Polarized emission in II–VI and perovskite colloidal quantum dots

To cite this article: Maya Isarov et al 2017 J. Phys. B: At. Mol. Opt. Phys. 50 214001

View the article online for updates and enhancements.

Related content
- Supplementary data
- Topical Review
 M Holub and P Bhattacharya
- Optical orientation of excitons and carriers in quantum dots
 Yu G Kusrayev
Polarized emission in II–VI and perovskite colloidal quantum dots

Maya Isarov1,6, Liang Z Tan2,6, Jenya Tilchin1,6, Freddy T Rabouw3,6, Maryna I Bodnarchuk4,5, Relinde J A van Dijk-Moes3, Rotem Carmi1, Yahel Barak1, Alyssa Kostadinov1, Itay Meir1, Daniel Vanmaekelbergh3, Maksym V Kovalenko4,5, Andrew M Rappe2 and Efrat Lifshitz1,7

1Schulich Faculty of Chemistry, Solid State Institute, Russell Berrie Nanotechnology Institute, Technion, Haifa 3200003, Israel
2Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, United States of America
3Debye Institute of Nanomaterials Science, University of Utrecht, Utrecht, The Netherlands
4Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
5Laboratory for Thin Films and Photovoltaics, Empa—Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland

E-mail: ssefrat@technion.ac.il

Received 4 July 2017, revised 24 August 2017
Accepted for publication 20 September 2017
Published 23 October 2017

Abstract

The polarized emission of colloidal quantum dots from II–VI and perovskite semiconductors were investigated thoroughly, revealing information about the optical transitions in these materials and their potential use in various opto-electronic or spintronic applications. The studies included recording of the micro-photoluminescence of individual nanostructures at cryogenic temperatures, with or without the influence of an external magnetic field. The experimental conditions enabled detection of circular and/or linear polarized emission to elucidate the exciton manifolds, angular momentum of the emitting states, Landé g-factors, single exciton and bi-exciton binding energies, the excitons’ effective Bohr radii, and the unique influence of the Rashba effect. The study advances the understanding of other phenomena such as electron–hole dissociation, long diffusion lengths, and spin coherence, facilitating appropriate design of optical and spin-based devices.

Keywords: colloidal quantum dots, core/shell heterostructures, alloyed interfaces, blinking-free behavior, perovskites, magneto-optical properties, single dot spectroscopy

(Some figures may appear in colour only in the online journal)
and fluorescence intermittency (blinking) [48, 49]. However, spin properties in colloidal nanocrystals have been studied to a lesser extent. Comprehensive understanding of spin polarization could help explain unresolved questions, such as dark/bright state mixing, emitted emission polarization, g-factors and spin–spin interactions, all with direct impact on practical applications. The current review focuses on the investigation of exciton polarization in two distinctive materials: (a) II–VI CQDs with core/alloyed-shell or giant-core/shell structures and a magnetically doped derivative; (b) halide perovskite CQDs. The investigations were carried out by monitoring polarized emission from individual CQDs in a magnetic field. The following sections provide relevant background for each material.

The photon absorption in II–VI CQDs results in the occupation of valence and conduction states by a single electron–hole pair or multiple electron–hole pairs (excitons). For example, in zinc-blende II–VI CQDs, a neutral band-edge single exciton (X) is composed of an electron with spin $S_e = 1/2$ and a hole with effective spin $S_h = 3/2$ [26]. The total angular momentum of X, denoted as J_{x}, can be either 2 or 1, with $m_J = \pm 2, \pm 1, 0$. Quantum confinement enhances the electron–hole exchange interaction, which splits the exciton electronic levels into a doublet. There is a further splitting by the crystal field or shape distortions into manifolds of dark and bright states [26]. Under stronger excitation, excess occupation of valence and conduction states occurs, hence charged or multiple excitons (e.g., bi-excitons) are formed, which might also experience degeneracy breaking, depending on their total angular momentum (see below) [50–52].

In recent years, a major concern of the CQDs community is related to occasional fluorescence steadiness, manifested as intensity intermittencies (blinking) [48, 49, 53] with consecutive changes from ‘on’ to ‘off’, along with spectral diffusion (jittering) [45, 54–56]. Blinking and jittering are the subject of ongoing debates centered around the question of photo-charging generation [49, 57], either by intra-band charge transfer to a remote state (the Auger process) [45] and/or by the charge diffusion to the surface or surrounding [58, 59]. Universal observation of spectral unsteadiness inspired new efforts to achieve photostable materials by controlling the synthesis of the CQDs. This approach has recently led to successful synthesis of materials with unique core/shell architecture, such as core/alloyed-shell [60, 61], core/giant shell, or giant core/shell heterostructures [62–70].

Clearly, spectrally stable CQDs are of prime importance for scientific research and technological applications, and therefore, spectral fluctuations should be mitigated. The giant core/shell CQDs or core/alloyed-shell CQDs are the major material platforms discussed here. These materials consist of a semiconductor core, epitaxially covered by a shell of a second semiconductor compound. The CQD electronic properties depend on the mutual alignment of the core and shell band-edge offsets, which are of type I, type II, or quasi-type II. In type I, the shell band edge wraps that of the core, confining both carriers into the same regime; in type II and in quasi-type-II, the core and shell have staggered alignment of the band edges, enabling a complete or a partial charge separation, when one carrier is centered in the core, while the second one is delocalized over the entire core/shell structure [71–75]. The current review describes the properties of the individual CdTe/CdTeSe$_{1-x}$ core/alloyed-shell and of the CdTe/CdSe giant core/shell CQD with different degree of quantum confinement, possessing quasi-type-II and type-I charge distributions, respectively, as shown in figure 1. As discussed below, the blinking-free behavior of these structures enabled the investigation of polarized transitions related to the formation of single and multiple excitons. The degree of polarization is mainly related to the intrinsic electronic band structure of the studied materials.

