
Journal of Economic Theory 101, 333�373 (2001)

Efficient Non-Contractible Investments
in Large Economies1

Harold L. Cole

Department of Economics, UCLA Box 951477,
Bunche Hall 9377, Los Angeles, California 90095-1477

hlcole�econ.ucla.edu

and

George J. Mailath and Andrew Postlewaite

Department of Economics, University of Pennsylvania, 3718 Locust Walk,
Philadelphia, Pennsylvania 19104-6297

gmailath�econ.sas.upenn.edu, apostlew�econ.sas.upenn.edu

Received June 1, 1999; final version received January 26, 2001;
published online August 17, 2001

Do investors making complementary investments face the correct incentives,
especially when they cannot contract with each other prior to their decisions? We
present a two-sided matching model in which buyers and sellers make investments
prior to matching. Once matched, buyer and seller bargain over the price, taking
into account outside options. Efficient decisions can always be sustained in equi-
librium. We characterize the inefficiencies that can arise in equilibrium and show
that equilibria will be constrained efficient. We also show that the degree of diver-
sity in a large market has implications for the extent of any inefficiency. Journal of
Economic Literature Classification Numbers: C78, D41, D51. � 2001 Elsevier Science

doi:10.1006�jeth.2001.2797, available online at http:��www.idealibrary.com on

333
0022-0531�01 �35.00

� 2001 Elsevier Science
All rights reserved.

1 This paper draws heavily from two earlier papers of ours, ``Bargaining and Investment in
a Two-Sided Matching Model'' and ``Efficient Non-Contractible Investments.'' We thank
Daron Acemoglu, Jere Behrman, John Moore, Mark Rosenzweig, Randall Wright, a referee,
an associate editor, and seminar audiences at numerous universities for helpful discussion and
comments. The research reported here was conducted while Cole was a member of the
Research Department of the Federal Reserve Bank of Minneapolis. The views expressed
herein are those of the authors and not necessarily those of the Federal Reserve Bank of
Minneapolis or the Federal Reserve System. Mailath and Postlewaite thank the Economics
Department at the University of Bonn and the Minneapolis FRB for their hospitality. They
also acknowledge financial support from the NSF, the Deutsche Forschungsgemeinschaft
(SFB 303), and the Minneapolis FRB.



1. INTRODUCTION

Complementary investments are often made by different individuals; for
example, a worker may invest in human capital while a firm invests in
machinery that utilizes that human capital. Do investors making com-
plementary investments face the correct incentives, especially when they
cannot contract with each other prior to their decisions? The traditional
answer is no (Williamson [22] and Grossman and Hart [12]). An agent's
investment is a sunk cost by the time the agents bargain over the split of
the surplus that results from the investment. Since bargaining typically
allocates part of the surplus generated by an agent's investment to the
other party, the failure of that agent to capture the full benefit of his
investment leads to underinvestment.

In the analysis of this holdup problem, the degree to which an agent
cannot capture the benefits of his or her investment is related to asset
specificity. An agent's outside options will put a lower bound on the share
of the surplus that he or she gets in any plausible bargaining process. A
worker whose skills are nearly as valuable on a machine other than that
owned by the person he or she is currently bargaining with can play off
the two owners against each other. In many circumstances, competition
between potential partners provides protection against the holdup
problem, and agents capture the bulk of the benefits of their investments
and, consequently, have incentives to invest efficiently. The polar extreme
to this case is that an agent's investment is only of value to a single
individual, for example, a worker who becomes an expert on a unique
machine. The value of his or her investment is specific to the match with
the owner of that machine. Intuitively, the lack of outside options for such
an agent should lead him or her to expect a smaller share of the surplus
generated by his or her investment than when there is potential competi-
tion for his or her services.

While there is a large literature that analyzes the effect of asset specificity
on investment, the degree to which investments are specific is typically
taken to be exogenous. That analysis considers a single pair in isolation,
taking as given other agents' investments and the outside options inherent
in those investments. The difficulty with analyzing investments of a single
pair is that those investments determine (at least in part) the outside
options of other pairs. Consider a matching problem in which there are a
number of people on each side who might make investments in hopes of
subsequently pairing with someone who has made a complementary invest-
ment. The return any individual can expect from investing will be the outcome
of the bargaining with his or her future partner, which will depend on the
outside options of both individuals. These outside options, of course, are
determined precisely by the investment decisions of the agents involved.
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Our aim is to analyze the investment decisions of agents who, subse-
quent to investing, pair off, produce a surplus, and share that surplus
through some bargaining process. We treat the agents' investment decisions
as a noncooperative game, with each agent's decision depending on the
(equilibrium) investment choices of other agents like him or her and of the
agents with whom he or she can potentially match. In this way the asset
specificity of agents' investments is endogenously determined, rather than
exogenously assumed. We are particularly interested in comparing the
investments agents make when they can contract prior to investing and
those they make when they cannot. If agents can contract over the invest-
ment levels they make, investments will be efficient. We take those
investments as a benchmark to which we compare investments when ex
ante contracting is impossible. When ex ante contracting is impossible,
there will always be an equilibrium in which agents invest efficiently, but
there may be additional equilibria characterized by inefficient investments.
The analysis also suggests that, in many situations, the efficient investment
equilibrium is implausible.

In order to focus on the efficiency of investment choices and bargaining
over the resulting surplus, we label the two sides in the relationship
``buyers'' and ``sellers.'' There is, of course, nothing important about this,
and we could have used the terms ``workers'' and ``firms.''

In the next section, we present two simple examples that illustrate the
investment and matching process, one with a finite number of agents and
another with an infinite number of agents. The second example illustrates
the possibilities of both equilibrium under- and over-investment. Section 3
then discusses related literature. We are interested in the case of many
agents, when any single agent's behavior does not affect other agents'
possibilities. Toward this end, we introduce in Section 4 a model with a
continuum of agents. We characterize the payoffs to agents, conditional on
their investment decisions, and show that a version of Makowski and
Ostroy's [19] full appropriation condition holds, in that almost all agents
receive the marginal social value of their investment decisions (since we are
dealing with a continuum of agents, the appropriate notion of marginal
social value is, of course, delicate). Section 5 compares the equilibria when
ex ante contracting is possible with those when it is not possible. We
provide a version of the neoclassical second welfare theorem: The ex ante
efficient outcome is always an equilibrium outcome even when ex ante con-
tracting is not possible. However, as the examples of Section 2 indicate, when
ex ante contracting is impossible, inefficient equilibria typically also exist.
Section 6 characterizes the types of inefficiencies that can arise in equilibrium,
and in particular, shows that equilibria will be, in a natural sense, constrained
efficient. We also show that the degree of diversity of agents' exogenous charac-
teristics has implications for the extent of any inefficiency.

335EFFICIENT NON-CONTRACTIBLE INVESTMENTS



2. TWO MOTIVATING EXAMPLES

We begin by illustrating several issues with a simple finite example.
There are two buyers, [1, 2], and two sellers, [1, 2]. For now, we fix the
attributes of the buyers and sellers as in Table I. The surplus generated by
a pair (b, s) is given by the product of their attributes, b } s. Table I displays
one particular outcome for this environment with each of the two columns
representing a matched pair and the split of the surplus for that pair. Total
surplus is maximized by the indicated matching, and the split of the surplus
for the pairs is unique if the sharing rule is symmetric with respect to
buyers and sellers.

Suppose now that attributes are not fixed, but are chosen from the set
[2, 3]. We focus on the behavior of seller 1, with the attributes of the other
agents unchanging.2 If the surplus is always divided equally and seller 1
chose instead s=3, then the matching and surplus division are as in Table
II. For these attributes, equal division violates equal treatment: The two
sellers have the same attribute but receive different payoffs. Such a
specification of payoffs is not stable, however, since seller 1 could make
buyer 2 a marginally better offer than he or she gets when matched with
seller 2.

In addition to violating equal treatment, equal division may also prevent
efficient attribute choices. If, for example, the cost of attribute 2 to seller 1
is 0, while the cost of attribute 3 is 3

2 , then the increase in surplus when
seller 1 chooses attribute 3 rather than attribute 2 is 2, while the increased
cost to seller 1 of choosing the higher attribute is only 3

2 . This is, of course,
a simple consequence of having a sharing rule that gives part of the
increase in output that results from seller 1's investment to the buyer that
is matched with seller 1.

There are sharing rules that satisfy equal treatment (and so are stable);
Table III gives one such rule. While we obtain equal treatment here,
the incentive for inefficient choice remains. For example, if the cost of
attribute 3 to seller 1 is 21

4 , then seller 1 chooses s=3, even though it is
inefficient to do so. The problem now is that the payoff to the buyer who
is matched with seller 1 falls in response to the higher attribute of the
seller.

There does exist a specification of payoffs for this vector of buyers' and
sellers' attribute choices that satisfies equal treatment, is stable, and implies
efficient choices by seller 2; Table IV gives one. When seller 1 changes his
or her attribute, the surplus division between buyer 2 and seller 2 changes
even though the characteristics of that match did not change.
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TABLE I

An Example with Two Buyers and Sellers

Buyer's share (xi) 2 41
2

Buyer's attribute (bi) 2 3
Buyer (i) 1 2
Seller ( j) 1 2
Seller's attribute (sj) 2 3
Seller's share ( pj) 2 41

2

TABLE II

Seller 1 with Attribute s=3

xi 3 41
2

bi 2 3
i 1 2
j 1 2
sj 3 3
pj 3 41

2

TABLE III

Equal Treatment and Inefficiency

xi 11
2 41

2

bi 2 3
i 1 2
j 1 2
sj 3 3
pj 41

2 41
2

TABLE IV

Equal Treatment and Efficiency

xi 2 5
bi 2 3
i 1 2
j 1 2
sj 3 3
pj 4 4
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With a large population, one might expect that a single buyer (or seller)
changing attribute would not change the division of those matches that are
unaffected by the attribute change. Furthermore, if a particular agent's
partner changes his or her attribute, this agent has the option of matching
with other agents in the economy. In many situations with large numbers
of agents, the existence of alternative partners should eliminate any change
in the payoff received by the partner. The violation of both of these proper-
ties in the example is due to the finiteness of the set of agents.

The possibility of inefficient ex ante investment, however, is not a conse-
quence of the finiteness of the set of agents. We now present an example
with a continuum of agents that has the property that a single agent's
attribute choice will not affect the payoffs of any other agent. Nonetheless,
there is an equilibrium with underinvestment in attributes. In addition,
there also exists an equilibrium with an overinvestment in attributes, as
well as an equilibrium with efficient investment. We describe the example here
somewhat crudely; the details of the example can be found in Appendix D.

Buyers are indexed by i and sellers by j, with i and j uniformly
distributed on an interval [i

�
, @� ]. We begin with the surplus function of the

previous example, v(b, s)=bs, where b and s are respectively the buyer's
and seller's attributes. The cost functions for acquiring attributes are � and
c, where �(b, i )=b5�(5i ) is the cost to buyer i of attribute b and
c(s, j )=s5�(5j ) is the cost to seller j of attribute s.

