four Megascolecidae, and one Eudrilidae. The total species density and biomass showed no significant correlation to forest type or soil depth, but some species did show different distribution patterns according to certain soil properties. Exotic species were more abundant, but native species accounted for most of the biomass. Species number and density were low when compared with similar studies in other neotropical forests. This could be due to the high moisture content of the soils and its effects on other soil properties.
Syndicate content