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Summary

Previous work using functional magnetic resonance

imaging has shown that the identities of isolated objects
viewed by human subjects can be extracted from distributed

patterns of brain activity [1]. Outside the laboratory,
however, objects almost never appear in isolation; thus it

is important to understand how multiple simultaneously
occurring objects are encoded by the visual system. We

used multivoxel pattern analysis to examine this issue,
testing whether activity patterns in the lateral occipital

complex (LOC) evoked by object pairs showed an ordered
relationship to patterns evoked by their constituent objects.

Applying a searchlight analysis [2] to identify voxels with the
highest signal-to-noise ratios, we found that responses to

object pairs within these informative voxels were well pre-
dicted by the averages of responses to their constituent

objects. Consistent with this result, we were able to classify
object pairs by using synthetic patterns created by aver-

aging single-object patterns. These results indicate that

the representation of multiple objects in LOC is governed
by a response normalization mechanism similar to that

reported in visual areas of several nonhuman species
[3–6]. They also suggest a population coding scheme that

preserves information about multiple objects under condi-
tions of distributed attention, facilitating fast object and

scene recognition during natural vision.

Results

Single- and Paired-Object Classification
In a block design, subjects viewed single objects in four cate-
gories (shoes, chairs, cars, or brushes), as well as object pairs
containing objects from two of these categories. Several
previous studies have shown that information about the cate-
gory of viewed objects is present in distributed patterns of
activity measured with functional magnetic resonance imaging
(fMRI) [1, 7] and we first wished to replicate this finding as
a means of validating the quality of our data. Figure 1A shows
classification performance for single objects within standard
functionally defined regions of interest (ROIs) (see Supple-
mental Experimental Procedures available online). Consistent
with previous work, classification accuracy was significantly
above chance in lateral occipital complex [LOC; two-tailed t
test, t(11) = 4.95, p = 0.0004]. Classification accuracy was
also above chance in the parahippocampal place area [PPA;
t(11) = 2.77, p = 0.018] but not in the fusiform face area
*Correspondence: macevoy@gmail.com
[FFA; t(11) = 1.56, p = 0.15] or a nonbrain ROI [t(11) = 0.13,
p = 0.89]. (See Supplemental Results for additional classifica-
tion analyses, including the impact of changes in stimulus
position upon accuracy.)

We next assessed the accuracy of the classifier in distin-
guishing among object pairs (Figure 1B). For classification
purposes, each unique object pair was treated as a distinct
stimulus (e.g., chair+brush and car+brush were treated as
different stimulus categories), producing six pairs from the
pool of four object categories. Classification accuracy for pairs
was significantly above chance in LOC [t(11) = 4.68, p = 0.0007]
but not in the PPA [t(11) = 1.04, p = 0.31], FFA [t(11) = 1.68, p =
0.12], or the nonbrain ROI [t(11) = 0.86, p = 0.40]. These results,
along with whole-brain maps of local classification accuracy
(Figure S1), indicate that activity patterns in LOC reliably
discriminate among object pairs as well as among single
objects.

Relationship of Paired-Object to Single-Object Responses

Do LOC patterns evoked by pairs bear any relationship to
patterns evoked by their constituent objects? To answer this
question, we first assessed the ability of a linear model to
explain responses to object pairs [3, 5]. For each voxel, we per-
formed a linear regression of the responses to pairs against the
sum of responses to their constituent objects. This procedure
is illustrated in Figure 2A for a voxel with a strong linear rela-
tionship between responses to pairs and to single objects
(R2 = 0.96).

Many voxels had much lower R2 values, which could have
reflected the impact of noise on a linear relationship, a nonlinear
relationship, or no relationship at all. To differentiate between
these possibilities, we used a searchlight classification tech-
nique to identify local voxel clusters that carried information
about stimulus identity (see Experimental Procedures). We
reasoned that searchlight clusters that most accurately differ-
entiated among object pairs would contain voxels that were the
most instructive of the ‘‘true’’ relationship between responses
to pairs and constituent single objects. Therefore, if a linear
model provides a good description of this relationship, we
would expect to see R2 increase as a function of searchlight
classification accuracy. (See Supplemental Results and
Discussion for a detailed treatment of this approach.)

Figure 2B plots median R2 within each LOC searchlight
cluster as a function of cluster classification rank for one
subject. (We used classification rank, rather than raw classifi-
cation accuracy, as the independent variable in order to facili-
tate averaging data across subjects, among whom overall
classification accuracy varied.) For this subject, there was
a clear trend toward higher R2 values as classification accuracy
improved. This relationship was also apparent in R2 averaged
across subjects (Figure 2C). To quantify this trend, we
computed correlation coefficients between R2 and classifica-
tion rank within LOC for each subject. All subjects had positive
correlation coefficients and all but two were significantly
greater than zero at a p < 0.05 threshold. Across subjects,
mean correlation coefficients were significantly above zero
[mean = 0.33, t(11) = 6.32, p = 0.00006]. From the positive rela-
tionship between R2 and classification rank, we infer that
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Figure 2. Relationship between Single- and Paired-Object Responses in

LOC

(A) Responses of a single voxel to each of the six object pairs, plotted

against the responses to the sum of responses evoked by each pair’s

constituent objects. For this voxel, pair responses showed a tight linear rela-

tionship (R2 = 0.96) to single-object responses.

(B) Median R2 within LOC searchlight clusters plotted as a function of each

cluster’s rank in classifying object pairs, for one subject. Data were

smoothed with a 20-bin mean filter. R2 increased with classification rank,

suggesting that a linear model provides a good prediction of pair responses

as noise is reduced.

(C) Same as (B), averaged across all subjects. Missing data for subjects with

fewer than 1000 searchlights were ignored when the computing the average

curve. Shaded regions fall within SEM.

