topographic gradients


Boose, E.R., Serrano, M.I. & Foster, D.R. (2004) Landscape
and regional impacts of hurricanes in Puerto Rico. Ecological
Monographs, 74, 335–352.

Puerto Rico is subject to frequent and severe impacts from hurricanes, whose long-term ecological role must be assessed on a scale of centuries. In this study we applied a method for reconstructing hurricane disturbance regimes developed in an earlier study of hurricanes in New England. Patterns of actual wind damage from historical records were analyzed for 85 hurricanes since European settlement in 1508. A simple meteorological model (HURRECON) was used to reconstruct the impacts of 43 hurricanes since 1851. Long-term effects of topography on a landscape scale in the Luquillo Experimental Forest (LEF) were simulated with a simple topographic exposure model (EXPOS). Average return intervals across Puerto Rico for F0 damage (loss of leaves and branches) and F1 damage (scattered blowdowns, small gaps) on the Fujita scale were 4 and 6 years, respectively. At higher damage levels, a gradient was created by the direction of the storm tracks and the weakening of hurricanes over the interior mountains. Average return intervals for F2 damage (extensive blowdowns) and F3 damage (forests leveled) ranged from 15 to 33 years and 50 to 150 years, respectively, from east to west. In the LEF, the combination of steep topography and constrained peak wind directions created a complex mosaic of topographic exposure and protection, with average return intervals for F3 damage ranging from 50 years to .150 years. Actual forest damage was strongly dependent on land-use history and the effects of recent hurricanes. Annual and decadal timing of hurricanes varied widely. There was no clear centennial-scale trend in the number of major hurricanes over the historical period.

Nutrient availability in a montane wet tropical forest: Spatial patterns and methodological considerations

Silver, W.L., F.N. Scatena, A.H. Johnson, T.G. Siccama, and M.J.
Sanchez. 1994. Nutrient availability in a montane wet tropical forest: Spatial patterns and methodological considerations. Plant Soil 164:129–145.

Soils and forest floor were sampled quantitatively from a montane wet tropical forest in Puerto Rico to determine the spatial variability of soil nutrients, the factors controlling nutrient availability to vegetation, and the distribution of nutrients in soil and plants. Exchangeable cation concentrations were measured using different soil extracting procedures (fresh soil with NH4C1, air-dried and ground soil with KC1, and a Modified Olsen solution) to establish a range of nutrient availability in the soil, and to determine the relationship between different, but commonly used laboratory protocols. The availability of exchangeable Ca, Mg, and K was significantly lower in soils extracted fresh with NHaCI than from soils which were dried and ground prior to extraction with KCI or a modified Olsen solution. Soil nutrient availability generally decreased with depth in the soil. Several soil properties important to plant growth and survival varied predictably across the landscape and could be viewed in the context of a simple catena model. In the surface soils, exchangeable base cation concentrations and pH increased along a gradient from ridge tops to riparian valleys, while soil organic matter, exchangeable Fe and acidity decreased along this gradient. On the ridges, N, P, and K were positively correlated with soil organic matter; on slopes, N and P were positively correlated with organic matter, and Ca, Kg, and pH were negatively correlated with exchangeable Fe. Nutrient availability in the upper catena appears to be primarily controlled by biotic processes, particularly the accumulation of organic matter. The Ca, K, and P content of the vegetation was higher on ridges and slopes than in the valley positions. Periodic flooding and impeded drainage in the lower catena resulted in a more heterogeneous environment. A comparison of the Bisley, Puerto Rico soils with other tropical montane forests (TMF) revealed that the internal heterogeneity of soils in the Bisley Watersheds is similar to the range of average soil nutrient concentrations among TMF's for Ca, Mg, and K (dry/ground soils). Phosphorus tended to be slightly higher in Bisley and N was lower than in other TMFs.

Variation in nutrient characteristics of surface soils from the Luquillo Experimental Forest of Puerto Rico: A multivariate perspective

Cox, S. B.; Willig, M. R.; Scatena,F. N.; 2002. Variation in nutrient characteristics of surface soils from the Luquillo Experimental Forest of Puerto Rico: A multivariate perspective.. Plant and Soil 247 : 189-198.

We assessed the effects of landscape features (vegetation type and topography), season, and spatial hierarchy on the nutrient content of surface soils in the Luquillo Experimental Forest (LEF) of Puerto Rico. Considerable spatial variation characterized the soils of the LEF, and differences between replicate sites within each combination of vegetation type (tabonuco vs. palo colorado vs. dwarf vs. pasture) and topographic position (ridge vs valley) accounted for 11–60% of the total variation in soil properties. Nevertheless, mean soil properties differed significantly among vegetation types, between topographic positions, and between seasons (wet vs dry). Differences among vegetation types reflected soil properties (e.g., bulk density, soil moisture, Na, P, C, N, S) that typically are related to biological processes and inputs of water. In forests, differences between topographic positions reflected elements (e.g., Ca, Mg, K, and Al) that typically are associated with geochemical processes; however, the nutrients and elements responsible for topographic differences in dwarf forest were different from those in other forest types. In pastures, differences between topographic positions were associated with the same soil properties responsible for differences among the other vegetation types. Pastures also had reduced N levels and different soil characteristics compared to undisturbed tabonuco forest. The only soil parameter that differed significantly between seasons was soil moisture. Soils of the LEF do not support the contention that N becomes limiting with an increase in elevation, and suggest that absolute pool sizes of N and P are not responsible for the reduction in productivity with elevation.
Syndicate content