Aggregate net surplus, v(b, s)&�(b, i )&c(s, j ), is maximized by match-
ing buyer i with seller j=i, and setting b=s= 3

- i. Suppose agents choose
these joint maximizing attributes and share equally the surplus generated
by these attributes. It can be shown that this assortative matching (match-
ing buyer and sellers with the same attribute), along with equal sharing of
the surplus is stable: there is no unmatched buyer and seller that would be
better off matching.

We are interested in whether agents have an incentive to choose the sur-
plus maximizing attributes; toward this end, we formulate agents' attribute
choices as a noncooperative game. Let ; and _ be strictly increasing
attribute choice functions for buyers and sellers, and consider a stable
matching and sharing of the resulting surpluses. Given the sharing rule,
x~ (b) denotes the payoff that a buyer who chose attribute b in the range of
; receives. Similarly, p~ (s) denotes the payoff to any seller choosing attribute
s in the range of _.

We assume that any buyer who chooses attribute b in the range of ; will
receive payoff x~ (b), capturing the idea that in a continuum economy an
agent who mimics another agent will receive the same (gross) payoff as the
imitated agent. Similarly, a seller choosing attribute s in the range of _ will
receive payoff p~ (s). But what is the payoff to a buyer choosing an attribute
b not in the range of ;? With supermodular surplus functions, stable
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matchings must be positively assortative. For any attribute b a buyer might
choose, stability thus determines the attribute of the seller he or she will be
matched with, denoted s~ (b). The buyer's (gross) payoff, x~ (b), when he or
she chooses attribute b will then be v(b, s~ (b))& p~ (s~ (b)), again capturing the
idea that in a continuum economy, individual agents' choices don't affect
the payoffs to other agents. Note that for b in the range of ;, this agrees
with our earlier definition. The seller's gross payoff, p~ (s), is similarly
extended. We call [(;, _), (x~ , p~ )] an ex post contracting equilibrium if for
all i, ;(i ) maximizes x~ (b)&�(b, i ) and _(i ) maximizes p~ (s)&c(s, i ).

It is straightforward to argue that choosing attributes that maximize
aggregate net surplus, and dividing the consequent surplus equally, con-
stitutes an ex post contracting equilibrium: Buyer i 's problem is to choose
the attribute that results in a match for which i 's share of the surplus less
his cost of that attribute is highest, that is

max
b

1
2v(b, s~ (b))&�(b, i ).

The first order condition is

1
2

�v(b, s~ (b))
�b

+
1
2

�v(b, s~ (b))
�s

ds~
db

&
��(b, i )

�b
=0.

By the symmetry between buyers and sellers, s~ (b)=b and �v(b, s~ (b))��b=
�v(b, s~ (b))��s. Hence, the first order condition can be rewritten as

�v(b, b)
�b

&
��(b, i )

�b
=0,

which is equivalent to the first order condition from jointly maximizing the
total net surplus. Note that this argument works for any symmetric surplus
function v.

The observation that agents have an incentive to choose their joint maxi-
mizing attribute choice when all other agents are doing so is particularly
straightforward in the presence of symmetry.3 We show in Section 5 that
this property does not depend on symmetry.

We next show that not every ex post equilibrium yields efficient invest-
ment. We modify the surplus function to

v*(b, s)={bs,
2(bs)2,

if bs� 1
2 ,

if bs> 1
2 .
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FIG. 1. The net surplus functions corresponding to bs and 2(bs)2, where .1 (i )=
maxb, s bs&�(b, i )&c(s, i ) and .2 (i )=maxb, s 2(bs)2&�(b, i )&c(s, i ).

The cost functions are unchanged. Note that bs and 2(bs)2 are both strictly
supermodular on R2

+ , and moreover, 2(bs)2<bs if and only if bs< 1
2.

Hence, this new surplus function is supermodular as well. The joint maxi-
mizing choices for some agent pairs will clearly be higher under v* than
under v, since the marginal product of attribute is higher.

Figure 1 shows the net surplus functions for agents with index in the
interval [i

�
, @� ]=[.2, .3] that correspond to efficient attribute choice under

surplus functions bs and 2(bs)2. In Fig. 2, we show the buyers' efficient
attribute choices ;� 1 (i ) and ;� 2 (i ) for the surplus functions bs and 2(bs)2

respectively. (The sellers' efficient attribute choices are the same as those of
the buyers'.)

FIG. 2. The attribute choice functions.
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For the ``hybrid'' surplus function v*, efficient attribute choices are given
by ;� 1 (i ) for agents with index below i*, and by ;� 2 (i ) for agents with index
above i*, where i* is the agent index for which (;� 1 (i ))2&2(;� 1 (i ))5�(5i )=
2(;� 2 (i ))4&2(;� 2 (i ))5�(5i ). There is a discontinuity in agents' attribute
choice at i*, the point at which the net surplus under v=2(bs)2 overtakes
v=bs.4 Of course, the definition of i* ensures that there is no discontinuity
in net payoffs there.

Since v* is symmetric, there is an ex post contracting equilibrium in
which the efficient attributes are chosen. However, for the case
[i

�
, @� ]=[.2, .3], there will be an inefficient underinvestment equilibrium as

well. If all agents' attribute choices are given by bi=;� 1 (i ), and sj=_̂1 ( j ),
no agent will have an incentive to alter his choice. It is not profitable for
buyer @� =.3, for example, to deviate because the maximum attribute
available among all sellers is so low. Essentially, there is a coordination
failure in this equilibrium: For all matched pairs with index i> i*, increas-
ing both bi and si increases the net payoffs to both buyer and seller, but an
increase by only one of the agents will decrease that agent's net payoff.
However, for @� >.63, the diversity in attribute choices under ;� 1 is so large
that the underinvestment outcome is no longer an equilibrium (see Section 6).

Besides these two equilibria��efficient attribute investment and underin-
vestment��there is, again for the case [i

�
, @� ]=[.2, .3], a third equilibrium

with overinvestment. Appendix D verifies that bi=;� 2 (i ) and si=_̂2 (i ) for
all i # [i

�
, @� ] constitutes an equilibrium. This is clearly overinvestment for all

matched pairs with index i<i*. It is not profitable for buyer i
�
=.2, for

example, to deviate because the marginal reward of increasing attribute is
so high, even matching with the lowest attribute seller. On the other hand,
if i

�
=.1, the overinvestment outcome is not an equilibrium (again, see

Section 6).
This example demonstrates that moving to a continuum of agents

eliminates several undesirable effects of a finite population, but the
possibility of either overinvestment or underinvestment remains. The dis-
cussion of the example, however, glossed over a number of substantial
technical issues. After discussing the related literature, we deal with these
technical issues and investigate in more detail the extent of the possible
inefficiencies.

3. RELATED LITERATURE

Hart [13, 14] and Makowski and Ostroy [19] are conceptually close to
our paper. Hart [13] analyzed a model of monopolistic competition in
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which firms simultaneously decide whether to pay a setup cost that will
enable them to produce goods, and subsequently to choose what goods to
produce (this is analogous to our attribute choice) and the prices they will
charge for those goods. A finite number of firms will choose to enter the
market, and they will choose unique goods to produce, earning
monopolistic profits because of the uniqueness.

An important assumption in Hart [13] is that consumers' preferences
are convex and differentiable. Hart [14] drops the assumption on prefer-
ences and shows that if there are complementary goods, there may be inef-
ficient equilibria due to coordination failure even in large economies. While
equilibria in Hart [14] may be inefficient, they are constrained efficient in
the sense that if a given equilibrium is inefficient, it cannot be Pareto
dominated by an equilibrium allocation using only the goods produced in
the equilibrium. We prove a similar result (Proposition 4): Pareto gains
necessitate changing the ex ante decisions of multiple agents.

Makowski and Ostroy [19] consider a finite population model in which
individuals choose occupations, and those occupations determine the goods
that can be consumed. The aim of their paper is to demonstrate that when
each individual's benefit from an occupational choice coincides with the
social contribution of that choice ( full appropriation), and there are no
complementarities among occupational choices, equilibria will be efficient.
The condition that there are no complementarities rules out the coordina-
tion-failure inefficiency treated in Hart [14] and which can arise in our
model. A version of full appropriation holds in our model (see Section 4.1),
and we focus on the implications of the existence of complementarities.

Unlike Hart [13, 14] and Makowski and Ostroy [19], we work in a
matching-bargaining environment that permits a more transparent model-
ing of complementarities in production, as well as the equilibrium deter-
mination of the division of the resulting surplus. This setting also allows us
to obtain more informative results on the scope and nature of the inefficien-
cies that can arise in equilibrium.

Subsequent to our work, there have been several other papers that study
the case in which contracting at the time investments are made is ruled out.
Felli and Roberts [10] analyze a finite agent model in which Bertrand
competition among workers for jobs leads to efficient investment. It is
worth noting that, for the finite version of our model (analyzed in Cole,
Mailath, and Postlewaite [5]), the Bertrand competition they study is a
noncooperative selection from the set of stable payoffs in the ex post con-
tracting game. DeMeza and Lockwood [7] and Chatterjee and Chiu [4]
analyze models in which both sides of a market can undertake investments
prior to matching. Both, however, analyze models that are constructed to
generate inefficient investment, with the aim to understanding how different
ownership structures affect the inefficiency. Peters and Siow [20] analyze
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a model in which utility is not transferable between parties (the marriage
problem) and demonstrate conditions under which investments will be
efficient.

Besides these papers, there are several other papers that are related, but
less closely. Acemoglu [1] studies a model with two-sided investments in
a matching setting, but with costly bilateral search to obtain pecuniary
externalities. Acemoglu [2] analyzes a worker-firm model in which there
may be inefficient underinvestment in human capital. The inefficiency in
that model stems from costly search if a worker-firm match is dissolved.
Acemoglu and Shimer [3] use a matching model with one-sided
investments to investigate the hold-up problem. Their focus, however, is
on the role of search frictions and the non-investing partner's ability to
direct search on the efficiency of investments. Cole and Prescott [6] and
Ellickson, Grodal, Scotchmer, and Zame [8], [9] analyze models that
take agents' characteristics as given. When agents differ in ability, coalitions
are inefficiently small. MacLeod and Malcomson [18] study the hold-up
problem associated with investment decisions taken prior to contracting
and provide, in a specific model, the idea that ex ante investments will be
efficient, as long as the investments are general and there are outside
options. That investments in their model are general leads to competition
for the individual making the investment, assuring him or her of the
incremental surplus that results from the investment. This is similar to the
effect of competition from agents with attributes that are close in our
model. Their model, however, doesn't give rise to coordination inefficien-
cies.

