Syzygium jambos


MARIN-SPIOTTA, E. ; OSTERTAG, R.; SILVER W. L. 2007. Long-term, patterns in tropical reforestation: plant community composition and aboveground biomass accumulation.. Ecological Applications, 17(3), :828-839.

Primary tropical forests are renowned for their high biodiversity and carbon storage, and considerable research has documented both species and carbon losses with deforestation and agricultural land uses. Economic drivers are now leading to the abandonment of agricultural lands, and the area in secondary forests is increasing. We know little about how long it takes for these ecosystems to achieve the structural and compositional characteristics of primary forests. In this study, we examine changes in plant species composition and aboveground biomass during eight decades of tropical secondary succession in Puerto Rico, and compare these patterns with primary forests. Using a well-replicated chronosequence approach, we sampled primary forests and secondary forests established 10, 20, 30, 60, and 80 years ago on abandoned pastures. Tree species composition in all secondary forests was different from that of primary forests and could be divided into early (10-, 20-, and 30-year) vs. late (60- and 80-year) successional phases. The highest rates of aboveground biomass accumulation occurred in the first 20 years, with rates of C sequestration peaking at 6.7 6 0.5 Mg Cha1yr1. Reforestation of pastures resulted in an accumulation of 125 Mg C/ha in aboveground standing live biomass over 80 years. The 80 year-old secondary forests had greater biomass than the primary forests, due to the replacement of woody species by palms in the primary forests. Our results show that these new ecosystems have different species composition, but similar species richness, and significant potential for carbon sequestration, compared to remnant primary forests.

Multi-scale analysis of species introductions: combining landscape and demographic models to improve management decisions about non-native species

Brown, K.A., Spector, S.& Wu, W. (2008)Multi-scale analysis of species introductions:
combining landscape and demographic models to improve management
decisions about non-native species. Journal of Applied Ecology, 45,

1. Non-native, invasive species can affect biological patterns and processes at multiple ecological scales. The multi-scalar effects of invasions can influence community structure, ecosystem processes and function, and the nature and intensity of ecological interactions. Consequently, efforts to assess the spread of invasive species may benefit from a multi-scale analytic approach. 2. We analysed results from landscape- and population-scale models for Syzygium jambos , a nonnative tree in the Luquillo Mountains of Puerto Rico, to demonstrate a multi-scale approach that can be used to inform management decisions about invasive plants. At the landscape-level, we used an Ecological Niche Modelling approach to predict environmentally suitable habitats for the target plant. At the population-level, we constructed matrix projection models to determine the finite rate of population increase ( λ ) for S. jambos . We then extrapolated λ values to the landscape-scale to obtain a distribution map of λ values for the Luquillo forest. 3. The landscape analyses suggested that the most environmentally suitable habitats were those most similar to where S. jambos had already been observed. The population-level analyses showed that four of the seven populations had λ values less than 1, indicating that they were projected to be below replacement. The λ distribution map showed that S. jambos growth was highest in areas where it was most common and lowest in areas where it was most rare. 4. Our analyses further suggested that the importance of different drivers of invasion and the environmental variables that mediate them appear to be strongly scale-dependent. Past disturbances seemed most important for controlling invasions at fine-spatial scales; while abiotic environmental variables modulated coarse-scale invasion dynamics. 5. Synthesis and applications. We have shown that a multi-scale analytic approach can be used to manage invasive species by simultaneously targeting susceptible life stages and rapidly growing populations in a landscape. The utility of this approach stems from an ability to: (i) map the distribution of habitats that can potentially sustain λ values above replacement; (ii) identify populations to manage or monitor during selected stages of an invasion; (iii) forecast the probability for a target species to increase above a critical threshold abundance; and (iv) set priorities for control and monitoring actions.

Non-Indigenous Bamboo along Headwater Streams of the Luquillo Mountains, Puerto Rico: Leaf Fall, Aquatic Leaf Decay and Patterns of Invasion

O'CONNOR, PAUL J.; COVICH, ALAN P.; SCATENA, F. N.; LOOPE, LLOYD L. 2000. Non-indigenous bamboo along headwater streams of the Luquillo Mountains, Puerto Rico: leaf fall, aquatic leaf decay and patterns of invasion. Journal of Tropical Ecology 16 :499-516.

The introduction of bamboo to montane rain forests of the Luquillo Mountains, Puerto Rico in the 1930s and 1940s has led to present-day bamboo monocultures in numerous riparian areas. When a non-native species invades a riparian ecosystem, in-stream detritivores can be affected. Bamboo dynamics expected to in¯uence stream communities in the Luquillo Experimental Forest (LEF) were examined. Based on current distributions, bamboo has spread downstream at a rate of 8 m y-1. Mean growth rate of bamboo culms was 15.3 cm d-1. Leaf fall from bamboo stands exceeded that of native mixed-species forest by c. 30% over a 10-mo study. Bamboo leaves (k = -0.021), and leaves from another abundant riparian exotic, Syzygium jambos (Myrtaceae) (k = -0.018), decayed at relatively slow rates when submerged in streams in ®ne-mesh bags which excluded macro-invertebrate leaf processors. In a second study, with leaf processors present, bamboo decay rates remained unchanged (k = -0.021), while decay rates of S. jambos increased (k = -0.037). Elemental losses from bamboo leaves in streams were rapid, further suggesting a change in riparian zone / stream dynamics following bamboo invasion. As non-indigenous bamboos spread along Puerto Rico streams, they are likely to alter aquatic communities dependent on leaf input.

Effects of an invasive tree on community structure and diversity in a tropical forest in Puerto Rico

Brown, K. A. ; Scatena, F. N., and Gurevitch, J. 2006. Effects of an invasive tree on community structure and diversity in a tropical forest in Puerto Rico. . Forest Ecology and Management . 2006; 226:145-152.

We report the effects of an invasive tree (Syzygium jambos, Myrtaceace) on species composition, plant diversity patterns, and forest regeneration in primary and secondary forest in the Luquillo Mountains of northeastern Puerto Rico, including the area in and around the Caribbean National Forest (CNF) and the Luquillo Long Term Ecological Research site (Luquillo LTER). Land use history was reconstructed using aerial photographs from 1936 to 1989 and study sites were categorized into four groups that corresponded to their status in 1936: unforested, young secondary, mature secondary, and primary forests. In randomly selected forest stands in each forest type, we measured the abundance of invasive and native tree species, seedling recruitment for S. jambos as well as soil nutrient pools and tested for the effects of land use history on S. jambos density and diversity. A partial Mantel test was used to control for historical and elevational differences across study sites. The results indicate that S. jambos density was highest in habitats classified in 1936 as unforested, young, or mature secondary forests. Compared to all other forest classes, species diversity was significantly higher in primary forests. However, there was no statistically significant difference between observed and estimated species richness across the four forest types. S. jambos density and species diversity were strongly negatively correlated, even after controlling for land use history and elevation. There was significantly higher S. jambos seedling recruitment in areas that were either unforested or had young secondary forests in 1936. The results also indicate that S. jambos is able to establish viable populations in habitats with different soil nutrient status. S. jambos has also altered vegetation composition and diversity patterns in habitats where it is the dominant tree species. After nearly 185 years since its introduction to the island, S. jambos is not only well established within 30 m of stream channels, its presence does not appear to be limited by topographic, soil nutrient, or elevational conditions. This study suggests that land use change and subsequent plant invasions have produced a new vegetation assemblage that has led to potentially long-term changes in community structure, species composition, and successional trajectory in regenerating secondary forests in the Luquillo Mountains.
Syndicate content