(D) Median slope within searchlight clusters for one subject plotted as

function of searchlight accuracy rank, smoothed with a 20 bin mean filter.

Regression slopes fell close to 0.5 for the highest ranked searchlight

clusters.

(E) Same data as in (D), averaged across subjects, with the same conven-

tions as in (C).

Figure 1. Multivoxel Pattern Classification Accuracies for Single Objects

and Object Pairs

(A) Classification accuracy was significantly above chance (0.5) for the four

single-object categories in both LOC and the PPA.

(B) Classification accuracy for the six possible category pairs was signifi-

cantly above chance only in LOC.

Patterns were averaged across stimulus position (singles) or configuration

(pairs) prior to classification. Dark-hued bars represent classification accu-

racy based on all voxels within each ROI, and lighter-hued bars represent

accuracy for ROIs matched in voxel count to the smallest ROI for each

subject. Asterisks denote significance of difference from chance perfor-

mance (*p < 0.05; ***p < 0.001). Data are for 12 subjects. Error bars represent

standard error of the mean (SEM).
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responses to object pairs are well approximated by a linear
combination of responses to single objects. (Similar analyses
for the PPA, FFA, and retinotopic cortex can be found in the
Supplemental Results.) A permutation-based control analysis
demonstrated that this relationship was not a trivial outcome
of voxel selection (i.e., ‘‘peeking;’’ see Supplemental Results).

Although R2 captures the quality of a linear relationship, it
does not specify its parameters. To understand whether voxels
in LOC obeyed any specific linear relationship between pair
and single-object responses, we examined the slope terms re-
turned by the linear regressions described above. Figure 2D
illustrates the relationship between classification rank and
median slope for each searchlight position for one subject,
and Figure 2E plots the same relationship averaged over all
subjects. As with R2, median searchlight slopes increased as
classification accuracy improved. More importantly, slope
values among high performing clusters fell close to 0.5, indi-
cating that pair responses were approximately the average of
responses to their constituent single objects. This result
echoes a previous finding by Zoccolan et al. [5] that neuronal
responses in macaque inferotemporal (IT) cortex to pairs of
objects are well predicted by the average of the single-object
responses. Although the terminal slope value in Figure 2E
was 0.62, this value was not significantly different from 0.5.
Terminal slope values for LOC were fairly consistent across
subjects, with 8 of 12 subjects’ values falling between 0.35
and 0.65. Furthermore, analysis of the distribution of residual
error between actual pair responses and regression lines indi-
cated that these results are more consistent pair responses
that were simple, rather than weighted, averages of responses
to constituent single objects (see Supplemental Results).

Linear regression returns an intercept term in addition to
slope, which was not significantly different from zero in the
top 30 LOC searchlight clusters [t(11) = 0.76, p = 0.45]. Thus,
the responses to object pairs were truly the averages of
responses to single objects, without any additional offset
reflecting systematic differences in overall activity evoked by
pairs and single objects.
Classification Using Synthetic Patterns
The preceding analyses suggest that we may approximate the
responses of LOC voxels to object pairs as the averages of
responses evoked by their constituent objects. To test this
assertion, we repeated the pair pattern classification proce-
dure but replaced pair patterns in one half of the data with
‘‘synthetic’’ patterns that were the averages of patterns



Figure 3. Synthetic Patterns Decode Patterns Evoked by Object Pairs in

LOC

(A) Performance in classifying patterns evoked by pairs using actual pair

patterns (Pair), synthetic patterns derived the means of single-objects

patterns (Mean), or a MAX-function combination of single-object patterns

(Max). Although classification accuracy for the mean predictor was not as

high as for actual pairs, it was significantly higher than accuracy for the

nonlinear MAX predictor.

(B) Performance for classifying single-object patterns (Sing.) was signifi-

cantly reduced when a second, cluttering object appeared simultaneously

(Clut.). A large portion of this clutter cost was recovered by assuming that

pair patterns were the average of their component object patterns and by

linearly decomposing responses to pairs accordingly (Recov.). Patterns

included all voxels that fell within the top 30 clusters ranked in terms of

pair classification rank. Across subjects, this corresponded to an average

of 154 voxels. Error bars represent SEM.
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evoked by the corresponding single objects. Patterns were
limited to voxels that fell within the 30 highest performing
searchlights in terms of pair classification, which typically af-
forded the highest average classification performance across
subjects (Figure S4). It is critical to note that although these
voxels were selected on the basis of high pair classification
in their searchlights, this criterion was completely independent
of the responses to single objects that were used to construct
synthetic patterns.

Classification accuracies using synthetic patterns are
shown in Figure 3A. At a rate well above chance [t(11) = 8.54,
p < 0.00001], the classifier was able to correctly identify
patterns evoked by object pairs based on comparison to
synthetic response patterns derived by averaging the single-
object responses within each voxel. Although classification
based on these synthetic patterns was not as accurate as clas-
sification based on actual pair patterns, it was significantly
more accurate [t(11) = 5.45, p = 0.0002] than classification
based on a set of ‘‘MAX’’ function synthetic patterns generated
by taking the higher of each voxel’s responses to the two
single objects comprising each pair [8]. This is consistent
with the idea that pair responses reflect linear rather than
nonlinear combinations of single-object responses.

Our ability to classify pairs from single-object patterns
suggests that inverting the operation should allow us to
decode the identities of single objects from the pattern evoked
by a pair. Reddy and Kanwisher [7] found that classification
accuracy for single objects was markedly degraded in LOC
when a second object was present. The origin and nature of
this ‘‘clutter cost’’ was unclear, however. Was information
about the identity of objects actually lost? Or did the ‘‘cost’’
simply reflect the joint representation of both objects? Under
the second scenario, we should be able to recoup clutter costs
through appropriate decoding of patterns evoked by pairs.