4. THE EX POST ASSIGNMENT GAME

There is a continuum of buyers and of sellers, with the population of
each described by Lebesgue measure on [0, 1]. Buyer i # [0, 1] can choose
attribute b # R+ at a cost �(b, i ), and seller j # [0, 1] can choose attribute
s # R+ at a cost c(s, j ).5 A buyer of attribute b who matches with a seller
of attribute s generates a (gross) surplus of size v(b, s).

The surplus function v is C2 and displays strict complementarities in
attributes (v is supermodular): for b<b$ and s<s$, v(b$, s)+v(b, s$)<
v(b, s)+v(b$, s$). Since v is C2, this is equivalent to �2v��b �s>0. We also
assume v is strictly increasing in b and in s.

Buyers and sellers first simultaneously choose attributes and, subsequent
to the choice of attributes, match and share the surplus generated by these
matches. Denote buyers' and sellers' behavior by the respective functions
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;: [0, 1] � R+ and _: [0, 1] � R+ . We model the bargaining and match-
ing process that follows the attribute choices (;, _) as a cooperative game.
Given a fixed distribution of buyers' and sellers' attributes, the resulting
cooperative game is an assignment game: there are two populations of
agents (here, buyers and sellers), with each pair of agents (one from each
population) generating some value if matched. We call this assignment
game the ex post assignment game (indicating that attribute choices are
taken as fixed). We describe later the ex ante assignment game. An outcome
in the assignment game is a matching (intuitively, each buyer matching
with no more than one seller and each seller matching with no more than
one buyer) and a bargaining outcome (a division of the value generated by
each matched pair between members of that pair). We denote buyer i 's
return from the surplus by x(i )�0 and seller j 's return by p( j )�0.

In a model with finite populations of buyers and sellers, a bargaining
outcome is feasible if in all matched pairs (i, j ), x(i )+ p( j )�v(;(i ), _( j )),
and unmatched agents receive zero. A continuum of agents presents some
complications in defining feasible bargaining outcomes. We first define
feasible bargaining outcomes; we discuss the definition in some detail after
the definition of stability.

Definition 1. Suppose ; and _ are strictly increasing. A bargaining
outcome (x, p) is feasible if, for all i, j # [0, 1],

x(i )�max[lim sup
j $ � i

[v(;(i ), _( j$))& p( j$)], 0]

and

p( j )�max[lim sup
i $ � j

[v(;(i$), _( j ))&x(i$)], 0].

To capture the idea that the division of the surplus within any match
should respect outside options, we require that the bargaining outcome,
with its associated matching, be stable: there are no pairs of agents who,
by matching and sharing the resulting surplus, can make themselves strictly
better off.6
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Definition 2. A bargaining outcome (x, p) is stable if it is feasible and
for all i, j # [0, 1],

x(i )+ p( j )�v(;(i ), _( j )). (1)

A matching associated with a stable bargaining outcome is a stable matching.

In a model with finite populations of buyers and sellers, a bargaining
outcome is feasible if in all matched pairs (i, j ), x(i )+ p( j )�v(;(i ), _( j )),
and unmatched agents receive zero. Moreover, stability implies that match-
ing is positively assortative in attributes (this is an immediate implication
of v being supermodular). In our case, with a continuum of buyers and
sellers, it would then be natural to specify that when the attribute func-
tions, ; and _, are strictly increasing, i matches with j=i.7 Indeed, as we
will see, when the attribute functions are continuous (as well as strictly
increasing) and matching is positively assortative in index, feasibility is
adequately captured by the finite population pairwise feasibility require-
ment: x(i )+ p(i )�v(;(i ), _(i )) for all i. However, as we saw in Section 2,
there is no reason to believe that endogenous attribute choices will
necessarily be continuous functions of agent characteristics. Indeed,
efficient attribute choices may preclude continuity. Feasible bargaining out-
comes must then be defined when attribute functions are increasing, but
not necessarily continuous.

We illustrate the issues through an example: Suppose first that v(b, s)
=bs, ;(i )=1+i for all i, _( j )=1+ j for all j, and matching is positively
assortative by index (equivalently, by attribute). Then the bottom pair
generates a surplus of 1, and equal division of the surplus for each pair is
feasible under the pairwise feasibility requirement and stable. Suppose now
the bottom buyer's attribute is 0 rather than 1 (i.e., ;(0)=0). The pairwise
feasibility requirement forces p(0)=0. However, the point of modeling the
population of agents as a continuum is to capture the idea that a single
agent's actions do not adversely affect the feasible returns available to other
agents (since the other agents can avoid this agent).

Consider now the sequence of matchings [mn]�
n=2 where i matches with

j=i, except that buyers 0 and 1
n exchange partners.8 If returns under mn are

determined by equal division of the induced surpluses, then the returns for
all agents, except buyer 0, converge to the returns they receive under equal
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division when ;(0)=1. This includes seller 0. Thus, there is a sequence of
matchings that yield returns that satisfy the pairwise feasibility require-
ment, and yet their limit does not. Note, moreover, that in the case
;(0)=0, the pairwise feasibility requirement with stability forces p( j ) � 0
as j � 0. At an intuitive level, we would like the bargaining outcome
(x*, p*), where x*(0)=0, x*(i )=(1+i )2�2 for i>0, and p*( j )=
(1+ j )2�2 for all j, to be feasible and stable.9 Our definition of feasibility
accomplishes this.

Another possibility is to require pairwise feasibility only almost
everywhere, rather than everywhere. The drawback with this notion for our
purposes is that the payoffs to a single agent when he or she deviates in
choice of attribute is not determined. Our definition has the essential
feature that when combined with stability, it uniquely determines a single
agent's return as a function of the other agents' returns. This is necessary
if an agent is to compare returns from different attribute choices.

Rather than give a complete treatment of feasibility in all assignment
games with a continuum of agents and arbitrary attribute choice functions,
we have defined feasibility in the simple case of strictly increasing attribute
choice functions with positively assortative matching on index effectively
imposed. Almost everywhere positive assortative matching by attribute can
be deduced from stability and the notion of feasibility used by Gretsky,
Ostroy, and Zame [11] or that used by Kamecke [15].10 In Section 4.1,
we will be concerned with the total social surplus of nonincreasing attribute
choice functions, and in that case, we use the feasibility notion of Gretsky,
Ostroy, and Zame [11]. The indeterminacy of individual payoffs is not an
issue when we are concerned only with total social surplus.
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9 It is not critical in this example that the bottom buyer has chosen an isolated attribute.
The same issue arises whenever there is a discontinuity in the attribute choice functions. Sup-
pose, for example, that the buyer attribute choice function is discontinuous. We would like the
set of sellers' feasible returns to be the same when the buyer attribute choice function only
differs in whether it is continuous from the left or from the right.

10 Our notion of feasibility differs from that in Gretsky, Ostroy, and Zame [11] and in
Kamecke [15]. Since our definition applies only to positively assortative matchings, we have
not described feasibility for ``most'' matchings. The measure-theoretic notion of feasibility in
Gretsky, Ostroy, and Zame [11], when combined with stability, does not force isolated
attributes to have unique returns (when other agents' returns are fixed). The notion of
feasibility in Kamecke [15] effectively requires that the attribute functions be continuous.
Kamecke defines a bargaining outcome to be feasible if it can be approximated, in the sense
of uniform convergence, by payoffs that are pairwise feasible. In our example, (x*, p*) would
not be feasible under this notion. Simply requiring pointwise convergence, on the other hand,
is too weak, since under this notion of feasibility, there are feasible and stable returns that
violate equal treatment. Consider again the example, but with ;(i )=_( j )=1 for all i and j.
Let mn be the matching described in footnote 8. The payoff (xn , pn) given by xn (0)= 3

4 ,
xn (i )= 1

2 , pn ( 1
n)= 1

4 , and pn ( j )= 1
2 is feasible for mn . Moreover, it converges pointwise to the

stable returns (x~ , p~ ), where x~ (0)= 3
4 , x~ (i )= 1

2 , and p~ ( j )= 1
2 .



There are several things to note about our definition of feasibility. First,
if all the relevant functions (;, _, x, and p) are continuous and the non-
negativity constraints are not binding, this reduces to the pairwise
feasibility definition for positively assortative matching by index. Second,
the role of the nonnegativity constraint (which, we show below, cannot
bind almost everywhere) is to describe agents like buyer 0 in the example
above. Finally, as in the example, with a continuum of agents, an agent i
may not be matching with precisely j=i. Rather, he or she may be match-
ing with agents arbitrarily close to j=i. Moreover, these matches may yield
higher returns. Taking the lim sup captures these possibilities.11

It is immediate that the definition of stability implies that the inequalities
in the definition of feasibility hold as equalities for stable bargaining out-
comes. In the finite case, equal treatment implies that if stable returns have
been fixed for all but one buyer (similar statements hold for sellers) and if
that buyer has the same attribute as a second buyer, then that buyer's
return is determined by the second buyer's return. There is a similar result
for the continuum agent case. Suppose that stable returns have been fixed
for all but one buyer. Then that buyer's return is determined by that of any
other buyers whose attributes are arbitrarily close.

Lemma 1. Suppose ; and _ are strictly increasing. For any stable
bargaining outcome (x, p), x and p are strictly increasing (and so their left
hand and right hand limits exist). Moreover, x and p inherit the continuity
properties of ; and _, respectively (i.e., if ; is continuous from the left at i$,
then x is continuous from the left at i$, etc.).

Proof. See Appendix A.

Let C(;, _) be the set of common continuity points of ; and _. By
Lemma 1, for i$ # C(;, _), stable x and p are both continuous at i$, and
so x(i$)�max[v(;(i$), _(i$))& p(i$), 0] and p(i$)�max[v(;(i$), _(i$))&
x(i$), 0]. Hence, x(i$), p(i$)�v(;(i$), _(i$)) and so x(i$)+ p(i$)=v(;(i$),
_(i$)). We can thus assume that buyer i with attribute b=;(i ) is matching
with precisely seller j=i with attribute s=_(i ). This allows us to define the
function s~ : ;(C(;, _)) � S given by s~ (b)=_(;&1 (b)) and the function
b� : _(C(;, _)) � B given by b� (s)=;(_&1 (s)). For b # ;(C(;, _)), s~ (b) is the
attribute of the seller that the buyer with attribute b matches with.

It is also helpful to have specific notation for the return that a particular
attribute receives in a stable bargaining outcome (x, p). Suppose ; and _
are strictly increasing. Define

x~ (b)#x(;&1 (b)) (2)
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and

p~ (s)#p(_&1 (s)). (3)

Equivalently, (x, p)=(x~ b ;, p~ b _). We say the return vector (x~ , p~ ) is stable
if (x~ (;), p~ (_)) is stable.

The special case in which there are isolated attribute choices is
straightforward to analyze and does not add anything substantive. To
simplify notation, we accordingly rule out isolated attribute choices in the
statement of our characterization result.

