Chemists Develop Motion Capture-like Technology for Tracking Protein Shape

In many modern animated movies, the trick to achieving realistic movements for individual characters and objects lies in motion-capture technology. This process often involves someone wearing a tracking suit covered in small, colored balls while a camera captures the position of those colored balls, which is then used to represent how the person is moving.

Researchers are developing a similar technology to obtain atomic-resolution “movies” that track how proteins fold and change shape. To generate these movies, the scientists label the protein with probes at many positions and observe the movement of those labels. The fluorescence data on the relative positions of the probes can then be used to construct computational models of the protein structure in atomic detail. This research could lead to improvements in drugs used to treat neurodegenerative diseases, as well as new methods of imaging that could lead to their earlier detection.

The research was multi-disciplinary effort led by E. James Petersson, an associate professor of chemistry, and graduate student Jack Ferrie. Elizabeth Rhoades and Zahra Fakhraai, both associate professors of chemistry, as well as Abhinav Nath of the University of Washington, Seattle; Penn undergraduate Jimin Yoon; postdoctoral fellow Conor Haney; and graduate students Buyan Pan and Yi-Chih Lin also contributed to the study. The paper was published in Biophysical Journal.

“One of the big fundamental questions in biochemistry is how proteins fold into a certain shape,” says Petersson, “and this is dictated by the sequence of amino acids in the protein. The information in all of the interactions of the amino acid side chains somehow leads to it folding into a proper shape.”the drug, allow the protein to change shape, make fluorescence measurements and then take those back to the computational modeling so we can actually see the structural effect of these drugs. Hopefully this will lead to more of a rational understanding so that better second and third generation drugs can be made.”

Click here to read the full story.

Arts & Sciences News

Azuma and Hart Named Roy F. and Jeannette P. Nichols Professors of American History

Eiichiro Azuma specializes in Asian American and transpacific history, while Emma Hart teaches and researches the history of early North America, the Atlantic World, and early modern Britain between 1500 and 1800.

View Article >
Arts & Sciences Students Honored during 37th Annual Women of Color Day

Sade Taiwo, C’25, and Kyndall Nicholas, a Ph.D. candidate in neuroscience, were honored for their work.

View Article >
Nine College Students and Alums Named Thouron Scholars; Will Pursue Graduate Studies in the U.K.

The Scholars are six seniors and three recent graduates whose majors range from neuroscience to communication.

View Article >
Irma Elo Named Tamsen and Michael Brown Presidential Professor in Sociology

Elo’s main research interests center on inequalities in health and mortality across the life course and demographic estimation of mortality. In recent years, she has extended her research to include predictors of cognition in high-, middle-, and low-income countries.

View Article >
Julia Hartmann Named Fay R. and Eugene L. Langberg Professor in Mathematics

She specializes in algebra and arithmetic geometry, a newer field that applies techniques from algebraic geometry to solve problems in number theory and co-developed the method of field patching.

View Article >
Holger Sieg Named Baird Term Professor of Economics

Sieg focuses his research on public and urban economics, as well as the political economy of state and local governments.

View Article >