Phillips C.B., Scatena F.N. Reduced channel morphological response to urbanization in a flood-dominated humid tropical environment. Earth Surface Processes and Landforms. 2012. DOI: 10.1002/esp.3345
Abstract:
Urbanization through the addition of impervious cover can alter catchment hydrology, often resulting in increased peak
flows during floods. This phenomenon and the resulting impact on stream channel morphology is well documented in temperate
climatic regions, but not well documented in the humid tropics where urbanization is rapidly occurring. This study investigates the
long-term effects of urbanization on channel morphology in the humid sub-tropical region of Puerto Rico, an area characterized by
frequent high-magnitude flows, and steep coarse-grained rivers. Grain size, low-flow channel roughness, and the hydraulic geometry
of streams across a land-use gradient that ranges from pristine forest to high density urbanized catchments are compared. In areas that
have been urbanized for several decades changes in channel features were measurable, but were smaller than those reported for
comparable temperate streams. Decades of development has resulted in increased fine sediment and anthropogenic debris in urbanized
catchments. Materials of anthropogenic origin comprise an average of 6% of the bed material in streams with catchments with 15% or
greater impervious cover. At-a-station hydraulic geometry shows that velocity makes up a larger component of discharge for rural
channels, while depth contributes a larger component of discharge in urban catchments. The average bank-full cross-sectional area of
urbanized reaches was 1.5 times larger than comparable forested reaches, and less than the world average increase of 2.5. On average,
stream width at bank-full height did not change with urbanization while the world average increase is 1.5 times. Overall, this study
indicates that the morphologic changes that occur in response to urban runoff are less in channels that are already subject to frequent
large magnitude storms. Furthermore, this study suggests that developing regions in the humid tropics shouldn’t rely on temperate
analogues to determine the magnitude of impact of urbanization on stream morphology. Copyright © 2012 John Wiley & Sons, Ltd.