GROUND WATER OPERATIONAL MODEL YAUCO, PUERTO RICO

Abstract: 
A numerical groundwater model was constructed to simulate groundwater flow in the Yauco Alluvial Valley aquifer. The groundwater flow model was constructed to evaluate future management options, including the potential to increase aquifer firm yield through a conjunctive management of ground and surface water. The aquifer within the Yauco Valley consists of river alluvium deposited over the incised Juana Díaz formation and Ponce limestone. A finite-difference, numerical model was developed to simulate ground water flow in the Yauco Valley. The single-layer model encompasses the entire alluvial deposits of the valley which extends from the Yauco town to the Caribbean Sea. The model was calibrated to October 1960 and 1970 to 1974 water levels. Different management scenarios were modeled to analyze and determine how much water can be extracted from the aquifer and evaluate the conjunctive use potential. Results demonstrate that the aquifer could be subjected to a total extraction in the order of 4.6 to 4.8 mgd (1-1.25 mgd above current extractions) without reducing the water levels to a point that could produce saltwater intrusion. Simulations showed that groundwater extractions could be increased by 5 mgd to 6 mgd during the dry season (March-August) if artificial recharge is provided in the range of 1.3 mgd to 1.95 mgd on a year-around basis. This demonstrates that the potential exists to conjunctively use ground and surface water to increase aquifer yield