Albane Théry

Simons Postdoctoral Fellow, Center for Mathematical Biology University of Pennsylvania, Philadelphia, US

athery@sas.upenn.edu

Research Interests: Biological Physics, Soft and Active Matter, Fluid Mechanics

RESEARCH POSITIONS

 University of Pennsylvania, Center for Mathematical Biology – US Simons Postdoctoral Fellow, Department of Mathematics Mentors: Yoichiro Mori, Arnold Mathijssen, Paulo Arratia In ongoing interdisciplinary collaborations, I am studying the role of suspended particles and polymers on bacterial motility, and showed that upstream contamination is enhanced in complex fluids. I am also developing numerical methods to investigate boundary-driven flows and self-organisation in spherical geometries. 	5
PhD in Applied Mathematics, University of Cambridge – UK, Thesis advisor: Eric Lauga Confinement-mediated accumulation and collective dynamics of microswimme I built theoretical and numerical models for active particles in confined geometries In particular, I studied the role of hydrodynamic interactions in setting the self- organisation of biased swimmers in channels, and the emergence of chiral patterns in drops. I also studied the relative importance of hydrodynamic and contact interactions for algae trapped in foams.	
MS in Physics, ENS Paris – Paris, France ICFP Master Program in Biological Physics and Soft Matter Ingénieur, École polytechnique – Paris, France	2017-2018 2014-2018
Master's degree in Mechanics, with courses in Mathematics, Physics, Biology and Mech RESEARCH EXPERIENCE	
Physics & Astronomy department, McMaster University – Hamilton, ON, CanadaJuCollective dynamics of magnetotactic bacteria in a channel, Experiments on bacterial self-organisation. Advisor: Kari Dalnoki-Veress.Ju	ly-August 2018
MMN lab, Institut Pierre-Gilles de Gennes – Paris, France M Deformation of elongated droplets in a confinement gradient, Microfluidic experiments on the dynamics of drops in patterned channels. Advisor : Marie-Caroline Jullien.	arch-June 2018
DAMTP, University of Cambridge – United Kingdom M Stochastic motion of a sphere propelled by attached bacteria, Advisor: Eric Lauga.	arch-June 2017

PUBLICATIONS

Enhanced bacterial upstream swimming is enhanced in shear-thinning fluids, B. Torres Maldonado*, <u>A. Théry</u> *, R. Tao, Q. Brosseau, A. Mathijssen, and P. Arratia, (in preparation)
Enhanced bacterial upstream swimming in complex fluids, D. Cao, R. Tao , <u>A. Théry</u> , A. Mathijssen, and Y. Wu, (in preparation)
Helical Locomotion in Dilute Suspensions, A. Zambrano, <u>A. Théry</u> , E. Lauga, R. Zenit, (in preparation).
Controlling confined collective organization with taxis, <u>A. Théry</u> , A. Chamolly, E. Lauga, <i>Physical Review Letters</i> , 2024.
Hydrodynamic interactions of squirmers above a wall, <u>A. Théry</u> , C. Maass, E. Lauga, R <i>oyal Society Open Science</i> , 2023
Rebound and scattering of motile Chlamydomonas algae in confined chambers, <u>A. Théry</u> , Y. Wang, M. Dvoriashyna, C. Eloy, F. Elias and E. Lauga, Soft Matter, 2021
Self-organisation and convection of confined magnetotactic bacteria, <u>A. Théry</u> , L. Le Nagard, J.C. Ono-dit-Biot, C. Fradin, K Dalnoki-Veress, E Lauga, <i>Scientific Reports</i> , 2020
A stochastic model for bacteria-driven microswimmers, C.E. López, <u>A. Théry</u> , E. Lauga, <i>Soft Matter</i> , 2019

SELECTED TALKS

Invited

Northwestern University, Swimmers in complex and confined environments.	Jan 2024
Soft Matter Theory Seminar, UPenn, Contamination in complex fluids.	Oct 2023
University of Chile, Self-organization in confinement.	June 2023
Center for Fluid Mechanics seminar, Brown University: Swimming in confinement.	March 2023
MathBio seminar, NJIT, Microswimmers in complex fluids: propulsion and rheotaxis.	Feb 2023
AMS Western Sectional Meeting, (U. of Utah) Tuning self-organization of biased microswimmers through confinement.	Oct 2022
Princeton Analysis of Fluid Seminar, Controlling confined collective organization with taxis.	Jan 2022
Biophysical Modeling Seminar, Flatiron Institute, New York.	Jan 2022
U. Penn Mathematical Biology Seminar.	Jan 2022
Contributed	
Division of Fluid Dynamics (DFD) APS meeting (Washington DC), Enhanced rheotaxis in complex fluids	Nov 2023
DFD meeting (Indianapolis, US), Confined squirmers: interactions, contacts and clusters.	Nov 2022
BioActive Fluids (Liverpool), Symmetry breaking and self-organisation in a drop.	June 2022
UK Fluid Conference (online), Hydrodynamic interactions of sedimenting squirmers.	Sep 2021
DFD meeting (online), Chlamydomonas scattering in foam.	Nov 2020
DFD meeting (Seattle, US), Bacterial magneto-convection.	Nov 2019
BIFD international symposium (Limerick, Ireland), Bacterial magneto-convection.	July 2019

TECHNICAL SKILLS

Computing: MATLAB, Mathematica, COMSOL, Python

Languages: English (fluent), French (native), Italian (advanced), Spanish (elementary)

TEACHING

Lecturer and Teaching Assistant Mathematical Biology (Math 5861, graduate elective), lecturer, UPenn	Fall 2023
Matternatical Diology (Matti 5601, graduate elective), lecturel, OTenni	1°an 2025
Fluids Part II, (year 3), supervisions (TA), Cambridge	Fall 2019, 2021 and 2022
Mathematical Biology Part II (year 3), supervisions, Cambridge	Winter 2020, 2021 and 2022
Undergraduate projects advisor (UPenn):	
Chenxi Leng, independent study: Learning strategies for predation in microswimn	ners. Fall 2023
Ivy Liu, FERBS program: Tracer advection by motile Chlamydomonas algae.	2021 - present

ACADEMIC SERVICE

Organiser, weekly U. Penn Mathematical Biology Seminar.	2022-24
Stimulus Outreach Program for Science in a UK primary school.	2018-19
Reviewer, Physical Review Fluids, Physical Review Letters, Journal of Fluid Mechanics.	