We first assessed the impact of clutter in our own data by
measuring classification accuracy for single objects within
pairs. A correct classification decision was recorded when
the Euclidean distance between the pattern evoked by a pair
and the pattern evoked by one of its component objects (the
‘‘target’’ object for the purposes of classification only) was
less than the distance between the pair pattern and the pattern
for a comparison object not in the pair. Consistent with Reddy
and Kanwisher [7], accuracy for single objects in pairs was
significantly lower than accuracy for single objects by them-
selves (Figure 3B) in LOC [t(11) = 4.27, p = 0.0013], reflecting
a substantial clutter cost.

To recover this clutter cost, we assumed that patterns
evoked by object pairs were the averages of patterns evoked
by their constituent objects. Accordingly, to extract the
pattern evoked by a target object from a pair response, we
subtracted a half-scaled version of the pattern evoked by
the nontarget object and multiplied the resulting pattern by
two. Applying this treatment produced a significant improve-
ment in classification [Figure 3B; t(11) = 4.02, p = 0.002].
Linear decoding via this approach recovered an average of
48% of clutter costs associated with the presence of a second
object. This result confirms the claim that information about
each individual object is embedded in patterns evoked by
object pairs.

Discussion

The principal finding of this study is that under conditions of
distributed attention, voxelwise patterns of activity in object-
selective cortex evoked by pairs of objects are the average
of the patterns evoked by the individual component objects.
Consistent with this result, pair patterns could be decoded
with high accuracy by reference to synthetic patterns gener-
ated by averaging the single-object responses. Conversely,
subtraction of an appropriately-scaled version of the voxel
pattern evoked by one object of a pair recovered the pattern
evoked by the second object.

This work builds on and extends two previous findings. First,
Zoccolan et al. [5] demonstrated that responses of object-
selective neurons of macaque area IT to pairs of objects
were precisely predicted by the average of responses to their
constituent objects. Our results demonstrate that a similar
averaging rule applies to human LOC. Second, Reddy and
Kanwisher [7] demonstrated a clutter cost for classification
of single, focally attended objects when a second, unattended
stimulus was present. Here we demonstrate that when the two
objects are equally attended, a substantial portion of this cost
for one object can be recouped if the response pattern to the
second object is known.

These results potentially provide important insights into how
visual recognition might proceed in the real world. The fact that
objects in natural scenes almost always appear amidst other
objects presents both a challenge and an opportunity for the
visual system. The challenge is to identify single objects
even when they are surrounded by the clutter of other stimuli.
Attentional mechanisms might help solve this problem by
boosting up the neural response to attended objects while
suppressing the neural response to unattended objects
[9–11]. However, this suppression of unattended object
response can potentially negate an important informational
opportunity. Specifically, the multiple objects within the scene
might, if considered together, convey information about the
‘‘gist’’ or ‘‘context’’ of the scene [12–15]. Behavioral studies
indicate that humans can indeed extract this gist information
very rapidly [12, 16]; furthermore, observers can report the
identities of objects within a scene even after very brief
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presentation times that are unlikely to permit attention to be
moved serially from object to object [17]. Our results suggest
a way in which the visual system might accomplish this feat.
In particular, if the pattern evoked by a multiple-object scene
is linearly related to the patterns evoked by its constituent
objects, then the gist might correspond simply to an initial
hypothesis about the set of objects contributing to this overall
pattern and a judgment about the category of scene that is
most likely to contain such objects. Indeed, if there is a lawful
relationship between the representations of a whole scene and
of its component objects, then the same neural system can be
use to represent both.

This reasoning explains why it would be advantageous for
the visual system to maintain a linear relationship between
single- and multiple-object responses, but it does not explain
why the voxel patterns evoked by pairs resemble the average
of single-object patterns. In its adherence to the mean, LOC
appears to obey rules similar to those that have been
described previously in a variety of visual areas in nonhuman
species [3, 4, 6, 18–20] and which have traditionally been
explained as an outcome of competition between stimuli for
limited neural bandwidth [10, 11, 19, 21]. Our results suggest
an alternative framing of this phenomenon in which response
averaging reflects a normalization process that actively
supports the coding of multiple simultaneous objects by
avoiding the problems presented by saturation of neural
responses [22]. Because individual neurons have finite firing
rates, pure summation of responses to multiple objects runs
the risk of driving some neurons to saturation, particularly
those that respond vigorously to both objects. Once this
happens, the population response to a pair of objects is no
longer a linear combination of the patterns evoked by each
object by itself and information about the identity of each
object is lost. By scaling population responses by the number
of stimuli present, normalization helps avoid this problem by
ensuring that response saturation cannot be reached.

The presence of multistimulus normalization in LOC might
also provide a window into its functional organization. When-
ever response normalization has been found in nonhuman
visual areas, such as with multiple oriented contours in V1,
V2, and V4 [3, 4, 18, 19, 23], directions of motion in middle
temporal and medial superior temporal cortex [6, 20], or shape
in IT [5], the simultaneously presented stimuli have differed
along some dimension that is ‘‘mapped’’ across the surface
of the area under study (i.e., the individual stimuli presented
by themselves activate spatially distinct clusters of neurons
[24–27]). We speculate that this sort of mosaic-like organiza-
tion might be a prerequisite to multistimulus normalization. If
so, our results provide additional evidence that LOC neurons
are clustered according to shape or category. (Indeed, such
functional clustering might be necessary for multivoxel pattern
analyses to work in the first place [28, 29].)

Finally, our data revealed two additional novel and some-
what surprising phenomena. First, the LOC territory that best
encoded object pairs was largely identical to the LOC territory
that best encoded single objects (Figure S1). In contrast, the
PPA did not encode object pairs as reliably as LOC even
though it did encode information about single objects. These
findings are consistent with previous claims that LOC rather
than the PPA is the primary region involved in encoding object
identity information, even when more than one object is
present in a scene [30]. Second, LOC response patterns did
not distinguish between different spatial configurations of
a pair (i.e., shoe over brush was indistinguishable from brush
over shoe). This suggests that when attention is distributed
evenly across a scene, object identity is encoded indepen-
dently of object location in the ventral stream [31].

