tropical forest

Vertical Stratification of δ 13C Values in Closed Natural and Plantation Forests in the Luquillo Mountains, Puerto Rico

MEDINA, E., L. STERNBERG, and E. CUEVAS. 1991. Vertical stratification of delta-C-13 values in closed natural and plantation forests in the luquillo mountains, puerto-rico. Oecologia 87 (3): 369-72.

The variability of 13C values was measured in leaf, stem and root tissues of several tree species growing in closed natural and plantation forests in the Luquillo mountains of Puerto Rico. Results confirm a significant decrease of <513C values from the tree canopy to the forest floor. The values measured in understory plants growing in gaps were not significantly different from the average for plants growing under the forest shade. Seedling leaf values tended to be more positive than those of saplings, probably reflecting the contribution of organic matter from the mother tree. Photosynthetic independence on the forest floor results in a reduction in ?13C value. Stem and root tissue values of seedlings and saplings were less negative than those of the leaves of the same plants. It is suggested that this difference results from the slower change in isotopie composition experienced by the woody tissue, as the seedlings become photosynthetically independent in the forest floor.

Atypical soil carbon distribution across a tropical steepland forest catena.

Johnson K.D., Scatena F.N., Silver W.L. Atypical soil carbon distribution across a tropical steepland forest catena. CATENA, In Press, Corrected Proof, Available online 4 August 2011, ISSN 0341-8162, DOI: 10.1016/j.catena.2011.07.008. (

Soil organic carbon (SOC) in a humid subtropical forest in Puerto Rico is higher at ridge locations compared to valleys, and therefore opposite to what is commonly observed in other forested hillslope catenas. To better understand the spatial distribution of SOC in this system, plots previously characterized by topographic position, vegetation type and stand age were related to soil depth and SOC. Additional factors were also investigated, including topographically-related differences in litter dynamics and soil chemistry. To investigate the influence of litter dynamics, the Century soil organic model was parameterized to simulate the effect of substituting valley species for ridge species. Soil chemical controls on C concentrations were investigated with multiple linear regression models using iron, aluminum and clay variables. Deeper soils were associated with indicators of higher landscape stability (older tabonuco stands established on ridges and slopes), while shallower soils persisted in more disturbed areas (younger non-tabonuco stands in valleys and on slopes). Soil depth alone accounted for 77% of the observed difference in the mean 0 to 60 cmSOC between ridge soils (deeper) and valley soils (shallower). The remaining differences in SOC were due to additional factors that lowered C concentrations at valley locations in the 0 to 10 cm pool. Model simulations showed a slight decrease in SOC when lower litter C:N was substituted for higher litter C:N, but the effects of different woody inputs on SOC were unclear. Multiple linear regression models with ammonium oxalate extractable iron and aluminum, dithionite–citrate-extractable iron and aluminum, and clay contents explained as much as 74% of the variation in C concentrations, and indicated that organo-mineral complexation may be more limited in poorly developed valley soils. Thus, topography both directly and indirectly affects SOC pools through a variety of inter-related processes that are often not quantified or captured in terrestrial carbon models.

The Status of Puerto Rico’s Forests, 2003

Brandeis, Thomas J.; Helmer, Eileen H.; Oswalt, Sonja N. 2007. The status of Puerto Rico's forests, 2003. Resour. Bull. SRS-119. Asheville, NC: U.S. Department of Agriculture Forest Service, Southern Research Station. 72 p.

Puerto Rico’s forest cover continues to increase and is now 57 percent for mainland Puerto Rico, 85 percent for Vieques, and 88 percent for Culebra. Subtropical dry forest occupies 50 346 ha, 6832 ha, 2591 ha, and 6217 ha on the islands of Puerto Rico, Vieques, Culebra, and Mona, respectively. Subtropical moist forest, the most prevalent forested life zone on mainland Puerto Rico, had 49 percent forest cover or 258 861 ha of forest. Subtropical wet and rain forest occupies 161 503 ha, lower montane wet and rain forest occupies 11 723 ha at the highest elevations, and mangrove forest occupies 7920 ha in coastal areas. Puerto Rico’s forests were found to have over 1,602,378,689 trees over 2.5 cm in diameter and 10 607 847 m2 of basal area, and to hold 36.6 million Mg of sequestered carbon. There were 3,112 trees, 19.2 m2 of basal area, 68.25 m3 of merchantable stem volume, and 80 Mg of aboveground biomass in an average hectare of forest. The subtropical moist and wet and rain secondary forests inventoried in 1990 are still young and increasing in average basal area, which rose from 13.2 mm2/ha in 1980, to 15.2 m2/ha in 1990, to the current level of 20.9 mm2/ha. The most important tree species were the African tuliptree [Spathodea campanulata] Beauv., American muskwood [<="" i="">] (L.) Sleumer, cabbagebark tree [Andira inermis] (W. Wright) Kunth ex DC., and pumpwood [Cecropia schreberiana] Miq. Few unhealthy, stressed trees werenoted and widespread pest and disease problems were not observed. Only 12.9 percent of live trees had some type of damage or disease. Average per-hectare amounts of down woody material, forest floor duff, and forest floor litter generally increased as the forest environment became more humid. Small-to-medium forest fire fuels were most common in subtropical dry forests, while medium-to-large fuels were most common in more humid forest life zones.


