Stream channel response to urbanization in the humid tropical region of NE Puerto Rico

Project Description: 

Key science question:
• How does stream channel morphology respond to the addition of impervious cover in a humid tropical region adjusted to frequent large storms?

Urbanization through the addition of impervious cover can alter catchment hydrology, often resulting in increased peak flows during floods. This phenomenon and the resulting impact on stream channel morphology is well documented in temperate climatic regions, but not well documented in the humid tropics where urbanization is rapidly occurring. This study investigates the long-term effects of urbanization on channel morphology in the humid sub-tropical region of Puerto Rico, an area characterized by frequent high-magnitude flows, and steep coarse-grained rivers. Grain size, low-flow channel roughness, and the hydraulic geometry of streams across a land-use gradient that ranges from pristine forest to high density urbanized catchments are compared. In areas that have been urbanized for several decades changes in channel features were measurable, but were smaller than those reported for comparable temperate streams. Decades of development has resulted in increased fine sediment and anthropogenic debris in urbanized catchments. Materials of anthropogenic origin comprise an average of 6% of the bed material in streams with catchments with 15% or greater impervious cover. At-a-station hydraulic geometry shows that velocity makes up a larger component of discharge for rural
channels, while depth contributes a larger component of discharge in urban catchments. The average bank-full cross-sectional area of urbanized reaches was 1.5 times larger than comparable forested reaches, and less than the world average increase of 2.5. On average, stream width at bank-full height did not change with urbanization while the world average increase is 1.5 times. Overall, this study indicates that the morphologic changes that occur in response to urban runoff are less in channels that are already subject to frequent large magnitude storms. Furthermore, this study suggests that developing regions in the humid tropics shouldn’t rely on temperate analogues to determine the magnitude of impact of urbanization on stream morphology.

Research Location: 
Core Area(s) and/or Keywords: 

Geomorphology, Urbanization, Streams

Source of Funding: 
NSF CZO Program, NSF LTER Program
References to Other Datasets: 
Cross sections, grain size, and longitudinal measurements for 14 gaged streams in the NE PR region. Cross sections, grain size, longitudinal profiles, and low flow velocity for 42 field sites across a gradient of land use in the NE region of PR
Relevant Publications: 

Pike AS, Scatena FN. 2010. Riparian indicators of flow frequency in a tropical montane stream network. Journal of Hydrology 382 : 72-87. DOI: 10.1016/j.jhydrol.2009.12.019

Phillips CB, and Scatena FN. 2012. Reduced channel morphological response to urbanization in a flood-dominated humid tropical environment. Earth Surface Processes and Landforms. DOI: 10.1002/esp.3345. http://onlinelibrary.wiley.com/doi/10.1002/esp.3345/full

Dissemination: 
unrestricted
Images: 
Contact Information
Person(s) Completing This Form: 
Colin Phillips
Investigators: 
Colin Phillips, Fred Scatena, Douglas Jerolmack