Experimental Procedures

Stimulus and Task

Stimuli were 60 photographic images (1.7� square) of common objects from

four categories (brushes, cars, chairs, and shoes) with all background

elements removed. Stimuli were presented in 15 s blocks (see Supplemental

Experimental Procedures). In single-object blocks, 15 exemplars from the

same object category were presented one at a time at a single screen posi-

tion that was centered either 1.7� above or below the fixation point. In

paired-object blocks, 15 exemplars from two categories (30 in total) were

presented two at a time, with exemplars from one category appearing in

the top screen position and exemplars from the other category appearing

in the bottom screen position. Within each scan run, each object category

was presented twice in the single-object condition (once in the upper screen

position and once in the lower screen position) and each category pairing

was shown twice (corresponding to the two possible spatial configurations;

e.g., top brush/bottom chair and top chair/bottom brush).

To ensure that attention was paid equally to all objects, we required

subjects (n = 12) to perform a one-back repetition detection task while main-

taining central fixation. In paired-object blocks the repetition could occur at

either stimulus location, forcing subjects to attend to both.

Data Analysis

Following standard preprocessing, fMRI data were passed to a general

linear model implemented in VoxBo, from which voxelwise beta values

associated with each stimulus condition were extracted (see Supplemental

Experimental Procedures). Multivoxel pattern classification was imple-

mented with custom code written in MATLAB and using an algorithm similar

to Haxby et al. [1]. In brief, response patterns were extracted for each ROI

from each of the six experimental scans. Data were then divided into halves

(e.g., even runs versus odd runs) and the patterns within each half were

averaged. A ‘‘cocktail’’ mean pattern (consisting of the average pattern

across all stimuli) was calculated separately for each half of the data and

then subtracted from each of the individual patterns before classification.

Separate cocktails were computed for single objects and paired objects.

No pattern normalization was applied at any point.

Pattern classification proceeded through a series of pairwise compari-

sons between stimulus conditions. Correct classification decisions were

recorded when the Euclidean distance between the patterns evoked by

condition A in opposite halves of the data was shorter than between condi-

tion A and condition B in opposite halves of the data. This procedure was

repeated for every possible stimulus pairing, and correct decisions were

accumulated across every possible binary split of the six scan runs.

Additional analysis showed that the Euclidean distance metric produced

classification accuracies similar to a correlation-based classifier [1].

Searchlight voxel selection [2] was implemented with custom MATLAB

code. For each voxel, we defined a spherical mask that included all other

voxels within a 5 mm radius. Searchlight clusters near the cortical surface

were truncated to ensure that only voxels within the brain were included.

Similarly, when searchlights were used on predefined ROIs, searchlight

masks were truncated where necessary so that only voxels within the ROI

were included.

Supplemental Data

Supplemental Data include Supplemental Results, Supplemental Discus-

sion, Supplemental Experimental Procedures, and four figures and can be

found with this article online at http://www.cell.com/current-biology/

supplemental/S0960-9822(09)00980-4.
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Supplemental Experimental Procedures 

Subjects 
 
     Twelve subjects (5 female, aged 19 to 30 years) with normal or corrected-to-normal 
vision were recruited from the University of Pennsylvania community and gave written 
informed consent in compliance with procedures approved by the University of 
Pennsylvania Institutional Review Board.  Subjects were paid for their participation.  
An additional subject was also scanned, but was excluded from the study prior to data 
analysis because of excessive head motion.   
 
MRI acquisition  
 
     Scans were performed at the Center for Functional Neuroimaging at the University 
of Pennsylvania on a 3T Siemens Trio scanner equipped with a Siemens body coil and 
an eight-channel multiple-array Nova Medical head coil.  Structural T1* weighted 
images for anatomical localization were acquired using a 3D MPRAGE pulse 
sequences (TR = 1620 ms, TE = 3 ms, TI = 950 ms, voxel size = 0.9766 x 0.9766 x 
1mm, matrix size = 192 x 256 x 160).  T2* weighted scans sensitive to blood 
oxygenation level-dependent (BOLD) contrasts were acquired using a gradient-echo 
echo-planar pulse sequence (TR = 3000ms, TE = 30ms, voxel size = 3x3x3mm, matrix 
size = 64 x 64 x 45).  Visual stimuli were rear projected onto a mylar screen at the head 
end of the scanner bore with an Epson 8100 3-LCD projector equipped with a Buhl 
long-throw lens and viewed through a mirror affixed to the head coil.  The entire 
projected field subtended 22.9 x 17.4° and was viewed at 1024 x 768 pixel resolution.     
     The scanning session for each subject consisted of six experimental scans and two 
functional localizer scans.  Experimental scans were 6 minutes 30 seconds in length, 
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and were divided into 20 18-second stimulus blocks, with additional 15-second fixation 
periods at the beginning of each scan and after every fourth stimulus block.  Localizer 
scans were 6 minutes 15 seconds long and were divided into blocks during which 
subjects viewed color photographs of scenes, faces, common objects, and scrambled 
objects presented at a rate of 1.33 pictures per second as described previously [S1]. 
 
MRI Analysis 
 
      Functional images were corrected for differences in slice timing by resampling 
slices in time to match the first slice of each volume, realigned with respect to the first 
image of the scan, spatially normalized to the Montreal Neurological Institute (MNI) 
template.  Data for localizer scans were spatially smoothed with an 8 mm FWHM 
Gaussian filter; all other data were left unsmoothed. Data were analyzed using the 
general linear model as implemented in VoxBo (www.voxbo.org) including an 
empirically-derived 1/f noise model, filters that removed high and low temporal 
frequencies, regressors to account for global signal variations, and nuisance regressors 
to account for between-scan differences. 
 