MARIN-SPIOTTA, E. ; OSTERTAG, R.; SILVER W. L. 2007. Long-term, patterns in tropical reforestation: plant community composition and aboveground biomass accumulation.. Ecological Applications, 17(3), :828-839.

Primary tropical forests are renowned for their high biodiversity and carbon storage, and considerable research has documented both species and carbon losses with deforestation and agricultural land uses. Economic drivers are now leading to the abandonment of agricultural lands, and the area in secondary forests is increasing. We know little about how long it takes for these ecosystems to achieve the structural and compositional characteristics of primary forests. In this study, we examine changes in plant species composition and aboveground biomass during eight decades of tropical secondary succession in Puerto Rico, and compare these patterns with primary forests. Using a well-replicated chronosequence approach, we sampled primary forests and secondary forests established 10, 20, 30, 60, and 80 years ago on abandoned pastures. Tree species composition in all secondary forests was different from that of primary forests and could be divided into early (10-, 20-, and 30-year) vs. late (60- and 80-year) successional phases. The highest rates of aboveground biomass accumulation occurred in the first 20 years, with rates of C sequestration peaking at 6.7 6 0.5 Mg Cha1yr1. Reforestation of pastures resulted in an accumulation of 125 Mg C/ha in aboveground standing live biomass over 80 years. The 80 year-old secondary forests had greater biomass than the primary forests, due to the replacement of woody species by palms in the primary forests. Our results show that these new ecosystems have different species composition, but similar species richness, and significant potential for carbon sequestration, compared to remnant primary forests.

Impact of experimental drought on greenhouse gas emissions and nutrient availability in a humid tropical forest

We excluded throughfall from humid tropical forests in Puerto Rico for a period of three months to determine how drought affects greenhouse gas emissions from tropical forest soils. We established five 1.24 m2 throughfall exclusion and five control plots of equal size in three sites located on ridges, slopes, and an upland valley dominated by palms (total of 30 plots). We measured weekly changes in carbon dioxide (CO2) and bi-weekly changes in nitrous oxide (N2O) and methane (CH4) in response to manipulation. We additionally measured the effects of throughfall exclusion on soil temperature and moisture, nutrient availability, and pH. Rainout shelters significantly reduced throughfall by 22 to 32 % and decreased soil moisture by 16 to 36% (top 10 cm). Rates of CO2 emissions decreased significantly in the ridge and slope sites (30%, 28%, respectively), but not the palm during the experimental drought. In contrast, the palm site became a significantly stronger sink for CH4 in response to drying (480% decline relative to controls), while CH4 fluxes in the ridge and slope sites did not respond to drought. Both the palm and ridge site became a sink for N2O in response to drought and the slope site followed a similar trend. Soil pH and available P decreased significantly in response to soil drying; however, available N was not affected. Variability in the response of greenhouse gas emissions to drought among the three sites highlights the complexity of biogeochemical cycling in tropical forested ecosystems, as well as the need for research that incorporates the high degree of spatial heterogeneity in experimental designs. Our results show that humid tropical forests are sensitive to climate change and that short-term declines in rainfall could result in a negative feedback to climate change via lowered greenhouse gas emissions and increased greenhouse gas consumption by soils.

Acclimation of tropical tree species to hurricane disturbance: ontogenetic differences

Wen, S.Y., Fetcher, N. & Zimmerman, J.K. (2008) Acclimation of tropical tree
species to hurricane disturbance: ontogenetic differences. Tree Physiology,
28, 935–946.