Moreover, the review includes a description of how the emission polarization can be significantly enhanced artificially by embedding CQDs with magnetic impurities. Embedding CQDs includes substitution of diamagnetic cations of the host lattice by a single or a few guest magnetic ions, forming diluted magnetic semiconductors (DMS) [76–86]. The most commonly studied cases included incorporation of transition metal ions with valence d-orbitals into II–VI semiconductors. The coupling of magnetic ion d-orbitals with the II–VI semiconductor band-edge states (valence band with p-character and conduction band with s-character) generates sp–d exchange interaction [76, 84, 87–89], promoting a strong impact on the magneto-optical properties of the host semiconductors. The CQDs host lattices provide three-dimensional size confinement with a relatively long (~10 ns) exciton radiative lifetime, which markedly enhances the interaction between resident spins (of the electron, hole or exciton) and the guest spins [90, 91]. A few studies have shown the benefit of magnetically doped CQDs in luminescence solar concentrators or in quantum dots sensitized solar cells. The benefits proceed from the formation of exciton-magnetic polaron, with typical emission that is strongly Stokes shifted from that of the host absorption edge, avoiding re-absorption by neighboring concentrated or sensitized particles [17–19]. A few pioneer groups exploring II–VI DMS-CQDs embedded with Mn$^{2+}$ and Cu$^{+2}$ ions [92–96] reported various observations, such as giant Zeeman split [84, 88], circular dichroism [90, 95], magnetic polaron formation [97, 98], fluctuation kinetics [99–101], ion–ion interactions [102, 103] and energy transfer processes [89]. The current review discusses a representative case of Mn doped in CdTe/CdSe CQDs when the guest ions are positioned either in the CdSe core or in the CdS shell.

The halide perovskites have elicited substantial interest since the 1960s [104–106] due to their strong light absorption and emission, high carrier mobility, and apparent high defect tolerance. Interest has revived recently due to groundbreaking discoveries of the perovskites’ usefulness in photovoltaic cells, with power conversion efficiencies rivaling other technologies based on organic, Si, CdTe, CIGS and GsAs materials [107–111]. Moreover, the halide perovskites perform well in light emitting diodes [112], lasers [113, 114], photodetectors [115, 116] and hold promise as single photon source [117] in spintronics [118]. The renaissance of the halide perovskites also initiated investigations on the microscopic physics underlying the unique performance of these materials.
 Serious attention has recently been focused on halide perovskites of the type AMX₃ (A = Cs⁺⁺, methyl ammonium [MA], form amidinium [FA]; M = Pb, Ga, In; X = I, Cl, Br). They are composed of inter-connected MXₓ²⁻ octahedral units, while the “A” charge balancing species occupies cages created by twelve halide atoms within the octahedral network. The electronic band structure of AMX₃ encompasses the [PbX₆] units; the valence band is composed of Pb(6s) and halide (p) orbitals. The conduction band is mainly compiled from the antibonding Pb(6p)-halide (p) interactions with a small contribution from halide (s) atomic orbitals [122, 123]. The AMX₃ are known as direct band gap semiconductors, with extrema at the R [111] Brillouin point. Previous theoretical studies [122, 124] showed a strong influence of spin–orbit coupling at the conduction band, leading to formation of split-off states. Accordingly, the valence and conduction band-edges each have an angular momentum J = 1/2, i.e., the allowed band-edge absorbance is related to the ±1/2 ↔ ±1/2 transitions. Furthermore, crystal field symmetry as well as exchange interaction induce additional tuning and elevation of degeneracies, respectively, although the consequent influence of these interactions should be further studied [125]. This review describes current knowledge of the excitons in halide perovskite CQDs, revealing information about band-edge excitons with optical polarization emanated from a spin–orbit effective magnetic field (so-called Rashba effect) [118, 119, 126].

The polarized emission properties in various nanostructures discussed reveal the angular momentum of the emitting states, band-edge electronic properties, electron–hole exchange, host carrier to guest-ion spin-exchange, and spin–orbit Rashba interaction. Along with polarized emission detection, other important physical parameters, including effective Landé g-factor of the excitons, exciton binding energy and effective Bohr radii and spin-exchange coupling to impurities, have been defined. All parameters are critical when designing devices based on II–VI CQDs or perovskite materials. For example, small binding energy permits an immediate dissociation of an exciton. Polarized and narrow emission lines and coupling to impurity spins are advantageous in designing light sources or spin-based devices.