Definition 3. A function is well-behaved if it is strictly increasing,
discontinuous at only a finite number of points, Lipschitz on every interval
of continuity points, and has no isolated values.

We use repeatedly the following property of well-behaved functions. Sup-
pose f : [0, 1] � R is well-behaved. There is then a finite set of points
D#[i1 , i2 , ..., iT] at which f is discontinuous, and f is continuous for all
i � D. Define It=(it , it+1) (with the obvious modification for t=0 and
t=T ). Since f is monotone, f is differentiable almost everywhere. Since f is
Lipschitz on each It , f is absolutely continuous on It , and so f is the
indefinite integral of its derivative on each It .

We now characterize the stable bargaining outcomes of the assignment
game for well-behaved attribute-choice functions. Kamecke [15] has pre-
viously shown that stability implies part 3 of the proposition for surpluses
that need not be supermodular, when ; and _ are differentiable everywhere.
As usual, f (x+) denotes the right hand limit ( f (x+)=lim= a 0 f (x+=)) and
f (x&) denotes the left hand limit ( f (x&)=lim= a 0 f (x&=)).

Proposition 1. Suppose ; and _ are both well-behaved. Stable bargain-
ing outcomes (x, p) exist. The bargaining outcome (x, p) is stable if and only
if the following hold:

1. No waste:

x(i )+ p(i )=v(;(i ), _(i )) \i # C(;, _); (4)

2. x and p are continuous at all i # C(;, _);

3. x~ and p~ are differentiable on ;(C(;, _)) and _(C(;, _)), respec-
tively, with derivatives

x~ $(b)=
�v(b, s~ (b))

�b
for all b # ;(C(;, _)), and (5)

p~ $(s)=
�v(b� (s), s)

�s
for all s # _(C(;, _)); (6)
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and

4. at any point of discontinuity i,

x(i+)+ p(i+)=v(;(i+), _(i+)),

x(i+)&x(i&)�v(;(i+), _(i&))&v(;(i&), _(i&)), and (7)

p(i+)& p(i&)�v(;(i&), _(i+))&v(;(i&), _(i&)).

Proof. See Appendix A.

The two inequalities in (7) are written to be symmetric with (5) and (6).
They are equivalent to

x(i+)+ p(i&)�v(;(i+), _(i&))

and

x(i&)+ p(i+)�v(;(i&), _(i+)).

It should be clear from Proposition 1 that there may be multiple stable
bargaining outcomes, where the multiplicity is due to the indeterminacy of
the division of the surplus v(;(0), _(0)) for the bottom pair of agents (in
the event that this surplus is positive), as well as the indeterminacy (con-
strained only by (7)) at any discontinuities of the attribute functions.

Let F be the set of well-behaved attribute-choice functions and P be
the set of possible bargaining outcomes. A bargaining outcome function
g: F � P is a mapping that selects a stable bargaining outcome (x, p)=
g(;, _) for every pair of well-behaved attribute-choice functions. Note that
if two well-behaved functions agree almost everywhere, then their continuity
points agree. Suppose (x, p)= g(;, _) and (x� , p� )= g(;� , _� ). We require that
if ;=;� a.e. and _=_� a.e., then x(i )=x� (i ) and p(i )= p� (i ) for all i # C(;, _)
=C(;� , _� ). The values of the returns for i � C(;, _) are then uniquely deter-
mined (Lemma 1).

4.1. An Interpretation of the Marginal Condition

Equations (5) and (6) clearly have bearing on whether agents have
incentives to efficiently invest in a stable bargaining outcome. Equation (5)
states that at any stable bargaining outcome, the marginal return to each
buyer to increasing his or her attribute is equal to the marginal change in
the surplus in his or her match. The question of whether this guarantees
efficient investments, however, is subtle. In a world with a finite number of
agents, when a buyer changes his or her attribute, he or her may well end
up matched with a different seller since stable matchings must maintain
positive assortative matching. But if the consequence of a buyer increasing
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his attribute is that the seller he or her matches with has a higher attribute,
the buyer with whom that seller was initially matched must find himself or
herself matched with a lower attribute seller. At the same time, the original
partner is also now matching with a buyer with a higher attribute.

In other words, a buyer who changes his or her attribute creates an
externality on other buyers and sellers. In principle, there can be a large set
of other agents, both buyers and sellers, who find themselves in different
matches as a result of a single buyer's attribute change. Indeed, our model-
ing choice of a continuum of agents was motivated precisely by this fact.
While a continuum of agents obviates this difficulty, we should be cautious
about what is meant by the impact on social surplus from a marginal
change in a buyer's attribute, since these externalities are suppressed with
a continuum of agents. We now introduce a notion of marginal social sur-
plus that takes into account external effects and show that the right hand
side of (5) is, in fact, the appropriate notion of marginal social surplus.

Suppose ; and _ are well-behaved. Then, total surplus is maximized by
matching buyer i with seller i, for almost all i. The total surplus of (;, _)
is then

V(;, _)=|
1

0
v(;(i ), _(i )) di.

We consider the change in social surplus when an interval of buyers con-
taining a particular buyer all increase their attribute by a given amount, $,
and take the limit as both the measure of the set of buyers who are
changing their attribute goes to 0, and the amount by which the buyers
increase their attribute goes to 0.

Fix @� # C(;, _) & (0, 1) and =>0 such that (@� &=, @� +=)/C(;, _) (recall
that C(;, _) is a union of open intervals, except for the subintervals includ-
ing 0 and 1). Fix $ and consider the attribute choice function in which the
= neighborhood of agent @� increase their attribute by $,

;$, = (i )={;(i )+$,
;(i),

i # [@� &=, @� +=],
i � [@� &=, @� +=].

Consider the assignment game with the population of buyers described
by ;$, = and of sellers described by _, i.e., the assignment game when the
buyers in [@� &=, @� +=] have changed their attribute by $.12 (See Fig. 3.) Let
2$, = (@� ) be the change in social surplus due to the increase in the buyers'
attributes, taking into account externalities,

2$, = (@� )=V(;$, =, _)&V(;, _).
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FIG. 3. The modified attribute choice function, ;$, =.

We then have the following proposition (proved in Appendix B):13

Proposition 2. Suppose ; and _ are well behaved. For @� # C(;, _)
& (0, 1),

lim
$ � 0

1
$ { lim

= � 0

2$, =

2= ==
�v(;(@� ), _(@� ))

�b
.

Hence, the right hand side of (5) is, in fact, the marginal social value of
a change in buyer i 's attribute. Thus, in stable bargaining outcomes, agents
receive their marginal social value, or, in the language of Makowski and
Ostroy [19], full appropriability holds.

5. EX POST AND EX ANTE CONTRACTING EQUILIBRIA

We now turn to attribute investment decisions. In the economy with ex
post contracting, agents noncoooperatively invest in attributes and then
receive a payoff from the resulting ex post assignment game. In the
economy with ex ante contracting, agents can contract over attributes,
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We believe that the order of limits is not important. If the derivatives of the attribute choice

functions are bounded away from zero, then a similar argument to that in Appendix B yields
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matches, and the division of the resulting surplus prior to investing in
attributes. The economy with ex post contracting is a combination of a
noncooperative investment game followed by a cooperative assignment
game. On the other hand, the economy with ex ante contracting is solely
a cooperative assignment game.

We first determine the change in return to an agent who unilaterally
changes attribute. After such a deviation by buyer i$, say, the resulting
attribute choice function is no longer well-behaved. However, it will fail to
be well-behaved only because of a single agent's choice of attribute. Accor-
dingly, we assume that all agents' returns, except for buyer i$, are deter-
mined as if ; and _ are well-behaved. Since this only involves altering a
single agent's attribute choice, this implies that a single agent changing
attribute does not change other agents' returns. Let (x, p) be the bargain-
ing outcome when the attribute-choice functions (;, _) are well-behaved,
and suppose i$ chooses an attribute b{;(i$). For b�;(1), define ib #inf
[i: b�;(i )], and for b>;(1), define ib #1. Then, the return to attribute
b is

x~ (b)=max[v(b, _(ib&))& p(ib&), v(b, _(ib+))& p(ib+), 0], (8)

where ib& =0 when ib=0, and ib+ =1 when ib=1. Note that if
b # ;([0, 1]), then the definition of x~ (b) coincides with (2). A similar con-
struction applies to sellers.

Given a well-behaved pair of attribute-choice functions (;, _), and an
associated bargaining outcome g(;, _)=(x, p), we thus have attribute
returns x~ : R+ � R+ and p~ : R+ � R+ that are well-defined on all possible
attribute choices. We are now in a position to define an equilibrium of the
economy with ex post contracting.

Definition 4. An ex post contracting equilibrium is a quadruple
[(;, _), (x, p)] where ; and _ are well-behaved, such that

1. (x, p) is a stable bargaining outcome for the attribute choices
(;, _), and

2. for each i # [0, 1] and b # R+ ,

x~ (;(i ))&�(;(i ), i )�x~ (b)&�(b, i ),

and for each j # [0, 1] and s # R+ ,

p~ (_( j ))&c(_( j ), j )�p~ (s)&c(s, j ).
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We compare the investments taken in an ex post contracting equilibrium
with the investments agents would make if buyers and sellers could con-
tract with each other over matches, the investments to be undertaken, and
the sharing of the resulting surplus. If a buyer i and seller j agree to match
and make investments b and s respectively, then the total surplus so
generated is v(b, s)&�(b, i )&c(s, j )#W(b, s; i, j ). In a world of ex ante
contracting, investments maximize this total surplus. Thus, if buyer i and
seller j are considering matching, they are bargaining over the net surplus
.(i, j )=maxb, s W(b, s; i, j ). (We make assumptions below that guarantee
that . is well-defined.) The ex ante assignment game is the assignment
game with the value function .. Just as we considered stable outcomes for
the ex post assignment, we impose stability on outcomes of the ex ante
assignment game. If . is supermodular, then (as for the ex post contracting
assignment game) total net surplus is maximized by positive assortative
matching over index. Feasibility is in fact simpler, since (from the Maxi-
mum Theorem) . is a continuous function of the indices, which themselves
form a connected set. Thus, in the following definition of an equilibrium of
the economy with ex ante contracting, we can assume that buyer i matches
with seller i.

Definition 5. Suppose . is supermodular. The outcome of the ex ante
assignment game [(;*, _*), (x*, p*)] is an ex ante contracting equilibrium
if

1. x*(i )+ p*(i )�v(;*(i ), _*(i )) for all i; and

2. for all i, j # [0, 1],

x*(i )&�(;*(i ), i )+ p*( j )&c(_*( j ), j )�.(i, j ).

We make some standard assumptions on the surplus and cost functions
that imply that . is well-defined and strictly supermodular.

