Hydrological Processes in a humid Tropical Rain Forest: A Combined Experimental and Modelling Approach

Schellekens, J. 2000. Hydrological processes in a humid tropical rain
forest: a combined experimental and modeling approach. Ph.D.
Thesis, Free University of Amsterdam, Amsterdam University
Press, 158 p.

Abstract: 
With populations growing explosively in the tropical parts of the world, and the per capita water demands increasing where living standards improve, optimisation of water resources is becoming increasingly important [Bonell et al., 1993]. Similarly, the strong demands for industrial wood (pulpwood, saw and veneer logs), fuelwood and charcoal, require the establishment of large areas of fast-growing plantation forests, often on land that is currently not forested [Evans, 1992; Brown et al., 1997]. Coupled with (i) the continued indiscriminate clearing of the world’s tropical forests [Jepma, 1995; Nepstad et al., 1999] which in many areas serve as the traditional supplier of high quality water; (ii) the associated deterioration of soil and water quality due to erosion and pollution [Oldeman, 1994], plus (iii) the possibility of gradually less dependable precipitation inputs and (in certain ‘maritime’ tropical areas away from the equator) an increasing frequency of devastating hurricanes due to ‘global change’ [Wasser and Harger, 1992], a sound understanding of the hydrological functioning of tropical forests is arguably even more important nowadays than ever before [cf. Bruijnzeel, 1990, 2000a]. Bruijnzeel and Abdul Rahim [1992] suggested that in a time of dwindling resources, additional forest hydrological research in the humid tropics could best be carried out at a limited number of carefully selected data-rich key locations that could be loosely joined together in a network that captures the environmental variability encountered in the humid tropics. Furthermore, Bruijnzeel [1993] and Bonell and Balek [1993] considered a catchment-based approach to offer the best framework for such research as this allows for the integration of hydrological, geomorphological, pedological and ecological observations in a spatial context, particularly if supplemented by process studies and physicallybased distributed modelling.