Regions of Interest 
 
     The lateral occipital complex (LOC) was defined by stronger responses (t > 3.5) to 
objects than to scrambled objects during the functional localizer scans.   LOC was 
trimmed to exclude any voxels that had 1) significantly greater responses to scenes than 
objects or 2) had significantly greater responses to faces than to objects.  This was the 
same procedure used to define object selective cortex by Reddy and Kanwisher [S2], to 
whose results we wished to compare our own.   
     The parahippocampal place area (PPA) was defined as voxels in the posterior 
parahippocampal/collateral sulcus region that responded more strongly (t > 3.5) to 
scenes than to common objects.  To focus on voxels characterized by selectivity for 
scenes, the PPA was further refined to exclude any voxels with significantly higher 
responses to intact objects than to scrambled objects.  (Voxels that had significantly 
higher responses to scenes than to objects and significantly higher responses to objects 
than to scrambled objects were not included in any ROI.)  The fusiform face area (FFA) 
was defined by voxels responding more strongly to faces than to objects.  We did not 
exclude voxels from the FFA that also met the criteria for inclusion in LOC since this 
often produced exceedingly small FFA voxel counts.   
     To provide a baseline from which to judge multi-voxel pattern classification 
accuracy, we also defined a non-brain ROI for each subject by selecting 100 contiguous 
voxels within a supraorbital portion of the skull. 
 
Supplemental Results 
 
Additional classification analyses 
 
     We performed several additional analyses to validate our classification results.  
First, to ensure that differences in classification accuracy between ROIs did not result 



Current Biology, Volume 19 

from differences in ROI size, we 
repeated pattern classification for 
randomly-drawn voxel subsets 
matched in size to the smallest ROI for 
each subject, usually the FFA.  The 
median voxel count across subjects for 
the smallest ROI was 53.  Average 
classification accuracy was computed 
over 200 draws (light-shaded bars in 
Figure 1A).  Accuracy remained 
significantly above chance in LOC 
(t(11) = 5.54, p = 0.00006) and the 
PPA (t(11) = 2.80, p = 0.016), 
indicating that the superior 
classification accuracy for single 
objects in LOC and the PPA relative to 
the FFA was not simply a result of 
greater ROI size.  Similarly, pair 
classification accuracy in LOC (t(11) = 
5.25, p = 0.0002) for voxel subsets was 
significantly above chance. 
     Second, we adopted a “searchlight” 
analysis approach to assess local 
classification accuracy for both single 
objects and object pairs throughout the 
whole brain [S3].  This analysis was 
particularly important given that LOC 
was defined based on responses to 
single objects in the localizer, leaving 
open the possibility that our ROI-based 
analysis may have overlooked voxels 
outside of LOC that preferentially 
carried information about object pairs.  
Supplemental Figure 1 shows the 

results of group random-effects analysis of local classification accuracy for both single 
objects and pairs.  The maps show considerable overlap between regions exhibiting 
above-chance accuracy for pair and single object classification.  Importantly, we 
observe no regions of high classification performance for pairs that are outside the 
boundaries of LOC and are absent from the map for singles.  These results, together 
with our ROI analyses, indicate that LOC is the primary region of the brain involved in 
representing object pairs. 
 
Position-specificity of classification 
 
     Our main interest in conducting these experiments was to quantify the relationship 
between responses evoked by object pairs and by their constituent objects.  A potential 
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Figure S1.  Group analysis of searchlight 
classification accuracy for single objects (A) and 
object pairs (B).  Colored voxels are those whose 
associated searchlight clusters had classification 
accuracies above chance (p < 0.001, uncorrected), 
determined from random-effects analysis across 
searchlight volumes from all subjects.  White 
contour indicates boundaries of LOC defined from 
a random-effects group analysis of functional 
localizer data, thresholded at p < 0.01, uncorrected.  
Maps for single objects and pairs are highly 
overlapping, indicating that the same clusters 
encoded information about both single objects and 
object pairs.  CoS: collateral sulcus; OTS: 
occipitotemporal sulcus; LOS: lateral occipital 
sulcus  CalcS: apex of calcarine sulcus.   
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complicating factor in any such 
analysis was the fact that object 
pairs necessarily contained objects 
at two positions in the visual field.  
If category-selective neurons were 
also position-selective, the 
relationship between the pattern 
evoked by a given object pair and 
the patterns evoked by its 
constituent objects might vary 
depending on whether the single 
objects were presented at the same 
locations as they appeared in the 
pair or at opposite locations.  It was 
therefore important for us to 
understand the degree to which 
multi-voxel patterns varied with 
object position.   
     To assess the position-specificity 
of activity patterns in LOC, we 
measured our ability to classify the 
positions of single objects based on 
multi-voxel patterns.  In other 
words, we assessed whether (for 
example) brush-on-top/nothing-on-
bottom could be distinguished from 
nothing-on-top/brush-on-bottom.  

