Riparian Nitrogen Dynamics in Two Geomorphologically Distinct Tropical Rain Forest Watersheds: Nitrous Oxide Fluxes

Riparian Nitrogen Dynamics in Two Geomorphologically Distinct Tropical Rain Forest Watersheds: Nitrous Oxide Fluxes
William B. Bowden, William H. McDowell, Clyde E. Asbury and Amy M. Finley
Biogeochemistry
Vol. 18, No. 2 (1992), pp. 77-99

Abstract: 
Fluxes of N<sub>2</sub>O at the soil surface, dissolved N<sub>2</sub>O in near-surface groundwater, and potential N<sub>2</sub>O production rates were measured across riparian catenas in two rain forest watersheds in Puerto Rico. In the Icacos watershed, mean N<sub>2</sub>O fluxes were highest at topographic breaks in the landscape (∼40-300 μg N<sub>2</sub>O-N m<sup>-2</sup> h<sup>-1</sup>). At other locations in the riparian zone and hillslope, fluxes were lower (≤ 2 μg N<sub>2</sub>O-N m<sup>-2</sup> h<sup>-1</sup>). This pattern of surface N<sub>2</sub>O fluxes was persistent. In the Bisley watershed, mean suface N<sub>2</sub>O fluxes were lower (<40 μg N<sub>2</sub>O-N m<sup>-2</sup> h<sup>-1</sup>) and no identifiable spatial or temporal pattern. Although the spatial patterns and intensities of N<sub>2</sub>O emissions differed between the two watersheds, surface soils from both sites had a high potential to reduce NO<sub>3</sub> to N<sub>2</sub>O (and perhaps N<sub>2</sub>). This potential declined sharply with depth as did soil %C, %N, and potential N-mineralization. Simple controls on denitrification (i.e. aeration, nitrate, and carbon) explained characteristics of potential N<sub>2</sub>O production in surface and deep soils from riparian and upslope locations. In the field, spatial patterns in these controlling variables were defined by geomorphological differences between the two watersheds, which then explained the spatial patterns of observed N<sub>2</sub>O flux.