Early successional woody plants facilitate and ferns inhibit forest development on Puerto Rican landslides

Walker, L.R., Landau, F.H., Velázquez, E., Shiels,
A.B. and Sparrow, A.D. (2010). Early successional
woody plants facilitate and ferns inhibit forest
development on Puerto Rican landslides. Journal
of Ecology 98, 625-35.

1. The experimental removal of early successional species can explain how plant communities change over time. 2. During a 7.3-year period, early successional woody species, scrambling ferns and tree ferns were removed from a total of 10 landslides in the Luquillo Experimental Forest in north-eastern Puerto Rico. 3. Early successional woody plants in combination with tree ferns decreased species richness and cover of forbs and increased richness of late-successional woody plants compared to removals, facilitating long-term forest development. 4. Dense stands of scrambling ferns decreased both forb and woody plant richness compared to removals, inhibiting forest development. 5. Stands of monospecific tree ferns initially increased woody plant richness compared to removals, but overall decreased woody plant richness and cover, inhibiting forest development. 6. Synthesis. Early successional species both facilitate and inhibit succession on tropical landslides, but detailed predictions of successional trajectories remain elusive and are influenced by stochastic processes including arrival order, the life-form of colonizing species and their competitive interactions.

Plant responses to simulated hurricane impacts in a subtropical wet forest, Puerto Rico

Shiels, Aaron B.; Zimmerman, Jess K.; García-Montiel, Diana C.; Jonckheere, Inge; Holm, Jennifer; Horton, David; Brokaw, Nicholas. 2010. Plant responses to simulated hurricane impacts in a subtropical wet forest, Puerto Rico. Journal of Ecology. doi: 10.1111/j.1365-2745.2010.01646.x.

1. We simulated two key components of severe hurricane disturbance, canopy openness and detritus deposition, to determine the independent and interactive effects of these components on woody plant recruitment and forest structure. 2. We increased canopy openness by trimming branches and added or subtracted canopy detritus in a factorial design. Plant responses were measured during the 4-year study, which followed at least 1 year of pre-manipulation monitoring. 3. The physical conditions of canopy openness and detritus deposition in our experiment resembled the responses to Hurricane Hugo, a severe category 4 hurricane that struck this forest in 1989. 4. Canopy detritus deposition killed existing woody seedlings and provided a mechanical barrier that suppressed seedling recruitment. The increase in understorey light caused by canopy trimming stimulated germination from the seed bank and increased seedling recruitment and density of pioneer species several hundred-fold when hurricane debris was absent. Many significant interactions between trimming and detritus deposition were evident from the manner in which seedling density, recruitment and mortality changed over time, and subsequently influenced the composition of woody stems (individuals ‡ 1 cmd.b.h.). 5. When the canopy was trimmed, stem densities increased> 2-fold and rates of recruitment into the stem size class increased> 25-fold. Trimming had no significant effect on stem mortality. The two dominant species that flourished following canopy trimming were the pioneer species Cecropia schreberiana and Psychotria berteriana. Deposition of canopy detritus had little effect on stems, although basal area increased slightly when detritus was added. There were no evident effects of the interactions between canopy trimming and detritus deposition on stems. 6. Synthesis. The separate and interactive effects of canopy openness and detritus deposition result in variable short-term trajectories of forest recovery. However, the short interval of increased canopy openness due to hurricane impacts and its influence on the recruitment of pioneer trees is the dominant factor that drives short-termrecovery and may alter long-term structure and composition of the forest.
Syndicate content