This was done by examining the patterns evoked by each kind of object (brushes, cars, 
chairs, and shoes) at each screen position (top, bottom) and assessing the extent to 
which the patterns elicited by an object of a given category in the two halves of the data 
were more similar when stimuli were presented at the same position than when they 
were presented in opposite positions.  For these analyses, we divided LOC in each 
subject into anterior (aLOC) and posterior (pLOC) regions which corresponded to 
regions that have been previously termed posterior fusiform and LO, respectively [S4].  
A recent study by Schwarzlose et al. [S5] showed that activity patterns evoked by 
single objects in pLOC carried significant information about object position, while 
activity patterns in aLOC were considerably less dependent upon objects’ screen 
positions.  In keeping with these results, we were able to classify single object positions 
in pLOC (t(11) = 3.95, p = 0.002) but not in aLOC (t(11) = 1.04, p = 0.32), nor in the 
PPA (t(11) = 1.04, p = 0.23), as shown in Supplemental Figure 2 (orange bars).    
     These data suggest a convergence between information about object category and 
position in pLOC.  However, a more nuanced picture emerged when we examined the 
spatial-specificity of patterns evoked by pairs.  Classification accuracy was not 
significantly above chance in either aLOC (t(11) = 0.58, p= 0.62) or pLOC (t(11) = 
0.75, p = 0.47) when we attempted to distinguish between the two spatial 
configurations of each pair, for example between brush-on-top/chair-on-bottom and 
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Figure S2.  Spatial configuration classification 
accuracy.  Patterns evoked by each single object and 
object pair were split by stimulus position (singles) or 
spatial configuration (pairs).  Data are accuracy in 
classifying position/configuration in one half of the 
data, based on patterns for the same object or pair in 
the opposite half of the data.  ROIs are defined in 
Supplemental Results.  Patterns in aLOC did not 
discriminate between different positions for single 
objects or different configurations for pairs.  Although 
pLOC patterns distinguished between single object 
positions, they did not discriminate between different 
spatial configurations of a pair, suggesting functional 
segregation of category and position information. 
Position/Configuration classification accuracy in the 
PPA was marginally above chance for object pairs, 
but not for single objects.   Error bars are s.e.m. 
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chair-on-top/brush-on bottom (Supplemental Figure 2, green bars).  These data indicate 
that, to the extent that neurons in pLOC encode information about object position, this 
information is carried by a population of neurons different from that which carries 
information about category.  That is, while the responses of some neurons may 
discriminate between a stimulus at the top or bottom stimulus position, and other 
neurons may discriminate between a chair and shoe, neurons tuned jointly for position 
and object category do not appear to compose a significant fraction of the pLOC 
population.   
     In the PPA, we did observe a trend towards above-chance classification accuracy for 
spatial configurations of object pairs (t(11) = 2.02, p = 0.065).  Although falling short 
of significance, this result is particularly interesting insofar as it suggests the possibility 
that some neurons in the PPA may be tuned to the spatial relationship between objects.   
    We also used the results of the searchlight classification analysis to identify any 
regions in the posterior half of the brain that reliably differentiated between spatial 
configurations of object pairs.  Searchlight positions matching this criterion were 
relatively rare: while subjects had an average of 169 searchlights that could classify pair 
identity above an arbitrary threshold of 75%, they only had an average of 62 
searchlights that could classify pair configuration at the same threshold.  By 
comparison, an average of 2,356 searchlights in each subject could correctly identify 
the position of a single object at a rate greater than 75%.  Group random-effects 
analysis showed no notable regions of high pair configuration accuracy outside LOC. 
 
Relationship between pair and single object responses in other ROIs 
 
     We analyzed the relationship between responses to single objects and pairs for each 
voxel in the PPA, the FFA, and the non-brain ROI, using the same regression analysis 
detailed for LOC in the main text.  In contrast to the findings in LOC, we saw no 
positive relationship between searchlight classification accuracy and R2 in the FFA 
(mean correlation = 0.06, t(11) = 0.77, p = 0.45) or non-brain region (mean correlation 
= 0.095, t(11) = 1.23, p = 0.24).  Taking note of the fact that some non-brain 
searchlights had, by chance, classification accuracies above 50%, the absence of any 
significant positive correlation demonstrates that higher R2 values are not a trivial 
accompaniment to high classification scores, providing a control against which to judge 
the positive correlations we observed in LOC.   
     Interestingly, we did observe a significant positive correlation between classification 
rank and R2 in the PPA (mean = 0.21, t(11) = 3.25, p = 0.0077).  This result may seem 
surprising given the fact that whole-PPA patterns did not discriminate reliably among 
object pairs (Figure 1B).  However, patterns derived from voxels in the top 30 
searchlight positions in the PPA did exhibit pair classification accuracies significantly 
above chance (t(11) = 5.17, p = 0.0002).  As in LOC, the slope of linear regressions 
between pair and summed single-object responses for the top 30 searchlight clusters in 
the PPA was 0.51, with upper and lower 95% confidence limits of 0.73 and 0.27, 
respectively.  As in LOC, the average regression intercept term in the PPA did not 
differ significantly from zero (t(11) = 1.59, p = 0.14).  By analogy to LOC, these results 
suggest that at least a subset of PPA voxels do contain information about object pairs, 
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and that responses of these voxels to pairs are linearly related to their responses to 
constituent objects. 
     With this in mind, we tested whether patterns evoked by object pairs in the PPA 
could be classified based on synthetic patterns created by averaging the patterns evoked 
by the constituent single objects.  As in LOC, the classifier was able to correctly 
identify patterns evoked by object pairs based on these synthetic patterns at rates well 
above chance (PPA, t(9) = 4.85, p = 0.0007) when PPA data were restricted to the top 
30 searchlight clusters.        

We also performed regression analysis on retinotopic cortex, which was defined 
from functional localizer scans as regions with significantly higher responses to 
scrambled objects than intact objects.  Classification accuracy in retinotopic cortex was 
not above chance for either single objects (t(11) = 1.31, p = 0.22)  or pairs (t(11) = 
0.005, p = 0.99).  This indicates that the responses of voxels in early visual cortex did 
not vary reliably across single objects or pairs.  Consistent with this, when we 
calculated regressions between voxel responses to single objects and object pairs there 
was no trend toward higher R2 as a function of searchlight accuracy; across subjects, the 
mean correlation between R2 and pair accuracy rank did not differ significantly from 
zero (t(11) = 0.8693, p(11) = 0.40).       
 