Results and discussion:

CdTe/CdTeₓ₆Sₑ₁₋ₓ core/alloyed-shell CQDs

Recent theoretical investigations emphasized the benefit of the alloyed interface between a core and a shell in suppressing an Auger process [127, 128]. Thus, the CdTe/CdTeₓ₆Sₑ₁₋ₓ core/alloyed-shell CQDs were found to be a good platform for investigating exciton and multiple excitons in CQDs. These CQDs have zinc-blende (space group F4 mm) crystal structure with tuneable band-edge energy by varying the overall size as well as by the core-to-shell radius ratio. A CQD with core diameter of 3.2 nm and a shell thickness of 0.6 nm showing a quasi-type-II band alignment is discussed. The synthesis of CdTe/CdTeₓ₆Sₑ₁₋ₓ core/shell CQDs was based on a similar procedure given in reference [129]. The µ-PL spectra of the sample was recorded by dispersing dots over a quartz substrate with a density <1 NQD μm⁻², which were examined by the use of fiber-based confocal microscope, together incorporated in a cryo-magnetic system. The samples were pumped by a continuous-wave 514.5 nm line of a cw-Ar⁺ laser, with a power density between 1.0 and 10.0 kW cm⁻², exciting up to five excitons/CQD.

Figure 2(a) depicts the evolution of the µ-PL of a single CQD, with the increase of the power density (when P₀ = 1.0 kW cm⁻²). The spectra in figure 2(a) consist of multiple bands, each demonstrates independent behavior on the increase of the laser power. A contour plot of a µ-PL time evolution is shown in figure 2(b). This plot depicts important characteristics; the intensity of the dominant bands (expressed by the blue regions in the contour) undergoes only minor intensity fluctuations of <10% (see side ruler) and a small spectral diffusion, suggesting ~90% blinking-free behavior. Furthermore, a single CdTe/CdTeₓ₆Sₑ₁₋ₓ CQD showed extended robustness throughout a few weeks of measurements. This is in contrast to the nature of a single core CdTe, showing only a single band spectrum, which in most cases, deteriorates after a trace of a single µ-PL frame and cannot be investigated properly. The assignment of the multi-bands in figure 2(a) are discussed, referring to the lowest electronic states (1S₀, 1P₀, 1S₁, 1P₁), which are drawn schematically as a cascade of diagrams in the insets in panel (a), with the electrons and hole marked by the filled dots and the open dots, respectively. The red band showed an initial linear increase of the emission intensity up to ∼3.5P₀, which can be attributed to a single-exciton (X → 0) recombination, as sketched in the diagram (often called ground state exciton with a label X⁰). The green band showed a quadratic increase up to ∼6.5P₀, with increased laser power, marking it as the ground state bi-exciton (2X → X) recombination. Above the indicated thresholds, other broader bands (blue and yellow) emerged simultaneously on the red side and on the blue side of the

![Figure 1](image_url)
spectra, and the X and 2X lines almost fade away. It is also important to note that each band is accompanied with weak sidebands that might be related to acoustic phonons (∼4 meV) or to an accidental occurrence of charged excitons, such as X⁺, 2X⁻. The 2X binding energy, related to the energy difference between the X and 2X bands (ΔE = EX - E2X = 23.4 meV) is in close agreement to a calculated value (as reported in [130]), as well as close to a value found in self-assembled CdTe quantum dots of similar size [131]. The value of ΔE > 0 reflects an attractive X-X Coulomb interaction in the CdTe/CdTeSe1−x core/shell CQDs investigated. The blue and yellow bands in figure 2(a) developed at power densities >6P0, assigned to the 3X → 2X and 4X → 3X recombination, appearing on the red side of the spectrum with binding energies comparable with E4X - E3X ~ 17.5 meV and E5X - E2X ~ 18.6 meV; (b) p shell recombination, appearing on the blue side of the spectrum and shifted by 70–100 meV above the X band. The last shift is smaller than the energy spacing between the p and s shells in a zinc-blende CdTe CQD of similar size, due to the additional carriers’ Coulomb interactions. The generation of steady multiple excitons has been a topic of interest during the past decade, due to their anticipated potential to increase photovoltaic efficiency above the Shockley–Queisser limit [132].

The current study indicates that specialized CQD design can sustain multiple excitons (from 0.1 to a few nanoseconds) under continuous-wave excitation for charge extraction in photovoltaic and catalysis applications.

CdTe/CdSe giant core/shell CQDs

The sample investigated consisted of CdTe cores of nearly spherical and tetrahedral shape, passivated with a two monolayer thickness of CdSe shell. The synthesis of CdTe/CdSe core/shell CQDs is described in [133]. The overall core/shell CQDs had a diameter (D) ranging from 8.5 to 25.5 nm, below or above the bulk Bohr exciton radius (9 nm), featuring a (strong) moderate to weak or even marginal degree of quantum confinement. The magneto-optical properties were examined by following the μ-PL spectrum of individual CQDs at cryogenic temperatures under a variable continuous-wave excitation power and in the presence of a magnetic field (up to 5 Tesla), combined with detection of the circular or linear emission components. The μ-PL spectra of single CQDs were recorded using a fiber-based confocal microscope, immersed in a cryogenic system. The CQDs were dispersed over a silicon substrate with a density <1 CQD μm⁻² and were excited by an unpolarized continuous wave diode laser (E₂X = 1.87 eV) with diffraction limited spot diameter of ~0.7 μm and a spectral resolution of 300 μeV. The variable magnetic field was applied in Faraday configuration, normal to the substrate. The polarization-sensitive detection of the linear and circular components of the exciton emission were recorded by achromatic quarter-wave plate and linear polarizer.

