Integrating geochemical tracers with physics-based modeling to understand Rio Icacos storm response

Andy Kurtz
Festo Lugolobi
Guido Salvucci

Boston University

Funding from
NSF Hydrology Program and CZEN
Rio Icacos Study Area

326 ha monolithogic catchment
50 Ma quartz diorite
4200mm annual rainfall
22° C mean annual temp

Research Approach:
- Understand tracer behavior in soils, porewaters
- Link tracer to stream chemistry, infer solute sources and flowpaths
- Test inferences against simulations (physics-based hydrology model)

Critical Zone Exploration Network
Geochemical and Isotopic Trace

Germanium

Ge substitutes for Si in minerals, behaves like Si in solution.

Silicon tracer:

Ge/Si ratios in water reflect fractionation by weathering and biological cycling.
Streamwater Ge/Si ratios reflect mixing

![Graph showing the relationship between Ge/Si ratios and 1/Si](image-url)
Streamwater Ge/Si ratios reflect mixing
Streamwater Ge/Si ratios reflect mixing
Example Event: 6-24-2006 Storm

Precip. = 3.3 cm in ~2 hours
Example Event: 6-24-2006 Storm

![Graph showing Ge/Si (µmol/mol) vs. Discharge (m³/sec)]

- **Falling**
- **Rising**
Example Event: 6-24-2006 Storm

Three component mixing

Fraction

Time

Error bars reflect propagation of analytical and endmember uncertainty
Hydrologic Model \textit{InHM} VanderKwaak and Loague

Physics-based 3-D integrated subsurface-surface hydrologic model

- Surface
- Porous Media
- Macropore

FLOW and TRANSPORT

Parameterized with hydrometric and physical data from site

(soil characteristic tables, hydraulic conductivity, porosity)

Finite element grid from DEM
Soil, saprolite, bedrock layers
Model Performance: July-August 2007

“flashiness” requires dominance of overland flow
TDR data: hillslope site

Model simulation: hillslope site

Model Performance: July-August 2007
Model Tracers

Synthetic hydrograph separation

6-24-2006 Storm

Diagram showing the separation of total discharge, event water, and pre-event water over time. The Y-axis represents the fraction, while the X-axis represents time (hours). The graph helps in understanding the timing and proportion of different water components in the hydrograph.
June Event: Surface flow velocity (m/s) at max Q
June Event: Surface “Event” tracer at max Q
June Event: Porous Media “Pre-Event” tracer at max Q
Conclusions

Geochemistry

- Streamwater Ge/Si data indicate three components to stormflow
- Shallow/overland flow component dominates most of hydrograph
- A soil matrix component becomes significant at the end of hydrograph recession

Model

- Model indicates catchment “flashiness” controlled by (Hortonian) overland flow rather than macropores
- Application of model tracers indicate dominance of “event water” delivered by overland flow early in event, and displaced “pre-event water” during hydrograph recession.

Model serves as a useful test of geochemical inferences, some consistency, but may be failing to capture some...
Oxygen Isotopes - trace ‘new’ vs. ‘old’ water

Discharge (ft³/sec)

-2.5
-2.7
-2.9
-3.1
-3.3
-3.5

δ¹⁸O(‰)

Rising Limb
Falling Limb

Baseflow = -2.7

Rain (6-24-06 event) = -3.3
Isotope Hydrograph Separation

% Contribution

Time (hours)

Falling Limb

Pre-event water

Event water
Solute sources from a soil perspective
Both of these tracers have paleoceanographic applications as well.
87Sr/86Sr ratios reflect age and Rb/Sr ratio of rocks and minerals

Cation tracer:

Sr isotope ratios in water reflect source of cations

(mineral weathering, ion exchange, weathering)
Ge/Si Geochemistry "pseudo-isotopic" behavior

<table>
<thead>
<tr>
<th>Group</th>
<th>IVB</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>C</td>
</tr>
<tr>
<td>14</td>
<td>Si</td>
</tr>
<tr>
<td>32</td>
<td>Ge</td>
</tr>
<tr>
<td>50</td>
<td>Sn</td>
</tr>
<tr>
<td>82</td>
<td>Pb</td>
</tr>
</tbody>
</table>

Ge substitutes for Si in the silicate lattice (Goldschmidt's “camouflage”)

1 to 5 atoms of Ge per million silicon atoms
Ge/Si Geochemistry "pseudo-isotopic" behavior

$pK_{\text{dis}}^{Ge} = 9.3$
$pK_{\text{dis}}^{Si} = 9.8$
Model of Ge/Si fractionation during incongruent silicate weathering

after Murnane and Stallard, 1990; Froelich et al., 1992
Ge/Si fractionation in synthetic allophane

- 52 ppm Si, 55 ppm Al
 - Ge/Si = 1.0 µmol/mol

NaOH titration, 5 days @ 90°C

- 24 ppm Si, 1.6 ppm Al
 - Ge/Si = 0.5 µmol/mol

- 52 ppm Si, 55 ppm Al
 - Ge/Si = 1.3 µmol/mol

Neoformed allophane
Soil solids
Perspective
Luquillo Ridgetop Saprolite Core Profiles