Assumption 1. The surplus function v: R2
+ � R+ is C2 with �v(b, s)��b

>0, �v(b, s)��s>0, and �2v(b, s)��b�s>0 for all (b, s) # R2
+ . The cost

functions satisfy:

1. for each i # [0, 1] there exists B� (i )>0 such that limb � B� (i ) �(b, i )
=�;

2. � is continuous on [(b, i ): i # [0, 1], b # [0, B� (i ))] and C2 on its
interior;

3. �(0, i )=0, limb$ � 0 ��(b$, i )��b=0, for all i # (0, 1);

4. ��(b, i )��b>0, �2�(b, i )��b2>0 and �2���b �i<0 for b # (0, B� (i )),
i # (0, 1);
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5. for each j # [0, 1] there exists S� ( j )>0 such that lims � S� ( j ) c(b, j )
=�;

6. c is continuous on [(s, j ): j # [0, 1], s # [0, S� ( j ))] and C2 on its
interior;

7. c(0, j )=0, �c(0, j )��s=0, for all j # (0, 1); and

8. �c(s, j )��s>0, �2c(s, j )��s2>0 and �2c��s�j<0 for s # (0, S� ( j )),
j # (0, 1).

With this assumption, we can apply Proposition 1 to conclude that ex
ante contracting equilibria exist. Furthermore, the assumption implies that
the problem

max
b, s

v(b, s)&�(b, i )&c(s, i ) (9)

has an interior solution for all i # [0, 1]. We use the notation W(b, s; i ) for
W(b, s; i, i )=v(b, s)&�(b, i )&c(s, i ). For the analysis that follows, it is
convenient to assume:

Assumption 2. There is a well-behaved pair of attribute choice func-
tions, (;*, _*), such that (;*(i ), _*(i )) maximizes W(b, s; i ) for all i.

While this is a direct assumption on efficient attribute choice functions,
it is one that is typically satisfied.14

Our first result is a counterpart of the second welfare theorem of
neoclassical economics.

Proposition 3. Under Assumptions 1 and 2, there exists a bargaining
outcome function g* such that (g*, (;*, _*)) is an ex post contracting
equilibrium.

Proof. See Appendix C.

By construction, any change of attribute by a single agent leaves all
other payoffs unchanged, and a single agent's attribute choice has no
impact on social value. Nonetheless, as we saw in Section 4.1, there is a
sense in which, at least for continuous attribute choice functions, ;* and _*,
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14 Suppose (b� , ŝ) is a local maximizer of W(b, s; i )#v(b, s)&�(b, i )&c(s, i ) at @̂ and the
Hessian of W(b, s; i ) with respect to b and s is invertible at (b� , ŝ). Then (applying the implicit
function theorem), there is a neighborhood of @̂ , I, for which (b� , ŝ): I � R2

+ describes a locally
unique, differentiable, strictly increasing selection from the set of local maximizers.

The global maximizer of W(b, s; i ) is also typically strictly increasing in i from Assumption
1: Let (b� , ŝ), (b� , s~ ): I$ � R2

+ describe local maximizers on some interval I, and suppose the
Hessian of W is invertible on the graph of (b� , ŝ) and (b� , s~ ). If W(b� (@� ), ŝ(@� ), @� )=W(b� (@� ), s~ (@� ), @� )
for some @� # I, and b� (@� )<b� (@� ), then supermodularity implies that ŝ(@� )<s~ (@� ). Moreover, for
@� <i # I, W(b� (i ), ŝ(i ), i )<W(b� (i ), s~ (i ), i ) (from the envelope theorem).



all agents are receiving the correct marginal incentives. Stable payoffs
are determined completely by the division for the bottom pair of attributes
and (5) and (6). The two marginal conditions, (5) and (6), essentially
assert that each attribute is paid its marginal social value, and so it is not
surprising that Proposition 3 holds in this case. Moreover, the definition of
g* is trivial, since it is given by the division for the bottom pair of
attributes and (5) and (6), and by (8) for deviating attributes outside the
range of ;* and _*.

The case of discontinuous attribute choice functions is more interesting.
As we noted at the beginning of the previous paragraph, any change of
attribute by a single agent leaves all other payoffs unchanged, and so there
is no problem in determining stable payoffs for the other agents. Suppose
;* (and so _*) is discontinuous at i. From (7), at i, there is a range of
possible divisions that is consistent with stability. However, only one divi-
sion is consistent with (;*, _*) being an ex post contracting equilibrium,
namely, the division that makes the buyer indifferent between the choices
;*(i&) and ;*(i+) and, at the same time, makes the seller indifferent
between _*(i&) and _*(i+):

x(i+)&�(;*(i+), i )=x(i&)&�(;*(i&), i )

and

p(i+)&c(_*(i+), i )= p(i&)&c(_*(i&), i ).

(This division is feasible because the total net surplus at i& equals that at
i+.) There is thus a sense in which the appropriate g* is ``special.''
Moreover, given (;*, _*), the bargaining outcome function depends on the
cost functions directly, as well as through their determination of (;*, _*).

Thus, nothing precludes an ex post contracting equilibrium from
generating incentives for efficient ex ante investments, since there is a
bargaining-outcome function g* which supports efficient choices. At the
same time, this proposition does not imply that we should necessarily
expect an ex post contracting equilibrium to have efficient attribute choices.

6. INEFFICIENT EX POST CONTRACTING EQUILIBRIA

In both of the inefficient equilibria of the continuous example described
in Section 2, there is an absence of agents on the other side of the market
with the attributes that would induce efficient investment. In this section,
we provide a series of results that illustrate how the existence of inefficient
ex post contracting equilibria is affected by alterations of the populations
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of buyers and sellers. In particular, it is an implication of these results that
for the continuum example in Section 2, the underinvestment outcome is
not an equilibrium for populations with large values of @� , while the overin-
vestment outcome is not consistent with equilibrium for small values of i

�
.

Intuitively, if @� is large, the marginal benefit of investment for high buyers
is so large that they will invest in a significant way even if sellers under-
invest. By complementarity, the sellers then have an incentive not to under-
invest and this then induces other buyers not to underinvest (a ``trickle-
down'' effect). Similarly, a ``trickle-up'' effect precludes overinvestment for
i
�

small.
While ex post contracting equilibria need not be efficient (in the sense of

not being ex ante contracting equilibria), they are efficient in a constrained
sense:

Lemma 2. Suppose [(;� , _̂), (x̂, p̂)] is an ex post contracting equilibrium.
If (;� , _̂) is not consistent with any ex ante contracting equilibrium, then for
any blocking coalition (i -, j-) with attribute choices (b-, s-), there does not
exist i$ such that b-=;� (i$), nor does there exist j$ such that s-=_̂( j$).

Proof. Suppose (i-, j -) is a blocking coalition with attribute choices
(b-, s-) and shares (x-, p-). Then,

x-+ p-=v(b-, s-),

x-&�(b-, i-)>x̂(;� (i -))&�(;� (i-), i -), and

p-&c(s-, j-)>p̂(_̂( j-))&c(_̂( j-), j -).

The proof is by contradiction. Suppose there exists j$ such that s-=_̂( j$).
Since p-&c(s-, j-) > p̂(_̂( j-)) & c(_̂( j-), j-) � p̂(s-) & c(s-, j-), we have
p- > p̂(s-), and so x- & �(b-, i-) = v(b-, s-) & p- & �(b-, i -) < v(b-, s-) &
p̂(s-)&�(b-, i-). But stability, the hypothesis that stable payoffs to non-
deviating players are unchanged, and the fact that (;� , _̂) is part of an
ex post contracting equilibrium imply that v(b-, s-)& p̂(s-)&�(b-, i-) is
a lower bound on buyer i-'s payoff in equilibrium, and so we have a
contradiction. An identical argument, mutatis mutandis, shows that there
cannot exist an i$ such that b-=;� (i$). K

We use this lemma in the next proposition.

Proposition 4. Suppose (;� , _̂) is a pair of ex post contracting equi-
librium attribute-choice functions. If for some buyer i$, (;� (i$), s) does not
maximize W(b, s; i$) for any s, then there is no seller j such that _̂( j )=s*,
for any (b*, s*) maximizing W(b, s; i$). Similarly, if for some seller j$,
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(b, _̂( j$)) does not maximize W(b, s; j$) for any b, then there is no buyer i
such that ;� (i )=b*, for any (b*, s*) maximizing W(b, s; j$).

Proof. We prove the buyer case; the seller case is identical. Since ;� and
_̂ are both (weakly) increasing in index without loss of generality, in (8),
we can take i;� (i$ ) to be equal to i$. Consider first i$ # (0, 1). Then, from (8),
either

x(i$)=v(;� (i$), _(i$&))& p(i$&)�v(;� (i$), _(i$+))& p(i$+)

or x(i$)=v(;� (i$), _(i$+))& p(i$+)>v(;� (i$), _(i$&))& p(i$&).

Suppose it is the former. Since (;� (i$), s) does not maximize v(b, s)&�(b, i$)
&c(s, i$) for any s, there is a pair of attributes (b*, s*) and returns (x$, p$)
such that

x$&�(b*, i$)>x(i$)&�(;� (i$), i$),

p$&c(s*, i$)>p(i$&)&c(_(i$&), i$),

and

x$+ p$=v(b*, s*).

Moreover, the pair of attributes (b*, s*) can be chosen to maximize
v(b, s)&�(b, i$)&c(s, i$). Since (;� , _̂) are part of an ex post contracting
equilibrium,

p(i$)&c(_(i$), i$)= p(i$&)&c(_(i ))

(otherwise either seller i$ or sellers arbitrarily close to i$ would deviate).
Thus, (i$, i$) forms a blocking coalition using the attribute choices (b*, s*).
Applying Lemma 2 yields the result.

This argument also covers the other possibilities. K

This proposition allows us to conclude that in the continuous example
of Section 2, the attribute choices (;� 1 , _̂1) are not consistent with any ex
post contracting equilibrium, for @� large.15 In particular, if @� is large enough
that _̂1 (@� )= 3

- @� >4i*=_*(@� ) (i.e., @� >.63), then a buyer with index i above,
but just near i*, can profitably deviate to 4i and match with seller j$ with
attribute s$ (see Fig. 4). It is worth noting that the requirement that @� not
deviate is not binding for @� <23�10 (5&25�3)&9�10]r.71.

Continuity implies the following stronger result (which we state only for
the buyer case).
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FIG. 4. The inefficient outcome is inconsistent with equilibrium when @� >.63.

Corollary 1. Suppose (;� , _̂) is a pair of ex post contracting equi-
librium attribute-choice functions, and that there is some buyer @� for which
(;� (@� ), s) does not maximize W(b, s; @� ) for any s. Suppose (b*, s*) maximizes
W(b, s; @� ). Then there is a neighborhood, O, of s* such that, for all sellers j,
_̂( j ) � O.