Representative μ-PL spectra of an individual CQD with a diameter of 12.5 nm, excited by a variable laser power in the absence of a magnetic field, are depicted in figure 3(a). The evolution of μ-PL spectra with the increase of the excitation power from P₀ = 25 W cm⁻² to Pmax = 1.5 kW cm⁻² reveals a distinction of three bands, marked in blue, red and green lines. The estimated average number of generated excitons ⟨N⟩ (see [133]), which vary from one to six, are labeled on the figure. The blue band grows linearly, while the other bands increase superlinearly with respect to the increase of the laser power, suggesting the association of the blue band to a single ground state exciton (X), the red band to a bi-exciton (2X) and the green bands to ground state and excited state tri-excitons (positioned below or above the exciton band, respectively).

Figure 3(b) displays a time trace of the exciton band intensity, revealing blinking-free behavior. Theoretical calculations (published in [133]) of the electronic band structure with an additional perturbative Coulomb interaction revealed the binding energy of the bi-exciton to be ~3 meV for a CQD of 12.5 nm, which is in close agreement with the energy gap between the X and 2X bands shown in figure 3(a).

Characteristic linear and circular polarized μ-PL spectra of an individual CdTe/CdSe CQD with a diameter of 9.5 nm, recorded with/without the influence of an external magnetic field, are shown in figure 4(a). The top panel shows unpolarized μ-PL spectrum of a CdTe/CdSe giant core/shell. The spectrum was recorded under excitation power that generated...
a single and biexciton at 4.2 K. The corresponding polarized spectra are shown in the panels below. The bottom panel represents the linearly polarized emission components (Πx and Πz) when recorded at B0 = 0. The middle and upper panels represent circular polarized components (σ+ and σ−) when recorded at B0 = 0 and at B0 = 2 T, respectively. Interestingly, the linearly and circularly polarized spectra recorded at similar B0 show a small relative energy shift, but they have a comparable characteristic—an energy gap \(\lesssim 1 \text{ meV} \) occurs between components, which grows with the increase of the B0 strength. The existence of distinctive polarized components for excitons and bi-excitons suggests the occurrence of a slight shape distortion from a perfect cubic structure into prolate or oblate shapes with a semi-major axis. Indeed, the energy gap between the polarized components deviated from one CQD to another of the same size, presumably due to a random orientation of their semi-major axis on the sample holder, with respect to the observation direction. The polarization properties of the excitons are associated with electronic fine structure, created by a combination of effects, including the crystal field, electron–hole exchange interaction and shape distortion, as displayed in figure 5 for a ground state single exciton (X) [26]. The coexistence of linear and circular polarization result from close proximity of the \(|+1\rangle\) and \(|−1\rangle\) states (360 \(\text{μeV} \) at \(B_0 = 0 \)) [133], and in combination with a shape distortion, allows mixing such as \(|+1\rangle \pm i|−1\rangle\), which generates the linear polarization components, Πx and Πz. It should be noted that a ground state bi-exciton (2X) consists of dark \((J = \pm 2)\) and bright \((J = 0)\) states; the latter is marked in figure 5, referring to the \(2X \rightarrow X\) transition as recorded at 4 K. The 2X emission band shows cross polarization (see figure 4(a)) with respect to the polarization of X. Figure 4(b) shows plots of peak energies shift \((E_\gamma(B_0) - E_\gamma(B_0 = 0 \text{ T}))\) of the exciton (X) polarized components versus strength of \(B_0\) for CQDs with \(D = 8.5 \text{ nm}\) (top panel) and for CQDs with \(D = 25.5 \text{ nm}\) (bottom panel); the former displays a linear dependence, while the latter presents a quadratic dependence on \(B_0\). The curves were fitted to an equation read as \(E_\gamma(0) \pm \frac{1}{2} \gamma_2 B_0^2\), where \(E_\gamma(B_0)\) corresponds to the polarized component peak energy at field strength \(B_0\), the second term is related to the energy shift described by a Zeeman interaction when \(g_\gamma\) is the exciton Landé g-factor, while the third term corresponds to a diamagnetic energy shift with a coefficient \(\gamma_2\). Furthermore, \(\gamma_2\) is related to the average exciton localization region \((r_0)\) via the relation \(\gamma_2 = e^2 (r_0^2) / 8\mu\); \(e\) is electron charge, \(\mu\) is electron hole reduced mass. Thus, the effective exciton diameter \((D_x)\) is according to the relation \(D_x = 2\sqrt{r_0^2 + \gamma_2 B_0^2}\). Figure 4(c) shows plots of the extracted \(g_\gamma\) and \(\gamma_2\) values, versus the diameter of the CQDs \((D)\) or versus the ratio \(D_x / D\). The plot reveals pronounced changes in \(g_\gamma\) and \(\gamma_2\) with the increase of the CQD size: the exciton Landé g-factor value decreases by an order of magnitude with the increase of the CQD’s diameter to 25.5 nm, finally approaching the bulk limit of 0.2; the diamagnetic energy shift value increases with the increase of the size nearly up to the bulk limit of 14.7 \(\mu\text{eV} \text{ T}^{-2} \) (bulk values are marked on the panel). The diamagnetic shift constant provides the information about effects of confinement and the Coulomb interaction in CQDs. In particular, for the 25.5 nm CQDs, the nearly bulk value of \(D_x\) reflects that Coulomb interactions confine the X and 2X excitons to a volume characterized by the Bohr radius, substantially smaller than the actual size of the CQDs. It is most likely that the excitons in the giant core/shell CQDs are focused at the central part of the dot, maintaining a uniform dielectric surrounding, resembling self-assembled quantum dots within a semiconductor host, and approaching excitons’ behavior in bulk semiconductors. Thus, the influence of the exterior surfaces and the low dielectric constant of the organic ligands are substantially reduced, avoiding carriers’ dielectric confinement and surface trapping. Screening the exciton from the exterior surrounding increases the spectral stability of the exciton emission, enabling the exploration of exciton properties in a platform nearly defect-free, with spectral resolution that cannot be achieved in bulk semiconductors. From an application viewpoint, giant-core/shell CQDs of the type discussed could be useful as light sources or spin-based devices.
We review here the sp–d exchange interaction in CdTe/CdSe core/shell CQDs embedded with low dilution of Mn$^{+2}$ ions, incorporated selectively either in the core or in the shell. The synthesis of Mn-doped CdTe/CdSe core/shell CQDs is described in [134]. The studied CQDs were dispersed in 2,2,4,4,6,8,8-heptamethylnonane to form a glassy solution, and mounted into cryogenic system. The samples were pumped by an unpolarized continuous-wave 514.5 nm line of a cw-Ar$^+$ laser, at 2.2 K. The circular polarized emissions were detected by a quarter-wave plate and linear polarizer combination. The ground-state electron configuration of a Mn$^{+2}$ ion (6A_1) consists of five unpaired spins occupying the 3d-atomic orbitals, with total spin momentum $S_{\text{Mn}} = 5/2$. The first excited state (4T_1) is composed of three unpaired spins with $S_{\text{Mn}} = 3/2$. In the present case, the host lattice energy band gap is nearly in resonance with the $^4T_1-^6A_1$ gap, a suitable condition for an efficient sp–d exchange interaction.