Weathering profiles aren’t like sediment cores...
Conveyor belt goes UP
(landscape eroding 25-50 m/my)
Hillslope Soil Profile

40 cm
On Ridgetops, this saprolite-bedrock contact is at 800cm depth
Solid-phase Ge/Si ratios (μmol/mol)

Opal Phytoliths: 0.1 to 0.5

Soil = 2.5

Saprolite = 2.8 to 3.3

Regolith Minerals
Kaolinite = 5.9
Altered Biotite = 5.3
Quartz = 0.5

Primary Minerals
Hornblende = 6.6
Biotite = 5.5
Plagioclase = 1.5
Quartz = 0.5
“Immobile Element” Mass Balance Framework

Fractional net loss (or gain) of a mobile element j (e.g. Si) calculated relative to immobile element i (Nb, Zr)

$$
\tau_{j, w} = \left(\frac{C_{j, w}}{C_{j, p}} \times \frac{C_{i, p}}{C_{i, w}} \right) - 1
$$

Positive tau = gain of mobile element

Negative tau = loss of mobile element
Solid-phase Ge/Si ratios (µmol/mol)

Weathering Ge/Si Fractionations

\(\tau_{\text{Si}} = 0.6 \)
\(\tau_{\text{Si}} = 0.4 \)

Soil
\(\tau_{\text{Si}} = 2.5 \)

Saprolite
\(\tau_{\text{Si}} = 2.8 \) to 3.3

Quartz Diorite
\(\tau_{\text{Si}} = 2.0 \)

Weathering

- Biotite \(\rightarrow \) Kaolinite and Kaolinite \(\rightarrow \) Solution
- Plagioclase \(\rightarrow \) Kaolinite

Ge/Si soln = 3.7
Ge/Si soln = 0.4
Ceramic-cup pressure-vacuum water samplers (lysimeters)
 Nested Lysimeters in deep saprolite
15cm to >800cm

Ridgetop Site (LG-1)
Soil and Saprolite Porewaters \textit{Ridgetop Site LG-1} (WEBB project suction lysimeters)

Predictions

\[\text{Ge/Si}_{\text{soln}} = 3.7 \]

\[\text{Ge/Si}_{\text{soln}} = 0.4 \]

Not Seeing 0.4 here…
“Landslide Water”

\[\text{Si} = 340 \, \mu\text{mol/L} \]

\[\text{Ge/Si} = 0.3 \, \mu\text{mol/mol} \]
Stream Perspective

Rio Icacos at Flood Stage, Nov ‘06
USGS Stream Gauge
Silica

![Graph showing Silica concentration against discharge (ft³/sec)]

- **Baseflow**
- **Rising Limb**
- **Falling Limb**
1) Define “groundwater” and “soilwater” endmembers (Si concentration and Ge/Si) based on data

2) Use Ge/Si (“R”) to partition Si flux into “groundwater” and soilwater components

\[f_g = \frac{R_t - R_s}{R_g - R_s} \]

3) Multiply Si fluxes by endmember Si concentrations to determine water flux of components

4) Close water balance by adding “Si free water”
Hydrograph Separation Based on Ge/Si and [Si]

- **Rising**
- **Falling Limb**

% Contribution
- Soil water
- Groundwater
- Si-free water

Time (hours)

0 2 4 6 8 10
Hydrograph Separations Based on Ge/Si and [Si]

![Graph of hydrograph separations showing time (hours) and percentage contribution of Soil water, Si-free water, and Groundwater in the Falling Limb phase.](Image)
"Storm Flow" Conditions: Subsurface stormflow dominates: Soils contribute to solute load
Dilute solutions with high Ge/Si (\&^{87}\text{Sr}/^{86}\text{Sr})
Carried by “New Water”

"Base Flow" Conditions: Groundwater discharge maintains streamflow. Solute load reflects *incongruent weathering of primary silicates*
Concentrated solutions with low Ge/Si, (\&^{87}\text{Sr}/^{86}\text{Sr})
Carried by “Old Water”
Hydrologic Model

Physics-based 3-D integrated subsurface-surface hydrologic model

InHM
VanderKwaak and Loague

Porosity

porosity

0.32
0.3
0.28
0.26
0.24
0.22
0.2
0.18
0.16
0.14
0.12
0.1
0.08
0.06
Hydrologic Model

Physics-based 3-D integrated subsurface-surface hydrologic model

InHM
VanderKwaak and Loague

Total Hydraulic Head
Hydrologic Model

Physics-based 3-D integrated subsurface-surface hydrologic model

InHM
VanderKwaak and Loague

Saturation
Hydrologic Model

Physics-based 3-D integrated subsurface-surface hydrologic model

InHM
VanderKwaak and Loague

Porous media flow velocity (m/s)
Hydrologic Model

Physics-based 3-D integrated subsurface-surface hydrologic model

InHM
VanderKwaak and Loague

Model Slice - Flow Velocity
Hydrologic Model

Physics-based 3-D integrated subsurface-surface hydrologic model

InHM
VanderKwaak and Loague

Model Slice - Flow Velocity
Hydrologic Model

Synthetic storm hydrograph
Hydraulic Conductivity determined by Guelph Permeameter

Conductivity (cm/min)

Depth (cm)

Hill Slope

Stormflow zone?