We investigated acclimation responses of seedlings and saplings of the pioneer species Cecropia schreberiana Miq. and three non-pioneer species, Dacryodes excelsa Vahl, Prestoea acuminata (Willdenow) H.E. Moore var. montana (Graham) Henderson and Galeano, and Sloanea berteriana Choisy ex DC, following a hurricane disturbance in a lower montane wet forest in Puerto Rico. Measurements were made, shortly after passage of the hurricane, on leaves expanded before the hurricane (pre-hurricane leaves) and, at a later time, on recently matured leaves that developed after the hurricane (post-hurricane leaves) from both seedlings and saplings at sites that were severely damaged by the hurricane (disturbed sites) and at sites with little disturbance (undisturbed sites). Pre-hurricane leaves of the non-pioneer species had relatively low light-saturated photosynthetic rates (Amax) and stomatal conductance (gs); neither Amax nor gs responded greatly to the increase in irradiance that resulted from the disturbance, and there were few significant differences between seedlings and saplings. Pre-hurricane leaves of plants at undisturbed sites had low dark respiration rates per unit area (Rd) and light compensation points (LCP), whereas pre-hurricane leaves of plants at disturbed sites had significantly higher Rd and LCP. Post-hurricane leaves of plants at disturbed sites had significantly higher Amax and Rd than plants at undisturbed sites. Compared with seedlings, saplings had higher Amax and Rd and showed greater acclimation to the increase in irradiance that followed the disturbance. Post-hurricane leaves of the non-pioneer species had significantly lower Amax and were less responsive to changes in irradiance than the pioneer species C. schreberiana. Variation in Amax across light environments and stages was strongly related to differences in leaf mass per unit area (LMA), especially in the non-pioneer species. As indicated by Vcmax or Jmax per unit nitrogen, light acclimation of Amax was determined by leaf morphology (LMA) for the nonpioneer species and by both leaf morphology and leaf biochemistry for C. schreberiana. Ontogenetic changes in Amax were attributable to changes in leaf morphology. The ontogenetic component of variation in Amax across light environments and stages differed among species, ranging from 36 to 59% for the non-pioneer species (D. excelsa, 59.3%; P. acuminata var. montana, 44.7%; and S. berteriana, 36.3%) compared with only 17% in the pioneer species C. schreberiana.

Spatial and seasonal dynamics of surface soil carbon in the Luquillo Experimental Forest, Puerto Rico

Wang, Hongqing; Cornell, Joseph D.; Hall, Charles A.S.; Marley, David P. 2002. Spatial and seasonal dynamics of surface soil carbon in the Luquillo Experimental Forest, Puerto Rico.. Ecological Modelling 147 105-122.

We developed a spatially-explicit version of the CENTURY soil model to characterize the storage and flux of soil organic carbon (SOC, 0–30 cm depth) in the Luquillo Experimental Forest (LEF), Puerto Rico as a function of climate, vegetation, and soils. The model was driven by monthly estimates of average air temperature, precipitation, and potential evapotranspiration (PET), which in turn were simulated as a function of elevation, slope, and aspect using a spatially-explicit and validated model (TOPOCLIM) of solar insolation/microclimate in mountainous areas. We simulated forest gross primary productivity (GPP) and distribution of above- and below-ground biomass production using a forest productivity model (TOPOPROD). Output from TOPOCLIM and TOPOPROD models was used to run the CENTURY soil model for 1200 months under current climate conditions and in response to potential global warming. We validated our version of CENTURY soil model using 69 soil samples taken throughout the LEF. Simulated SOC storage agrees reasonably well with the observed storage (R2=0.71). The simulated SOC storage in the top 30 cm within the LEF is highly variable, ranging from approximately 20–230 Mg/ha. The rates of decomposition were especially sensitive to changes in elevation. Carbon release rates due to decomposition were close to carbon assimilation rates and ranged from 0.6–0.96 Mg/ha per year at high elevations to 1.2–1.68 Mg/ha per year at lower elevations. Our simulations indicated that differences in elevation affect decomposition and SOC content primarily by changing microclimate. Finally, we found that a projected warming of 2.0 °C is likely to result in losses of SOC in the lower and higher elevation, but increased storage in the middle elevations in the LEF.

Land Use History, Environment, and Tree Composition in a Tropical Forest

Thompson, Jill; Brokaw, Nicholas; Zimmerman, Jess K.; Waide, Robert B.; Everham, Edwin M. III; Lodge, D. Jean; Taylor, Charlotte M.; Garcia-Montiel, Diana; Fluet, Marcheterre 2002. Land use history, environment, and tree composition in a tropical forest. Ecological applications. Vol. 12, no. 5 (2002): pages 1344-1363.