Figures 6(a) and (b) displays circularly polarized μ-PL spectra (recorded at 4 K) of an ensemble of CdTe/CdSe CQDs, embedded with Mn$^{+2}$ ions either in the core (a) or in the shell (b). A detailed description of the magnetic ion

\[g_{\text{ex}} \text{ and } \gamma_{\text{2}} \text{ versus diameter } (D) \text{ or exciton-to-CQD diameter ratio } (D_x/D). \]
positioning is given in [135]. It is important to recall at this point that CdTe/CdSe CQDs possess quasi-type-II configuration, enabling interaction of the individual hole-Mn$^{2+}$ and electron-Mn$^{2+}$ interactions, when guest ions are positioned at different radial distances. The spectra in panel (a) show a pronounced energy gap (\sim20 meV) between the circular polarized components, in contradiction to the small gap (\sim3 meV) depicted in panel (b). Generally, the interaction energy of a carrier with magnetic ions is given by the relation:
$$\Delta E = \langle S_i \rangle N_0 (f_c \alpha - f_h \beta),$$
where $\langle S_i \rangle$ is an effective spin moment of the Mn$^{2+}$ being 5/2 at 4 K, N_0 is the density of the host lattice, α arises from potential ferromagnetic s–d exchange and β derives from kinetic-type antiferromagnetic p–d exchange, f_c and f_h are characterized as the degree of spatial overlap between the Mn$^{2+}$ wave function with the distribution functions of the electron and hole, respectively, and can be roughly approximated as the percentage of the carrier wave function within the core or within the shell. Assuming an isolation of the p–d and s–d interactions in the present case, the following values: $N_0, \alpha = 0.009$ eV and $N_0, \beta = 0.081$ eV have been extracted from the experimental data. A dominancy of the hole-Mn$^{2+}$ has been commonly found before [135, 136], which may be due to the symmetry restricted s–d hybridization [136]. Also worth noting, the hole-Mn$^{2+}$ interaction renders a degree of polarization larger than the pristine CdTe/CdSe of \sim2 meV at $B_0 = 0$ (see example in figure 4(b)), hence, magnetic doping induces dramatic changes of the exciton polarization, beneficial in designing spintronic devices.

Halide perovskites CQDs

In this section, we review the interplay of Rashba spin–orbit coupling on the band-edge exciton of CsPbBr$_3$ CQDs [137]. Optical spectroscopy was performed on single dots with \sim10 nm diameter, measuring the linearly and circularly polarized single-photon emission under an applied magnetic field at 4 K. Monodispersed CsPbBr$_3$ CQDs were prepared by solution-phase synthesis described in [138]. The CsPbBr$_3$ CQDs were spread onto a silicon substrate with density $<8.3 \mu g cm^{-2}$. The samples were excited by an unpolarized continuous wave diode laser ($E_{exc} = 2.75$ eV) with diffraction limited spot diameter of \sim0.5 µm and power fluency <50 W cm$^{-2}$. The variable magnetic field was applied in Faraday configuration, normal to the substrate. The polarization-sensitive detection of the linear and circular components of the exciton emission were recorded by achromatic quarter-wave plate and linear polarizer, with spectral resolution of 400 µeV. Figure 7(a) shows unpolarized μ-PL spectra of two different CsPbBr$_3$CQDs, recorded with and without a magnetic field (B_0) as labeled in the panels. The spectra show a blinking-free behavior, which might be due to the relatively large size of the dots compared with the ground state exciton Bohr radius of \sim4.5 nm [139], or due to a low occurrence of inter-band defect states [140–142]. The spectra at $B_0 = 0$ T in figures 7(a), (b) include a dominant low-energy band associated with the band-edge exciton recombination, labeled as regime I, accompanied by two peaks blue-shifted by 2.3 meV (labeled as regime II) and by 5.7 meV (labeled as regime III). In addition, a few weak side bands appear on both sides. The band I was best fitted to two Lorentzian functions (not shown here), revealing an energy split of 0.16–0.4 meV at 0 T and a pronounced split of 1.2 meV at 8 T. Figure 7(b) displays a plot comprised of collection of points referring to the split components’ energies of the excitons from 1500 different scans, versus strength of the applied magnetic field B_0. Figure 7(c) displays a plot of the energy gap between the exciton split component (ΔE) versus the strength of B_0 (red squares). The dependence of ΔE on B_0 cannot be fit to a linear Zeeman function (green curve) nor to a quadratic Zeeman function (blue curve) [143, 144]. However, the results can be qualitatively understood by a combined Rashba and Zeeman model as discussed below (see black circles in the figure). The origin of emission bands in regimes II and III is currently uncertain, but might be related to anti-Stokes acoustic phonons or high order excitons.