We also have the following local version of Proposition 4. Recall that
ex post contracting equilibrium choice functions have no isolated values,
so that if i � C(;� , _̂), either ;� (i+)=;� (i ) or ;� (i&)=;� (i ) (with a similar
statement holding for _̂).

Proposition 5. Suppose (;� , _̂) is a pair of ex post contracting equi-
librium attribute-choice functions. Then, for all i # C(;� , _̂), (;� (i ), _̂(i )) is a
local maximizer of W(b, s; i ). Moreover, for i � C(;� , _̂), if ;� (i+)=;� (i ), then
(;� (i ), _̂(i+)) is a local maximizer of W(b, s; i ) (with similar statements
holding for the other cases).

Proof. We prove this by contradiction. Suppose there is an i # C(;� , _̂)
for which (;� (i ), _̂(i )) is not a local maximizer of W(b, s; i )=v(b, s)&
�(b, i )&c(s, i ). Since the attribute choice functions are strictly increasing
and continuous on a neighborhood of i, there exists an =>0 such that
( ;� (i )&=, ;� (i )+=) / ;� ([0, 1]) and (_̂(i )&=, _̂(i )+=) / _̂([0, 1]). Since
(;� (i ), _̂(i )) is not a local maximizer of W(b, s; i ), there exists (b$, s$) yield-
ing a higher value of W(b, s; i ) with |b$&;� (i )|<= and |s$&_̂(i )|<=. Thus,
the coalition (i, i ) can block (;� , _̂) using the attribute choices (b$, s$). From
Lemma 2, there is no i$ such that ;� (i$)=b$, yielding a contradiction.

Continuity and the Maximum Theorem imply the result for i �

C(;� , _̂). K
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We can use this proposition to show that the discontinuities are not
themselves a source of inefficiency.

Proposition 6. Suppose (;� , _̂) is a pair of ex post contracting equi-
librium attribute-choice functions and that there is a discontinuity in ;� (and
so _̂) at i $. Then, W (;� (i $+), _̂ (i $+); i $ ) =W (;� (i $&), _� (i $&); i $ ), and the
discontinuity is efficiency enhancing. That is, suppose (;1 , _1) and (;2 , _2)
are two continuous attribute choice functions defined on a neighborhood of i$
such that (;1 (i ), _1 (i )) agrees with (;� (i ), _̂(i )) for i<i$, (;2 (i ), _2 (i ))
agrees with (;� (i ), _̂(i )) for i>i$, and for all i in the neighborhood, both
(;1 (i ), _1 (i )) and (;2 (i ), _2 (i )) describe local maxima of W(b, s; i ).
Suppose that the Hessian of W is well-defined and nonsingular on the graphs
of (;1 , _1) and (;2 , _2). Then, W(;1 (i ), _1 (i ); i )>W(;2 (i ), _2 (i ); i ) for
i<i$, and W(;1 (i ), _1 (i ); i )<W(;2 (i ), _2 (i ); i ) for i>i$.

Proof. At the discontinuity, buyer i$ must be indifferent between
attributes ;� (i$&) and ;� (i$+), and seller i$ must be indifferent between
attributes _̂(i$&) and _̂(i$+). Since pairwise feasibility holds for i # C(;� , _̂),
we then have W(;� (i$+), _̂(i$+); i$)=W(;� (i$&), _� (i$&); i$).

The remainder of the proposition is an implication of the inequality
dW(;1 (i ), _1 (i ); i )�di | i=i$<dW(;2 (i ), _2 (i ); i )�di | i=i$ , which follows from
the envelope theorem and the single-crossing assumptions on costs,
�2��didb<0 and �2c��i�s<0. K

Since any ex post contracting equilibrium attribute choices must be local
maxima (from Proposition 5), and nonsingularity of the Hessian implies
that ;1 is the only candidate extension of ;� that can be consistent with any
ex post contracting equilibrium, the discontinuity results in an increase in
net surplus. As the example of Section 2 illustrates, however, not all inef-
ficiencies arise from too little investments.

Returning to the continuous example of Section 2, it should be clear that
increasing @� cannot destabilize the overinvestment equilibrium and reducing
i
�

cannot destabilize the underinvestment equilibrium. On the other hand,
overinvestment is inconsistent with equilibrium for populations [.1, @� ].
Note first that for the lowest buyer and seller, attribute choices of
b
�
=s

�
=4_.1=.4 imply b

�
s
�
< 1

2 , and so the pair (b
�
, s

�
) is not even a local

maximizer of W(b, s; .1)#v(b, s)&�(b, .1)&c(s, .1). Thus, if there is to
be an overinvestment equilibrium, it must have the lowest buyers and
sellers choosing attributes in accordance with 3

- i. Proposition 6 implies
that, in any ex post contracting equilibrium, if there is a discontinuity
in attribute choices, it must occur at i*. But this will yield ex ante
efficiency.
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APPENDIX A. PROOFS FOR SECTION 4

Proof of Lemma 1. We first argue that x and p are strictly increasing.
Suppose there exists i$<i such that x(i$)�x(i ). For '>0 small, let
== 1

2[v(;(i ), _(i$&'))&v(;(i$), _(i$&'))]. Since ; is strictly increasing,
=>0. Moreover, since _ is also strictly increasing and v is strictly super-
modular, v(;(i ), _( j ))&v(;(i$), _( j ))>2= for all j >i$&'. Feasibility
implies that there exists j # (i$&', i$+') such that

x(i$)�v(;(i$), _( j ))& p( j )+=,

and so

x(i )+ p( j )�x(i$)+ p( j )�v(;(i$), _( j ))+=

�v(;(i ), _( j ))&=,

contradicting the stability of (x, p), and so x is strictly increasing. A similar
argument applies to p.

Consider the case of ; continuous from the left at i$, and x(i$)>
lim infi A i $ x(i ). Let = = [x(i $ ) & lim infi A i $ x(i )]�4. Suppose lim sup j � i $

[v(;(i$), _( j ))& p( j )]>0. (If the reverse weak inequality holds, x(i$)=0,
contradicting the assumption that x jumps up at i$.) There exists j close to
i$ such that x(i$)+ p( j )<v(;(i$), _( j ))+=. Moreover, for i close to (but
less than) i$, v(;(i$), _( j ))�v(;(i ), _( j ))+= and x(i )+3=�x(i$). Thus,

x(i )+ p( j )�x(i$)+ p( j )&3=

<v(;(i$), _( j ))&2=

<v(;(i ), _( j ))&=<v(;(i ), _( j )).

But this contradicts stability, and so x(i$)�lim infi A i $ x(i ).
Since x is strictly increasing, x(i$)�x(i ), i$�i. But this implies

x(i$)�lim supi A i $ x(i ), and so x(i$)=limi A i $x(i ).
The other possibilities are covered similarly. K

Proof of Proposition 1. Let [i1 , i2 , ..., iT] be the discontinuity points of
; and _, and define It=(it , it+1) for t=1, ..., T&1, I0=[0, i1), and
IT=(iT , 1]. Then, C(;, _)=�T

t=0 It .
Existence of stable payoffs is addressed after the characterization. We

have already argued that the no waste and continuity conditions must hold
for any stable payoffs. These in turn imply at any point of discontinuity
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it , x(it&)+ p(it&)=v(;(it&), _(it&)) and x(it+)+ p(it+)=v(;(it+),
_(it+)). The two inequalities in (7) are then equivalent to the local
stability conditions:

x(it+)+ p(it&)�v(;(it+), _(it&)), and (A.1)

x(it&)+ p(it+)�v(;(it&), _(it+)), (A.2)

which (from continuity) are clearly necessary. The local condition (6)
follows from the observation that since the payoffs are stable, for
b$ # ;(C(;, _)) and all s # _(C(;, _)),

v(b$, s~ (b$))& p~ (s~ (b$))=x~ (b$)�v(b$, s)& p~ (s), (A.3)

while (5) follows from fixing s$ # _(C(;, _)) in the same inequality and
considering the value to the seller of matching with different buyers.

Now we turn to sufficiency. Fix a pair of nonnegative payoffs
(x(0), p(0)) that satisfies

x(0)+ p(0)=v(;(0), _(0)).

Since any stable payoff must satisfy (5) and (6), we have

x(i )=x(0)+|
;(i )

;(0)

�v(b, s~ (b))
�b

db, for i # I0 (A.4)

and

p( j )= p(0)+|
_( j )

_(0)

�v(b� (s), s)
�s

ds, for j # I0 . (A.5)

Note that these equations determine x(i1&) and p(i1&). (We show below
that (4), (A.4), and (A.5) are consistent.) It remains to extend x and p to
the rest of [0, 1]. As on I0 , (5) and (6) determine x and p on It once the
initial values, x(it+) and p(it+), have been determined. Let (x(it+),
p(it+)) be any pair of payoffs satisfying (7). If, for example, ; is continuous
at it , then x(it+)=x(it&), and there is only one choice for (x(it+),
p(it+)). The payoff for buyer it is then determined by the continuity
property of ;: if ; is continuous from the left, then x(it)=;(it&), while if
; is continuous from the right, x(it)=;(it+) (the same considerations
apply for seller it).

We next verify feasibility for i # C(;, _). Suppose i # It . By assumption,
x(it+)+ p(it+)=v(;(it+), _(it+)), and for i # It ,
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x(i )+ p(i )=x(it+)+|
;(i )

;(it+)

�v(b, s~ (b))
�b

db

+ p(it+)+|
_(i )

_(it+)

�v(b� (s), s)
�s

ds

=v(;(it+), _(it+))+|
i

it

dv(;(i ), _(i ))
di

di

=v(;(i ), _(i )),

so each pair efficiently shares the surplus.
We now verify stability. First note that (A.1) and (A.2) imply

x(it&)+ p(it+k+)�v(;(it&), _(it+k+)) for all k.

Suppose there exists a k>1 such that x(it&)+ p(it+k+)<v(;(it&),
_(it+k+)). Then

x(it+)+ p(it+k+)

<x(it+)+v(;(it&), _(it+k+))&x(it&)

�x(it+)+v(;(it&), _(it+k+))&v(;(it&), _(it+))+ p(it+)

=v(;(it+), _(it+))+v(;(it&), _(it+k+))&v(;(it&), _(it+))

<v(;(it+), _(it+k+)),

where the last inequality holds because v is strictly supermodular. Induc-
tion then yields a contradiction.