The effects of historical land use on tropical forest must be examined to understand present forest characteristics and to plan conservation strategies. We compared the effects of past land use, topography, soil type, and other environmental variables on tree species composition in a subtropical wet forest in the Luquillo Mountains, Puerto Rico. The study involved stems > 10 cm diameter measured at 130 cm above the ground, within the 16-ha Luquillo Forest Dynamics Plot (LFDP), and represents the forest at the time Hurricane Hugo struck in 1989. Topography in the plot is rugged, and soils are variable. Historical documents and local residents described past land uses such as clear-felling and selective logging followed by farming, fruit and coffee production, and timber stand improvement in the forest area that now includes the LFDP. These uses ceased 40-60 yr before the study, but their impacts could be differentiated by percent canopy cover seen in aerial photographs from 1936. Using these photographs, we defined four historic cover classes within the LFDP. These ranged from cover class 1, the least tree-covered area in 1936, to cover class 4, with the least intensive historic land use (selective logging and timber stand improvement). In 1989, cover class 1 had the lowest stem density and proportion of large stems, whereas cover class 4 had the highest basal area, species richness, and number of rare and endemic species. Ordination of tree species composition (89 species, 13 167 stems) produced arrays that primarily corresponded to the four cover classes (i.e., historic land uses). The ordination arrays corresponded secondarily to soil characteristics and topography. Natural disturbances (hurricanes, landslides, and local treefalls) affected tree composition, but these effects did not correlate with the major patterns of species distributions on the plot. Thus, it appears that forest development and natural disturbance have not masked the effects of historical land use in this tropical forest, and that past land use was the major influence on the patterns of tree composition in the plot in 1989. The least disturbed stand harbors more rare and endemic species, and such stands should be protected.

The potential for carbon sequestration through reforestation of abandoned tropical agricultural and pasture lands

Silver, W.L. et al. (2000) The potential for carbon sequestration
through reforestation of abandoned tropical agricultural and pasture
lands. Rest. Ecol. 8, 394–407

Approximately half of the tropical biome is in some stage of recovery from past human disturbance, most of which is in secondary forests growing on abandoned agricultural lands and pastures. Reforestation of these abandoned lands, both natural and managed, has been proposed as a means to help offset increasing carbon emissions to the atmosphere. In this paper we discuss the potential of these forests to serve as sinks for atmospheric carbon dioxide in aboveground biomass and soils. A review of literature data shows that aboveground biomass increases at a rate of 6.2 Mg ha−1 yr−1 during the first 20 years of succession, and at a rate of 2.9 Mg ha−1 yr−1 over the first 80 years of regrowth. During the first 20 years of regrowth, forests in wet life zones have the fastest rate of aboveground carbon accumulation with reforestation, followed by dry and moist forests. Soil carbon accumulated at a rate of 0.41 Mg ha−1yr−1 over a 100-year period, and at faster rates during the first 20 years (1.30 Mg carbon ha−1 yr−1). Past land use affects the rate of both above- and belowground carbon sequestration. Forests growing on abandoned agricultural land accumulate biomass faster than other past land uses, while soil carbon accumulates faster on sites that were cleared but not developed, and on pasture sites. Our results indicate that tropical reforestation has the potential to serve as a carbon offset mechanism both above- and belowground for at least 40 to 80 years, and possibly much longer. More research is needed to determine the potential for longer-term carbon sequestration for mitigation of atmospheric CO2 emissions.

Hurricane-induced nitrous oxide fluxes from a wet tropical forest

Erickson HE, Ayala G (2004) Hurricane-induced nitrous oxide
fluxes from a wet tropical forest. Global Change Biology, 10,

Hurricane activity is predicted to increase over the mid-Atlantic as global temperatures rise. Nitrous oxide (N2O), a greenhouse gas with a substantial source from tropical soils, may increase after hurricanes yet this effect has been insufficiently documented. On September 21, 1998, Hurricane Georges crossed Puerto Rico causing extensive defoliation. We used a before–after design to assess the effect of Georges on N2O emissions, and factors likely influencing N2O fluxes including soil inorganic nitrogen pools and soil water content in a humid tropical forest at El Verde, Puerto Rico. Emissions of N2O up to 7 months post-Georges ranged from 5.92 to 4.26 ng cm2 h1 and averaged five times greater than fluxes previously measured at the site. N2O emissions 27 months after the hurricane remained over two times greater than previously measured fluxes. Soil ammonium pools decreased after Georges and remained low. The first year after the hurricane, nitrate pools increased, but not significantly when compared against a single measurement made before the hurricane. Soil moisture and temperature did not differ significantly in the two sampling periods. These results suggest that hurricanes increase N2O fluxes in these forests by altering soil N transformations and the relative availabilities of inorganic nitrogen.
Syndicate content