Figure 8 presents sets of polarized μ-PL spectra of a single CsPbBr$_3$CQD. The emission bands in figure 8(a) were detected with a linear polarizer, rotated between two orthogonal orientations (red and blue curves) with respect to a laboratory axis. The blue and red curves in panel (a) have peaks at different locations. This is most clearly displayed at a specific orthogonal position of 60°/150° (middle spectra),
probably due to coincident alignment of one detection angle with the unique crystallographic axis. The emission bands in figure 8(b) were excited by unpolarized light, but detected via left and right circular polarizers. Similar to the linearly polarized spectra, the spectra show splitting of the exciton band with increased strength of B_0. The coexistence of both linear and circular polarization of the same optical transitions, as shown in figure 8, indicates the presence of elliptical polarization.

As mentioned, the $[\text{PbBr}_6]^{-4}$ network dominates the electronic band structure. However, the A-site ions have special impact on the physical properties, due to their vibrational degrees of freedom. It has been previously proposed [145, 146] that polar organic ions (e.g., MA or FA) form hydrogen bonds to the halide anions, which induce significant structural changes via displacement of the X and M ions [147, 148]. Similarly, displacement freedom of a small inorganic ion like Cs$^+$ within the cuboctahedral void might induce a net crystalline distortion [149], which could lead to (local or global) inversion-symmetry breaking and/or a build-up of a local electric field [145–147, 149–158]. Then, in the frame of reference of a moving electron, an electric field transforms into a magnetic field, coupling electron spin with its momentum. This effective magnetic field lifts degeneracy of the spin-degenerate bands, a phenomenon known as Rashba effect [119, 159–162]. The lift of degeneracy may be related also to a Dresselhaus effect [163]. However, recent theoretical studies indicated a major contribution from the Rashba effect in perovskites materials. In particular, symmetry considerations predicted a pure Rashba band structure for lead halide perovskites, such as CsPbBr$_3$, whereas other Sn-based halides could have mixed Rashba and Dresselhaus splitting [164]. The perovskites under investigation have a low symmetry of an orthorhombic structure, as well dominant heterogeneity. Indeed, recent theoretical investigations [119, 159, 160] predicted dominancy of the Rashba effect in lead halide perovskites, hence, laid a ground for the assumptions made in this work. Figure 8(c) provides an illustration of the absorption and emission processes occurring between Rashba split band-edges in the zero magnetic field limit, when the emission process involves a quasi-forbidden recombination. The Rashba effect modifies the exciton electronic structure, inducing a zero magnetic field splitting of the spin-degenerate excitons. The magnitude of this splitting is set by the size of the spin–orbital interaction, and the amount of centrosymmetry breaking induced near the nanocrystal surfaces. The most recent effort (published elsewhere) featured the development of a model including both the Rashba and Zeeman effect and supplied the strongest support for the experimental evidence shown in figures 7 and 8. Taking into account the Rashba and magnetic-field effects, the Hamiltonian for the exciton relative coordinate (r) degree of freedom is given by:

$$H = -\frac{\hbar^2}{2m_r} + V(r) + (\alpha_z \hat{\sigma}_z - \alpha_h \hat{\sigma}_h) \cdot (\vec{r} \times \hat{\sigma}_l) + \frac{i}{2} \mu_B \hat{B} \cdot (g_e \hat{\sigma}_e - g_h \hat{\sigma}_h).$$

Where, $V(r)$ is the electron–hole interaction, m_r is the reduced mass, α_z and α_h are Rashba coefficients for electron and hole, and g_e and g_h are g-factors for electron and hole. The spin degrees of freedom in the conduction-band manifold ($m_l = \pm 1/2$) and valence-band manifold ($m_v = \pm 1/2$) states are represented by the Pauli matrices, $\hat{\sigma}_z$ and $\hat{\sigma}_h$, respectively. The model indicated that as the magnetic field is increased, the magnitude of the Zeeman splitting eventually dominates the magnitude of the Rashba-induced splitting. Beyond this point, the splitting of the exciton peaks increases linearly with the magnetic field. This explains the nonlinear evolution of peak splitting in figure 7(d). The Rashba effect supports the character of perovskite materials with a long exciton diffusion length typical for a quasi-forbidden optical transition in the absence of non-radiative recombination. We note that this effect is seen in the lead-halide perovskite quantum dots but not in the II–VI dots because of the large spin–orbit coupling of the former.
Besides the manifestation of Rashba effect in single excitons, lead-halide nanocrystals have also displayed physics related to charged exciton and biexciton formation [165, 166]. These studies have revealed a rich exciton spectrum containing multiple sublevels, which were attributed to two different types of crystal structures present in the nanocrystals.