If (x, p) is not stable, then there is a pair i and j satisfying
x(i )+ p( j )<v(;(i ), _( j )). Suppose i # It and j # It+k , k�1 (the case of i
and j in the same continuity interval is an obvious modification of the
following, as is the case in which i and j are reversed). Then,

x(it+1&)+ p( j )<x(it+1&)+v(;(i ), _( j ))&x(i )

=v(;(i ), _( j ))+|
;(it+1&)

;(i )

�v(b, s~ (b))
�b

db

<v(;(i ), _( j ))+|
;(it+1&)

;(i )

�v(b, _( j ))
�b

db

=v(;(it+1&), _( j )),
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where the second inequality comes from the strict supermodularity of v.
But then,

x(it+1&)+ p(it+k+)<v(;(it+1&), _( j ))& p( j )+ p(it+k+)

=v(;(it+1&), _( j ))&|
_( j )

_(it+k+)

�v(b� (s), s)
�s

ds

<v(;(it+1&), _( j ))&|
_( j )

_(it+k+)

�v(;(it+1&), s)
�s

ds

=v(;(it+1&), _(it+k+)),

a contradiction. Thus, (x, p) is stable. K

APPENDIX B. PROOF FOR SECTION 4.1

Proof of Proposition 2. The distribution of buyer attributes is given by

F(b)=*[i : ;$, = (i )�b],

where * is Lebesgue measure on [0, 1], while the distribution on seller
attributes is given by

G(s)=*[i : _(i )�s]=_&1 (s).

In order to calculate F, define b� =;(@� +=)+$, @̂=;&1 (;(@� +=)+$), b8 =
;(@� &=)+$, and i� =;&1 (;(@� &=)+$). These are illustrated in Fig. 3
preceding the statement of the proposition. Note that for b<;(@� &=) and
b>b� , the distribution of attributes is unaffected. Moreover, for = small,
b8 >;(@� +=). Thus, F(b)=*[i: ;(i )�b]=;&1 (b) for b<;(@� &=) and for
b>b� . For b # [;(@� &=), ;(@� +=)], F(b)=*[i: ;(i )�;(@� &=)]=@� &=. For
b # [;(@� +=), b8 ], F(b)=;&1 (b)&2=. Finally, for b # [b8 , b� ],

F(b)=F(b8 )+*[i # [@� &=, @� +=] : ;(i )�b&$]+*[i # [i� , @̂] : ;(i )�b]

=i� &2=+;&1 (b&$)&(@� &=)+;&1 (b)&i�

=;&1(b&$)+;&1 (b)&@� &=.

We calculate total surplus here assuming matching is positively assor-
tative on attribute. The matching on buyers and sellers that supports this
matching is described as follows. Following Gretsky, Ostroy, and Zame
[11], a matching is a measure + on [0, 1]2 such that +(A_[0, 1])=*(A)
and +([0, 1]_B)=*(B), for all Borel subsets A and B of [0, 1], where *
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FIG. 5. The solid lines describe the support of the matching +. The buyer attribute b is
given by b=(s~ $, =)&1 (_( j )). The lines describing the matching for buyers in [@� &=, @� +=] and
in [i� , @̂] need not be straight.

is Lebesgue measure on [0, 1]. The matching measure underlying the
attribute matching can be calculated as follows: Since buyer i � [@� &=, @̂] is
matched with seller j=i, we have for all C/([0, @� &=]_[0, 1]) _ ([0, 1]
_[0, @� &=]) _ ([ @̂, 1]_[0, 1]) _ ([0, 1]_[ @̂, 1]), +(C) = *[i: (i, i ) # C].
A similar specification describes the matching of buyer i # [@� +=, i� ] with
seller j=i&2=.

It remains to describe the matching of buyer i # [@� &=, @� +=] _ [i� , @̂] with
seller j # [i� &2=, @̂] according to attribute. See Fig. 5. Seller j # [i� &2=, @̂] has
attribute s=_( j ) and ``matches'' with a buyer with attribute b=
(s~ $, =)&1 (s). Two buyers have this attribute, i=;&1 (b) and i=;&1 (b&$).
Thus, for C/([0, 1]_[i� &2=, @̂]) _ ([@� &=, @� +=]_[0, 1]) _ ([i� , @̂]_[0, 1]),

+(C)=*[i # [@� &=, @� +=] _ [i� , @̂] : (i, j ) # C such that either

j=_&1 (s~ $, = (;(i )+$)) or j=_&1 (s~ $, = (;(i )))].

Letting s~ $, = (b) denote the attribute of the seller who is matched with a
buyer with attribute b, positive assortative matching on attributes implies
F(b)=G(s~ $, = (b)), i.e., s~ $, = (b)=_(F(b)). Therefore, for b in the range of
;$, = we have
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s~ $, = (b)={
_(;&1 (b)), b<;(@� &=),

_(;&1 (b)&2=), b # [;(@� +=), b8 ],

_(;&1 (b&$)+;&1 (b)&@� &=), b # [b8 , b� ],

_(;&1 (b)), b>b� .

We can interpret this attribute matching as arising from buyer
i # [@� +=, i� ] matching with seller j=i&2=, buyer i # [@� &=, @� +=] _ [i� , @̂]
matching with seller j # [i� &2=, @̂] positively assortatively in attribute, and
all other buyers i matching with sellers j=i. The surplus due to the
changed matchings is

|
i�

@� +=
v(;(i ), _(i&2=)) di+|

@� +=

@� &=
v(;(i )+$, s~ $, = (;(i )+$)) di

+|
@̂

i�
v(;(i ), s~ $, = (;(i ))) di.

Thus the change in total surplus that arises from a buyer attribute choice
function of ;$, = rather than ; is

2$, = (@� )=|
i�

@� +=
v(;(i ), _(i&2=))&v(;(i ), s(i )) di

+|
@� +=

@� &=
v(;(i )+$, s~ $, = (;(i )+$))&v(;(i ), s(i )) di

+|
@̂

i�
v(;(i ), s~ $, = (;(i )))&v(;(i ), s(i )) di. (B.1)

We want to calculate lim$ � 0 [lim= � 0 2$, =�2=]�$. Define @~ =;&1 (;(@� )
+$). We proceed term by term: Dividing the first term in (B.1) by 2= and
taking limits as = � 0 yields (by Lebesgue's dominated convergence
theorem)

|
@~

@�
&

�v(;(i ), _(i ))
�s

_$(i ) di.

Substituting for s~ $, =, the second term in (B.1) is

|
@� +=

@� &=
v(;(i )+$, _(i+;&1 (;(i )+$)&@� &=))&v(;(i ), s(i )) di.
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Dividing by 2= and taking limits as = � 0 yields

v(;(@� )+$, _(@~ ))&v(;(@� ), s(@� )).

The third term divided by 2= is (again after substituting for s~ $, =)

1
2= |

@̂

i�
v(;(i ), _(;&1 (;(i )&$)+i&@� &=))&v(;(i ), s(i )) di.

In order to evaluate the limit as = � 0, we apply L'Hopital's rule. The
derivative of the integral with respect to = is

|
@̂

i�
&

�v(;(i ), _(;&1 (;(i )&$)+i&@� &=))
�s

_$(;&1 (;(i )&$)+i&@� &=) di

+[v(;( @̂ ), _(;&1 (;( @̂ )&$)+ @̂&@� &=))&v(;( @̂ ), s( @̂ ))]
d@̂
d=

&[v(;(i� ), _(;&1 (;(i� )&$)+i� &@� &=))&v(;(i� ), s(i� ))]
di�
d=

.

The above expression equals 0 when ==0,16 and so the third term con-
verges to 0 as = � 0.

Thus, lim$ � 0 [lim= � 0 2$, =�2=]�$=

lim
$ � 0

1
$ {|

@~

@�
&

�v(;(i ), _(i ))
�s

_$(i ) di+v(;(@� )+$, _(@~ ))&v(;(@� ), s(@� ))= .

Applying L'Hopital's rule to the first term, the derivative of the numerator
with respect to $ is (recall that @~ =;&1 (;(@� )+$))

&
�v(;(@~ ), _(@~ ))

�s
_$(@~ )

1
;$(@~ )

,

while the derivative of the second term is

�v(;(@� )+$, _(@~ ))
�b

+
�v(;(@� )+$, _(@~ ))

�s
_$(@~ )

1
;$(@~ )

,

so that

lim
$ � 0

1
$ { lim

= � 0

2$, =

2= ==
�v(;(@� )+$, _(@~ ))

�b } $=0

=
�v(;(@� ), _(@� ))

�b
.

Since _(@� )=s~ (;(@� )), this is the expression on the right hand side of (5).
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APPENDIX C. PROOF FOR SECTION 5

Proof of Proposition 3. As in the proof of Lemma 1, it denotes the t th
discontinuity point of ;* and _*. Since (;*, _*) is efficient,

v(;*(it&), _*(it&))&�(;*(it&), it)&c(_*(it&), it)

=v(;*(it+), _*(it+))&�(;*(it+), it)&c(_*(it+), it). (C.1)

Equilibrium requires

x(it+)&�(;*(it+), it)=x(it&)&�(;*(it&), it) (C.2)

and

p(it+)&c(_*(it+), it)= p(it&)&c(_*(it&), it), (C.3)

where x(it+) (x(it&)) is the share of a buyer with attribute ;*(it+)
(;*(it&)) and p(it+) ( p(it&)) is the share of a seller with attribute
_*(it+) (_*(it&)). If the stable payoffs do not satisfy these equalities, then
clearly buyers and sellers close to it (either just above or just below) have
an incentive to deviate. From (C.1), if x(it+) satisfies (C.2), then p(it+)=
v(;*(it+), _*(it+))&x(it+) necessarily satisfies (C.3).

We first observe that the payoffs implied by (C.2) and (C.3) are con-
sistent with stability (i.e., with (7)):

x(it+)+ p(it&)=x(it&)+ p(it&)+�(;*(it+), it)&�(;*(it&), it)

=v(;*(it&), _*(it&))+�(;*(it+), it)&�(;*(it&), it)

�v(;*(it+), _*(it&)),

since v(;*(it&), _*(it&)) & �(;*(it&), it) & c(_*(it&), it) � v(;*(it+),
_*(it&))&�(;*(it+), it)&c(_*(it&), it).

We need to show that (C.2) and (C.3), together with (5) and (6), are suf-
ficient for equilibrium. Fix (x*(0), p*(0)) such that x*(0)+ p*(0)=
v(;*(0), _*(0)). The payoffs (x*, p*) are now obtained from (A.4), (A.5),
(C.2), and (C.3). From Proposition 1, these payoffs are stable. These deter-
mine the payoffs to a buyer (seller) choosing any attribute in the range of
;* (_*). Attributes outside the range are dealt with according to (8). Let
bt* solve v(b, _*(it+))& p(it+)=v(b, _*(it&))& p(it&) and set b0*=0
and b*T+1=B� (i ) (and similarly for st*). Then, ;*(it&)<bt*<;*(it+),
v(;*(it&), _*(it+))& p(it+)<v(;*(it&), _*(it&))& p(it&), and v(;*(it+),
_*(it+))& p(it+)>v(;*(it+), _*(it&))& p(it&). Then, for b # [;*(it&),
bt*], x~ (b)=v(b, _*(it&))& p(it&), and for b # [bt*, ;*(it+)], x~ (b)=v(b,
_*(it+))& p(it+). Similar statements hold for the seller.
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Consider now the buyer's problem (the argument for the seller is sym-
metric). We first argue that ;*(i ) is a maximizing attribute choice for buyer
i # [it , it+1] from the attribute set [bt* , b*t+1].17 The problem for buyer @̂
is to choose b # [bt* , b*t+1] to maximize x~ (b)&�(b, @̂ ). Consider first
choices of b # (;*(it+), ;*(it+1&)). Since buyer @̂ 's payoff function is dif-
ferentiable over that domain (by Proposition 1), any maximizing choice of
b # (;*(it+), ;*(it+1&)) must satisfy the first order condition

x~ $(b)=
��(b, @̂ )

�b
.