Validation of Regression Analysis 
 
     Our regression analysis was based on the responses of each voxel to stimuli 
averaged across all six scans in our experiment.  We used data from these same six 
scans to measure searchlight classification accuracy.  In standard pattern classification 
studies, using the same data for both voxel selection and pattern classification 
(“peeking”) can produce artificially elevated performance.  It was therefore necessary 
to ensure that the positive relationship we observed between accuracy and regression R2 

(and slope) was not a trivial outcome of voxel selection.     
Such a confound was unlikely in our analysis because voxels were selected entirely 

on the basis of searchlight classification performance for pairs without any 
consideration whatsoever of their classification performance for single objects. Because 
single and pair responses constitute different data sets collected at different time points, 
the fact that voxels within a given searchlight carry information about pairs should not 
bias us towards finding a linear (or any other) relationship between their responses to 
object pairs and responses to single objects if none really exists.  In contrast, if such a 
relationship did exist, then we would expect that it should be most evident among voxel 
clusters with the highest signal-to-noise ratios (see “Voxel Selection” in Supplemental 
Discussion). 
     Nevertheless, we undertook several additional analyses to ensure that the positive 
correlations we observed between pair classification performance and both R2 and slope 
in LOC were not artifacts of voxel selection.  First, we recomputed both searchlight 
classification accuracies and regression analyses using data from separate scans.  
Classification accuracy was measured for data drawn from four of the six total scans, 
and regression analysis was performed on the remaining two.  This process was 
repeated for each possible draw of 4 scans for each subject (e.g., scans 1,2,3,4 versus 5 
and 6, then scans 1, 3, 4, 5 versus 2, 6, etc.).  Data were accumulated across all 15 
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possible draws for each subject, but 
searchlight classification accuracies 
from each draw were associated 
exclusively with the results of 
regression analysis from the 
corresponding two remaining scans.   
     Regression R2 values for all 
searchlight positions across all draws 
were placed in a single pool for each 
subject and then ranked according to 
their associated classification 
accuracy, and the resulting sorted 
values were averaged across subjects 
(Supplemental Figure 3A).  If the 
positive correlation we observed 
between R2 and searchlight accuracy 
shown in Figure 2 were a result of 
peeking, we should see no such 
correlation when classification scores 
and regression analysis were 
performed on non-overlapping data 
sets.  Instead, we observed a small but 
highly significant (p < 10-6) positive 
correlation, qualitatively similar to the 
data shown in Figure 2.  Further, 10 of 
12 subjects still had correlation 
coefficients significantly greater than 0 
(p < 0.05).       
     Though this result indicates that the 
positive correlation between 
searchlight accuracy and R2 is not 
solely attributable to voxel selection, it 
does not eliminate the possibility that 
voxel selection made some 
contribution to the R2 trend in Figure 2.  
To assess what bias, if any, was 
contributed by voxel selection, we 
recomputed our original regression 

analysis (which included data from all 6 scans for each subject) after randomly 
permuting the condition labels for single-object responses independently for each LOC 
voxel.  It is critical to note that this permutation step in no way altered each 
searchlight’s classification score, which was based solely on data for pairs.  If the trend 
observed in Figure 2 were even in part a result of voxel selection, we should see a 
positive correlation between searchlight rank and R2 even after label permutations.  
Instead, we find that R2 from permuted regressions remains constant as a function of 
classification accuracy, showing no bias towards higher values as classification 
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Figure S3.  Validation of regression analysis. A) 
R2 as a function of searchlight cluster pair 
classification rank when R2 and classification 
accuracy are computed from separate data sets, 
averaged across subjects.  Best-performing clusters 
are those with low rank numbers, at the right end of 
the x-axis.  As in Figure 3 of the main text, R2 
showed a significant positive correlation to cluster 
accuracy.  Ranking extends to higher numbers than 
in Figure 2 in the main text due to the 15 possible 
ways in which non-overlapping data sets could be 
drawn from 6 scans (see Supplemental Results). B) 
Comparison of relationship between R2 and pair 
classification accuracy rank when R2 is computed 
from original data (red) and after permuting single 
object condition labels (black).  Permuting single-
object labels completely abolishes the upward trend 
in R2 as classification accuracy improves, 
indicating that this trend is not a trivial outcome of 
high classification accuracy.  Also shown is R2 as a 
function of single-object classification rank (blue), 
which does not differ meaningfully from R2 based 
on pair rank.       
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improves.  This is shown by the black 
line in Supplemental Figure 3B, which 
represents subject-averaged data after 
1000 permutation cycles for each 
subject.  Also plotted in Supplemental 
Figure 3B is R2 as a function of pair 
classification accuracy rank (repeated 
from Figure 2B), as well as R2 as a 
function of single object classification 
accuracy rank.  These two functions 
are almost identical, further 
demonstrating that voxel selection did 
not bias our assessment of a linear 
relationship between single objects and 
object pairs.   

We also wished to confirm that our 
regression analysis truly reflected pair 
responses that were the simple 
averages of the responses to their 
constituent objects, rather than 
weighted averages.  To do so, we 
began by performing simulations that 
allowed us to examine the expected 
outcome of the linear regression 
analysis for a set of artificial voxels.  
In the first simulation, the responses of 
each voxel to pairs were the weighted 
averages (rather than simple average) 