In summary, the polarized emission of CQDs from II–VI and perovskite semiconductors were investigated thoroughly, revealing information of paramount scientific and technological interest about the optical transitions in semiconductor nanostructures. The studies included recording micro-photoluminescence of individual nanostructures at cryogenic temperatures, with or without the influence of an external magnetic field, and monitoring circular and/or linear polarized emission. The nanostructures investigated—core/alloyed-shell and giant core/shell based on II–VI semiconductors, as well as the perovskite CQDs—showed blinking-free behavior in alloyed dots, due to a suppression of an Auger process; in giant dots due to reduction of the proximity to a surface; and in perovskites dots due to their size and higher level of tolerance to impurities. The blinking-free CQDs enabled detection of spectrally stable excitons and biexcitons under continuous-wave excitation. The binding energies were tuned by the size and architecture of the nanostructures. As indicated, biexciton binding energy was found to be 23 meV in CdTe/CdTe$_x$S$_{1-x}$ CQDs with a diameter of ~4 nm and a quasi-type-II configuration, but only 3 meV in CdTe/CdSe CQDs with a diameter of 12.5 nm and type-I configuration.

Distinctive polarized transitions in II–VI CQDs originated from electron–hole exchange interaction combined with a shape distortion; though it is mainly dictated by the spin–orbit Rashba effect in perovskite CQDs. Under the influence of an external static magnetic field, the polarized components had a Zeeman dependence in the II–VI CQDs under investigation, but deviated from a pure Zeeman effect in the perovskite CQDs due to contribution of a Rashba effect at field strengths <4 T.

Overall, the type and degree of polarization elucidated the exciton manifolds, angular momentum of the emitting states and Landé g-factors, with dependence on size, internal architecture and composition. In consequence, the study advanced the understanding of the materials’ functionalities and elucidates the required design for various opto-electronic and spintronic devices.

Acknowledgments

The authors express their gratitude to the following scientists for their experimental complementary contribution: Dr Dima Cheskis, Dr Ruth Osovsky and Dr Georgy Maikov, for assembling of the experimental setup and for preliminary observation of single-dot research; Dr Nathan Grumbach and Dr Richard Capek for the synthesis of magnetically doped QDs. We express our thanks to Dr Youngjin Jang for assisting in the preparation of the manuscript. M I expresses her gratitude to the fellowship received by the Nancy and Stephen Grand Technion Energy Program. EL acknowledges...
the financial support from the Israel Council for High Education-Focal Area Technology (No. 872967), the Volkswagen Stiftung, (No.88116), the Israel Science Foundation, (No.914/15) and the Israel Science Foundation Bikura Program (No. 1508/14) and the European Commission via the Marie-Sklodowska Curie action Phonsi (H2020-MSCA-ITN-642656). DV acknowledges the financial support from ERC Advanced Grant, nr. 692691—First Step; NWO-Physics, FOM program DDC 13 ‘Designing Dirac carriers in semiconductor superlattices’; NWO-CW, Toppunt ‘Superficial superstructures’. LZT and AMR acknowledge support from the Office of Naval Research, under grant N00014-17-1-2574. MVK acknowledges financial support from the European Research Council under the European Union’s Seventh Framework Program (Grant Agreement Nr. 306733, ERC Starting Grant ‘NANOSOLID’). MIB is grateful to Swiss National Science Foundation (SNF Ambizione Energy grant, Grant Nr. PZENP2_154287).

References

through the addition of an engineered inorganic hole trap

ACS Nano 7 5084–90

[109] Lee M M, Teuscher J, Miyasaka T, Murakami T N and Snait H J 2012 Efficient hybrid solar cells based on meso-
superstructured organometal halide perovskites Science 338 643–7

[110] Kim H-S et al 2012 Lead iodide perovskite sensitized all-
solid-state submicron thin film mesoscopic solar cell with
efficiency exceeding 9% Sci. Rep. 2 591

II Seok S 2015 Compositional engineering of perovskite
materials for high-performance solar cells Nature 517
476–80

inorganic electronics IBM J. Res. Dev. 45 29–45

[113] Yakunin S, Protesescu L, Krieg F, Bodnarchuk M I,
Nedelcu G, Humer M, De Luca G, Fiebig M, Heiss W and
Kovalenko M V 2015 Low-threshold amplified spontaneous
emission and lasing from colloidal nanocrystals of caesium
lead halide perovskites Nat. Commun. 6 8056

[114] Zhu H, Fu Y, Meng F, Wu X, Gong Z, Ding Q, Gustafsson M V,
Trinh M T, Jin S and Zhu X Y 2015 Lead halide perovskite
nanowire lasers with low lasing thresholds and high quality factors Nat. Mater. 14 626–42

[115] Fang Y, Dong Q, Shao Y, Yuan Y and Huang J 2015 Highly
narrowband perovskite single-crystal photodetectors enabled
by surface-charge recombination Nat. Photon. 9 679–86

Kananaboo P and Sargent E H 2015 Sensitive, fast, and
stable perovskite photodetectors exploiting interface
engineering ACS Photonics 2 1117–23

[117] Park Y S, Guo S, Makarov N S and Klomov V I 2015 Room
temperature single-photon emission from individual
perovskite quantum dots ACS Nano 9 10386–93