By construction,

x~ $(;*(i ))=
�v(;*(i ), _*(i ))

�b
=

��(;*(i ), i )
�b

\i # (it , it+1).

Suppose that x~ $(b) = ��(b, i )��b for some b { ;*(i ), b # (;*(it +),
;*(it+1&)). Since b # (;*(it+), ;*(it+1&)), there exists @~ with ;*(@~ )=b
and so

��(b, i )
�b

=x~ $(b)=
��(b, @~ )

�b
,

which is impossible, since ����b is a strictly decreasing function of i. Thus,
the first order condition has a unique solution in b # (;*(it+), ;*(it+1&)).

We now argue that ;*( @̂ ) a local maximizer for @̂. In what follows, partial
derivatives are indicated by subscripts. It is enough to show that the second
derivative of buyer @̂'s payoff function is strictly negative. The second
derivative is

vbb (;*(@̂ ), _*( @̂ ))+vbs (;*( @̂ ), _*( @̂ ))
ds~
db } b=;*( @̂ )

&�bb (;*( @̂ ), @̂). (C.4)

Now, ds~
db |b=;*( @̂ )=(d_*( @̂ )�di )(d;*( @̂ )�di )&1 and d;*�di>0, so that (C.4)

can be rewritten as

(d;*( @̂ )�di )&1 {(vbb&�bb) \d;*
di ++vbs \d_*

di +==(d;*( @̂)�di )&1�bi<0.
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Thus, ;*(i ) is the unique optimal choice from (;*(it+), ;*(it+1&)).
By continuity, ;*(i ) is an optimal choice for i=it and it+1 from
[;*(it+), ;*(it+1&)].

We now turn to choices of b � (;*(it+), ;*(it+1&)). Since stable
matchings require positive assortative matching in attributes, if buyer @̂
chooses b # [bt*, ;*(it+)), then he or she is effectively matched with the
seller with attribute _*(it+), while a choice of b�;*(it+1&) leads to a
match with _*(it+1&). In the first case, x~ (b)=v(b, _*(it+))& p~ (_*(it+)),
while in the second, x~ (b)=v(b, _*(it+1&))& p(_*(it+1&)).

We first consider b�;*(it+) and argue to a contradiction. Suppose
there exists b�;*(it+) such that

x~ (;*( @̂ ))&�(;*( @̂ ), @̂ )<v(b, _*(it+))& p~ (_*(it+))&�(b, @̂ ).

Let =#v(b, _*(it+))& p~ (_*(it+))&�(b, @̂ )&[x~ (;*( @̂ ))&�(;*( @̂ ), @̂ )]>0.
Since p~ is continuous, there exists an i< @̂ (and close to it) such that
| p~ (_*(i ))& p~ (_*(it+))|<=�2. For this i,

v(;*(i ), _*(i ))&v(b, _*(i ))��(;*(i ), i )&�(b, i )>�(;*(i ), @̂ )&�(b, @̂ ),

where the first inequality follows from the optimality of (;*, _*) for i and
the second from ����b�i<0. Then,

x~ (;*( @̂ ))&�(;*( @̂ ), @̂ )�x~ (;*(i ))&�(;*(i ), @̂ )

=v(;*(i ), _*(i ))&�(;*(i ), @̂ )& p~ (_*(i ))

>v(b, _*(i ))&�(b, @̂ )& p~ (_*(i ))

>v(b, _*(it+))&�(b, @̂ )& p~ (_*(it+))&=�2

=x~ (;*( @̂ ))&�(;*( @̂ ), @̂ )+=&=�2,

which implies 0�=, a contradiction.
We now consider b�;*(it+1&). Note first that it is obviously a best

reply for buyer it+1 to choose ;*(it+1&). Consider the difference between
buyer i 's payoff from following ;* and choosing b:

2(i; b)#x~ (;*(i ))&�(;*(i ), i )&[v(b, _*(it+1&))

& p~ (_*(it+1&))&�(b, i )].
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Differentiating with respect to i yields

�2(i; b)
�i

=(x~ $(;*(i ))&�b (;*(i ), i ))
d;*
di

&�i (;*(i ), i )+� i (b, i )

=\�v(;*(i ), _*(i ))
�b

&�b (;*(i ), i )+ d;*
di

&�i (;*(i ), i )+�i (b, i )

=�i (b, i )&�i (;*(i ), i )=|
b

;*(i )
�bi<0,

so that if 2( @̂; b)<0 for some b>;*(it+1&), then 2(it+1 , b)<0, con-
tradicting the optimality of ;*(it+1&) for buyer it+1 .

We now argue that ;*(i ) is a maximizing attribute choice for buyer
i # [it , it+1] from the full attribute set [0, B� (i )]. Fix i # [it , it+1], t�1,
and consider an attribute b # [b*t&1 , bt*). Then

x(i )&�(;*(i ), i )�x~ (;*(it+))&�(;*(it+), i )

and

x(it&)&�(;*(it&), it)�x~ (b)&�(b, it).

Combining these two inequalities with

x(it+)&�(;*(it+), it)=x(it&)&�(;*(it&), it)

gives

x(i )&�(;*(i ), i )�x~ (b)&�(b, it),

and so

x(i )&�(;*(i ), i )�x~ (b)&�(b, i ).

That is, ;*(i ) is a maximizing choice for i from [b*t&1 , b*t+1]. An obvious
induction completes the argument. K
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APPENDIX D.
DETAILS OF THE CONTINUOUS EXAMPLE FROM SECTION 2

The buyer and seller populations are each the interval [i
�
, @� ]=[.2, .3].18

The cost functions are given by �(b, i )=b5�(5i ) and c(s, j )=s5�(5j ), and
the surplus function is

v*(b, s)={bs,
2(bs)2,

if bs� 1
2 ,

if bs> 1
2 .

Net surplus is maximized by matching buyer i with seller j=i. The net
surplus maximizing choices, (;*, _*), are

;*(i )={
3

- i,
4i,

if i<i*,
if i�i*,

_*( j )={
3

- j,
4j,

if j<i*,
if j�i*,

where i*=(3�29)3�10
r0.21. Note that i

�
<i*. The net surplus function bs&

(b5+s5)�(5i ) is maximized by setting b(i )= 3
- i and s( j )= 3

- j , and
the value of net surplus is 3i2�3�5. The net surplus function 2(bs)2&
(b5+s5)�(5i ) is maximized by b(i )=4i and s( j )=4j, and the value of this
net surplus is 2i444�5. The index i* equates the net surpluses 3i2�3�5 and
2i444�5. Finally, note that 3

- i* } 3
- i*r0.36< 1

2 and 4i* } 4i*r0.73> 1
2 .

To complete the description of the ex ante contracting equilibrium, we
describe the attribute returns (x~ , p~ ). Let b

�
=s

�
= 3

- i
�
, b*&=s*&= 3

- i*, and
b*+=s*+=4i*. Fixing an arbitrary division of the bottom surplus (x~ (b

�
),

p~ (s
�
)), we use Proposition 1 to set

x~ (b)={b2�2&x~ (b
�
),

b4&x~ (b*+),
if b # (b

�
, b*&)

if b # (b*+ , 4@� ),

where x~ (b*+)=x~ (b*&)+(b*+)5�(5i*)&(b*&)5�(5i*), and

p~ (s)={s2�2& p~ (s
�
),

s4& p~ (s*+),
if s # (s

�
, s*&)

if s # (s*+ , 4@� ),

where p~ (s*+)= p~ (s*&)+(s*+)5�(5i*)&(s*&)5�(5i*). We extend x~ and p~ to R+

using (8). It is straightforward to verify that this is an ex post contracting
equilibrium.

There are two inefficient equilibria. In the underinvestment equilibrium,
buyers choose attributes according to ;� 1 (i )= 3

- i for all i # [i
�
, @� ] and sellers
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�
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�
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choose attributes according to _̂1 ( j )= 3
- j for all j # [i

�
, @� ]. In the overin-

vestment equilibrium, buyers choose attributes according to ;� 2 (i )=4i for
all i # [i

�
, @� ] and sellers choose attributes according to _̂2 ( j )=4j for all

j # [i
�
, @� ].

Consider first the underinvestment case. We now argue it is not
profitable for buyer @� =.3 to deviate. The attribute returns are given by
x~ 1 (b)=b2�2&x~ 1 (b

�
) for b # [b

�
, 3

- @� ] and p~ 1 (s)=s2�2& p~ 1 (s
�
) for all

s # [s
�
, 3

- @� ]. Consider the problem (implied by @� taking the ``price'' to be
paid to seller j=@� =.3 as given) of maximizing v(b, 3

- @� )& p(@� )&�(b, @� ). Let
B1=[b: b 3

- @� � 1
2] and B2=[b: b 3

- @� � 1
2]. Maximizing the above objective

function over b # B1 implies b= 3
- @� , with value (.3)2�3&(.3)2�3�5& p(@� )

r.359& p(@� ). Consider now maximizing the objective function over b # B2 .
The solution to the first order condition is 3

- 4(.3)5�9
r .81 # B2 , with value

2( 3
- 4(.3)5�9)2 (.3)2�3 & ( 3

- 4(.3)5�9)5�(1.5) & p(@� ) r .355 & p(@� ) < .358 & p(@� ).
Finally, note that 3

- @� <4i*, so that a buyer (for example) with index i
above, but just near i*, cannot deviate to 4i and match with a seller of
attribute 4i (see Proposition 4).

Consider now the overinvestment case. It is not profitable for buyer
i
�
=.2, for example, to deviate because the marginal reward of increasing

attribute is so high, even matching with the lowest attribute seller. The
attribute returns are given by x~ 2 (b)=b4&x~ 2 (4i

�
) for b # [4i

�
, 4@� ] and

p~ 2 (s)=s4& p~ 2 (4i
�
) for all s # [4i

�
, 4@� ]. Consider the problem (implied by i

�taking the ``price'' to be paid to seller j=i
�
=.2 as given) of maximizing

v(b, 4i
�
)& p(i

�
)&�(b, i

�
). Now, let B1=[b: b(4i

�
)� 1

2] and B2=[b: b(4i
�
)� 1

2].
Maximizing the above objective function over b # B1 gives the boundary
solution b=.625, so that the optimal attribute is 4i

�
=.8.
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