of its single object responses, with the response to the more-preferred object in a pair 
weighted more strongly (i.e. weights for each object were proportional to their single-
object responses).  Linear regressions between these pair responses and the sum of their 
constituent object responses produced a unique pattern of predictive accuracy.  
Specifically, we found that residual error between pair response predicted by linear fits 
and actual pair responses was distributed unevenly across pairs, with the largest 
residuals attaching to pairs composed of objects with the largest differences in their 
single-object responses.  This contrasted with the results of a a second simulation, in 
which pair responses were constructed from the simple averages of component 
responses (with noise added).  In this case, regressions between pairs and the sum of 
their constituent objects had residuals that were uniformly distributed across pairs.   
     With this in mind, we next examined the distribution of residuals from linear 
regressions performed on real fMRI data from voxels within the 30 highest accuracy 
searchlights within each subject.  For each voxel, we computed the squared error 
between the actual response to each object pair and the response predicted for that pair 
by linear regression.  We then ranked these error terms by the magnitudes of the 
response differences between each pair’s constituent objects.  Based on the results of 
our simulations, we expected to see the largest residual error among pairs that ranked 
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Figure S4.  LOC classification accuracy for pairs 
and synthetic pairs as a function of pattern voxel 
count, averaged across subjects.  Data are accuracy 
in classifying pair patterns based actual pair patterns 
(dark green), patterns derived from the means of 
single object patterns (light green), and patterns 
derived from a MAX-function combination of 
single object patterns (cyan).  X-axis denotes the 
size of the pattern, expressed in terms of the number 
of searchlight positions included, binned in 10-
searchlight increments.   Searchlights were added in 
descending order of classification accuracy.  Error 
bars are s.e.m. 
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high by this measure.  However, a one-way repeated measures ANOVA showed no 
significant effect of this ranking on the magnitude of residual error for paired objects 
across subjects (F(5,11) = 1.17, p = 0.34).  Thus we find no evidence that responses to 
pairs were weighted, as opposed to simple, averages of their constituent object 
responses.   However, it is unclear whether this finding would generalize to a situation 
in which one of the two objects of a pair were "preferred" in terms of cortical 
specialization (e.g. face or house).  In this case, we might expect the mean rule to break 
down, perhaps reflecting an absence of multistimulus normalization across separate 
domain-specific systems. 
 
Supplemental Discussion 
 
Voxel Selection 
 
     One challenge in assessing the ability of any model to characterize the relationship 
between single and pair responses is that of voxel selection.  For at least two reasons it 
would be unreasonable to expect the responses of every voxel to vary reliably enough 
across the stimuli to allow us to discern a relationship between responses to different 
stimuli.  The first reason is the extreme sparseness of any experimental stimulus set.  
Given the vast number of objects which the visual system is forced to encode, the odds 
are high that the four object categories we chose lie outside the tuning envelope of 
many neurons.  Response variability among voxels corresponding to populations of 
such neurons will necessarily be dominated by noise, and will therefore defy any 
model.  (It is worth noting that this challenge is not unique to fMRI.  In single-unit 
studies of macaque IT, neurons are often excluded from further study if they do not 
respond to at least one element in an experimental stimulus set [S6, S7].)  A second 
reason is partial-volume effects.  Each voxel represents neural activity among a large 
and potentially heterogeneous population of neurons.  Even though individual elements 
of these populations may differentiate reliably between stimuli, their aggregate activity 
may show considerably less selectivity.  As such, response variability among these 
voxels will also tend to be dominated by noise.           
     In light of these factors, it is not surprising that, on average, 54% of LOC searchlight 
clusters and 69% of PPA clusters had pair classification accuracies below the 95th 
percentile of searchlight accuracies in the non-brain ROI.  In other words, these LOC 
and PPA clusters had accuracies indistinguishable from chance, indicating that the 
responses of voxels within them were not strongly related to pair identity.  Therefore, 
their pair responses could not be expected have any relationship, linear or otherwise, to 
responses evoked by single objects, and consideration of these voxels will tend to 
artificially reduce the predictive ability of any model.  Given these factors, we used 
searchlight classification performance as an independent estimate of the signal-to-noise 
ratio of voxels within each searchlight, as explained in the Results. 
 
Classification performance in ROIs outside LOC 
 
     We found that voxel patterns from regions outside the LOC often showed poor 
classification performance for single objects and object pairs.  While patterns in PPA 
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differentiated between single objects, they did not differentiate between pair patterns at 
a rate above chance, and FFA patterns did not differentiate among either single objects 
or pairs.   
     These results might at first appear to contradict previous work, most notably by 
Haxby et al. [S8],  showing that information about object identity could be gleaned 
from patterns in the FFA and PPA.  Similar results were reported by Reddy and 
Kanwisher [S2].  However, both of these studies reported average classification 
accuracy across a stimulus set that included stimuli preferred by FFA and PPA as well; 
thus, above-chance accuracy for non-preferred objects may have been driven to a large 
extent by correct classifications between preferred and non-preferred objects (e.g., 
house versus brush), rather than among non-preferred objects (e.g., brush versus chair).  
Although Reddy and Kanwisher confirmed that patterns in both FFA and PPA did 
discriminate between shoes and cars, these were the only non-preferred objects that 
were used, making the generality of the result unclear.   In contrast, Spiridon and 
Kanwisher [S9], using a stimulus set similar to ours (including objects in four 
categories not preferred by either FFA or PPA), found that patterns in the FFA and PPA 
did not reliably discriminate among four categories of single objects.   
     Given the fact that PPA patterns did reliably discriminate among single objects, it 
might seem somewhat surprising that they did not discriminate among object pairs (at 
least when whole-PPA patterns were examined; as noted above, subsets of voxels 
within the PPA were more discriminative).  After all, object pairs might be taken to 
form a minimal scene, a stimulus class which robustly activates the PPA.  It is worth 
noting, however, that there are at least three important differences between the real-
world scenes that robustly activate the PPA and the object pairs shown here.  First, real-
world scenes contain fixed background elements such as walls and ground planes, 
which are believed to be critical for eliciting a strong PPA response [S10].  Second, the 
objects in the current study were not presented in their typical spatial relationships.  
Finally, the stimuli in the current experiment were equated for angular subtense even 
though they possessed very different real-world sizes.  The close apposition of a brush 
and car of similar angular subtense, in an unnatural spatial relationship to each other, 
and in the absence of surrounding background information is unlikely to convey any 
meaningful sense of a scene.  
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