[118] Kepenekian M, Robles R, Katan C, Sapor D, Pedesseau L and
Even J 2015 Rashba and dresselhaus effects in hybrid organic–inorganic perovskites: from basics
to devices ACS Nano 9 11557–67

orbit coupling enhanced carrier lifetime in CH3NH3PbI3
Nano Lett. 15 7794–800

halide perovskites and other metal halide complexes as
inorganic capping ligands for colloidal nanocrystals J. Am.
Chem. Soc. 136 6550–3

[121] Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I,
Groeven M J and Kovalenko M V 2015 Fast anion-
exchange in highly luminescent nanocrystals of cesium lead
halide perovskites (CsPbX3, X = Cl, Br, I) Nano Lett. 15
5635–40

Electronic structures of lead iodide based low-dimensional
crystals Phys. Rev. B 67 155405

[123] Brandt R E, Stevanovič V, Ginley D S and Buonassisi T 2015
Identifying defect-tolerant semiconductors with high
mind-sty-carrier lifetimes: beyond hybrid lead halide perovskites MRS Commun. 5 265–75

[124] Even J, Pedesseau L and Katan C 2014 Analysis of multivalley and multibandgap absorption and enhancement of free carriers related to exciton screening in hybrid
perovskites J. Phys. Chem. C 118 11566–72

[125] Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K and
Miura N 2003 Comparative study on the excitons in lead-
halide-based perovskite-type crystals CH3NH3PbBr3,
CH3NH3PbI3 Solid State Commun. 127 619–23

[126] Pedesseau L, Kepenekian M, Robles R, Sapor D, Katan C and
Even J 2016 Theoretical studies of Rashba and Dresselhaus effects in hybrid organochalcogen perovskites for
optoelectronic applications Proc. SPIE 9742 97421B

[127] Vaxenburg R, Lifshitz E and Efros A L 2013 Suppression of
auger-stimulated efficiency droop in nitride-based light
detecting diodes Appl. Phys. Lett. 102 031120

of polarization fields in auger-induced efficiency droop in
nitride-based light-emitting diodes Appl. Phys. Lett. 103 221111

[129] Kloper V, Osovsky R, Kolny-Olesiak J, Sashchiuk A and
Lifshitz E 2007 The growth of colloidal cadmium telluride
nanocrystal quantum dots in the presence of Cd0
nanoparticles J. Phys. Chem. C 111 10336–41

[130] Osovsky R, Cheskis D, Kloper V, Sashchiuk A.,
Kroner M and Lifshitz E 2009 Continuous-wave pumping of
multieexciton bands in the photoluminescence spectrum of a
single CdTe–CdSe core–shell colloidal quantum dot Phys.
Rev. Lett. 102 197401

[131] Bacher G 2003 Optical spectroscopy on epitaxially grown II–
VI single quantum dots Single Quantum Dots (topics in
Applied Physics) vol 90 (Berlin/Heidelberg: Springer)
147–84

Van Dijk-Mon, R J A, Lifshitz E and Vannuela Bergh D
2015 Quantum confinement regimes in CdTe nanocrystals
probed by single dot spectroscopy: from strong confinement
to the bulk limit ACS Nano 9 7840–5

exchange interaction in CdTe/CdSe colloidal quantum dots
by controlled positioning of Mn2+ impurities J. Phys.
Chem. C 117 21021–7

[134] Grumbach N, Rubin-Brusilovski A, Maikov G I,
Tilchin E and Lifshitz E 2013 Manipulation of carrier–Mn2+
exchange interaction in CdTe/CdSe colloidal quantum dots
by controlled positioning of Mn2+ impurities J. Phys.
Chem. C 117 21021–7

Appl. Phys. 64 R29–64

[136] Isarov M, Tan L Z, Bodnarchuk M I, Kovalenko M V,
Rappe A M and Lifshitz E 2017 Rashba effect in a single
colloidal CsPbBr3 perovskite nanocrystal detected by
magneto-optical measurements Nano Lett. 17 5020–6

[137] Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F,
Caputo R, Henderson C H, Yang R X, Walsh A and
Kovalenko M V 2015 Nanocrystals of cesium lead halide
perovskites (CsPbX3, X = Cl, Br, I): novel optoelectronic materials showing bright emission with wide
color gamut Nano Lett. 15 3692–6

[138] Tilchin J, Dirin D N, Maikov G I, Sashchiuk A,
Kovalenko M V and Lifshitz E 2016 Hydrogen-like
wannier–mott excitons in single crystal of methylammonium
lead bromide perovskite ACS Nano 10 6636–71

Halide-dependent electronic structure of organolead
perovskite materials Chem. Mater. 27 4405–12

[140] Stranks S D, Burlakov V M, Leijtens T, Ball J M,
Goriely A and Snait H J 2014 Recombination kinetics in
organic–inorganic perovskites: excitons, free charge, and
subgap states Phys. Rev. Appl. 3 24007

Yaffe O, Kudisch B J and Zhu X Y 2015 Trap states in lead
iodide perovskites J. Am. Chem. Soc. 137 2089–96

[142] van Bree J, Silov A Y, Koenraad P M, Flatté M E and
Pyrz C E 2012 g factors and diamagnetic coefficients of
electrons, holes, and excitons in InAs/InP quantum dots Phys.
Rev. B 85 165323

[143] Jovanov V et al 2012 Highly nonlinear excitonic zeeman spin
splitting in composition-engineered artificial atoms Phys.
Rev. B 85 165433
[151] Leguy A M A et al 2015 The dynamics of methylammonium ions in hybrid organic–inorganic perovskite solar cells Nat. Commun. 6 7124