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1 Introduction and Notation

Kirby calculus techniques are important in the study of 4-manifolds in that
they give 3 dimensional mathematicians a way to manipulate their construc-
tions of 4-dimensional manifolds (on a 2-dimensional piece of paper). We
assume the reader is familiar with the basic Kirby moves and pictures for
k-handles on a 4-manifold. The primary source for this exposition was the
text by Gompf and Stipsicz (hereafter referred to as GS)[1].

Some notation:

• Dk: k-dimensional disk

• Sk: k-dimensional sphere

• ν: tubular neighborhood

• ∂X: boundary of X

A 1-handle is D1 × D3 attached to a 0-handle D4 by embedding its at-
taching sphere S0 × D3 in ∂D4 = S3. The usual notation for 1-handles is
D3

∐
D3, which is consistent with what we imagine we’d see if we were sit-

ting in the boundary of the 0-handle. We can attach 2-handles to a 1-handle
by drawing strands of the attaching knots onto the surfaces of the two balls.
These strands are connected by reflecting through the plane perpendicularly
bisecting the segment connecting the centers of the balls (Figure (1)).

In this article we discuss the limitation of this notation to consistently de-
pict 2-handle framings, and introduce Akbulut’s dotted circle notation which
solves this problem.
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Figure 1: Attaching a 2-handle to a 1-handle.

2 Framing

We review the framing of a k-handle and then discuss methods of visualizing
the framing coefficient for 2-handles on 4-manifolds which are attached to
∂D4 = S3 disjoint of any 1-handles.

In order to specify how to attach a k-handle h to an n-manifold X, we
need to know not only the embedding φ0 : Sk−1 → ∂X which places the
attaching sphere of h along a knot in X, but also the framing :

Definition 2.1. The framing f associated to the attaching sphere of a k-
handle on an n-manifold is an identification of the normal bundle νφ0(S

k−1)
with Sk−1 ×Rn−k. Informally, the framing shows us how to thicken the core
Dk × 0 to Dk ×Dn−k (fig. (2)).

The set of framings of a k-handle in a n-manifold can be mapped bijec-
tively to the elements of πk−1(O(n − k)) - this allows us to show that there
are unique orientable 1-handle framings for n ≥ 3, and that there are unique
framings for (n − 1)- (for n 6= 2) and n-handles (in general) [see GS 4.1.4].
In our case of interest, n = 4, this implies that we need only be concerned
with framings of 2-handles.

In a Kirby diagram, we can illustrate a framing f on an attaching knot
K in a 3-manifold M3 by drawing a transverse vector field on K, or (more
commonly), drawing a knot K ′ parallel to K by connecting arrowheads of
the vector field.1 This is called the double-strand notation. Sometimes the
blackboard framing is used, which constrains the transverse vector field on

1If φ : S1 ×D2 → M3 is the attaching map, then K = φ|S1 × {0} and K ′ = S1 × {p}
for some p 6= 0 contained in D2.
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Figure 2: Attaching sphere and framing concepts.

Figure 3: Methods of denoting framing.
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Figure 4: The orientable Seifert surface of a trefoil gives us the canonical
0-framing. Based on GS Exercise 4.5.9.

K to lie in R2 (the blackboard). For pictures of these, see fig. (3). In any
case, once we’ve specified a framing, we have all the information we need to
construct a unique (up to isotopy) oriented basis for each normal fiber if we
use the orientation on K induced by S1 and M .

Since π1(O(2)) = Z, the framings of 2-handles correspond bijectively to
the integers. We can use this fact to define a framing coefficient, which is
an integer specifying the framing of a knot. Here we describe two equivalent
ways of finding the canonical framing coefficient of a knot K attached in
S3 (not on any 1-handles); once we have specified the coefficient m of one
framing, we can get to the m± n framing by adding or subtracting twists in
K ′:

1. If we draw an orientable Seifert surface F bounded by K, drawing K ′

along an outward normal to F gives us the canonical 0-framing. We can
thus find the framing coefficient of a knot drawn with double-strand
notation by counting the signed number of times that K ′ intersects F .

2. A simpler way of finding the framing coefficient of a knot drawn with
the blackboard framing is to find the writhe w(K), equal to the signed
number of self-crossings of the knot. To generalize this to finding the
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Figure 5: The writhe gives us the canonical framing coefficient of the black-
board framing. Based on GS Fig. 4.23.

framing coefficient of a knot drawn with double-strand notation, we
can compute the linking number lk(K, K ′) of K and K ′, by counting
the signed number of undercrossings of K ′ under K.

Figure (4) and Figure (5) show how to apply methods 1 and 2 respectively
to some simple examples (based on Exercise 4.5.9 and Figure 4.23 in GS,
respectively).

The orientability of the Seifert surface for method 1 is essential - Figure
(6), also based on Exercise 4.5.9 in GS shows a non-orientable Seifert surface
on the trefoil whose outward normal defines the 6-framing rather than the
0-framing.

3 Troublesome Examples

We now work through a few problematic examples of determining framing co-
efficients of 2-handles running over 1-handles. First, we consider D2 bundles
over surfaces X.

We discussed in tutorial the diagrams for D2-bundles over orientable sur-
faces σg of genus g. We illustrate one of genus 1 in figure (7). For these bun-
dles, the 0-framing of the 2-handle can still be determined by the 0-section
Seifert surface because it is orientable, in this case, a punctured torus.

When we consider framings for D2 bundles over RP2, we find that the
0-section Seifert surface is now a non-orientable Möbius band. We saw in
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Figure 6: The non-orientable Seifert surface does not define the 0-framing.
Based on GS Exercise 4.5.9.
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Figure 7: The 0-section Seifert surface of a D2-bundle over T 2 gives us the
0-framing. Based on GS fig. 4.36.

figure (6) that the outward normal to a non-orientable Seifert surface does
not in general determine the canonical 0-framing, so we must try something
else.

We can try another method, which is to generalize the writhe method for
determining framings. This technique works, and does give us the proper
framing coefficient. The writhe of the first Kirby diagram in fig. (8) is +1,
and the writhe of the second diagram is -1. Therefore, the coefficients of the
blackboard framings are ±1. Unfortunately, neither of our diagrams are the
blackboard framing, so to calculate the framing coefficients, we must add on
the number of undercrossings, +1 in the first diagram, and -1 in the second.
This gives us framing coefficients of ±2. However, these two diagrams are
isotopic! The isotopy consists of looping one of the strands around the 1-
handles.

Another example is Gompf and Stipsicz Exercise 4.4.4 (solution in figure
12.2). In figure (9), we exhibit an isotopy of a 2-handle running over a 1-
handle which changes the framing coefficient by ±2 without changing the
embedding! [N.B. It is helpful for visualization to simulate this isotopy with
a belt or a ribbon, letting one edge be K, and another edge be K ′.]

These two examples show that there’s something we’re missing regarding
the framing of 2-handles running over 1-handles. In particular, we will see
that our “isotopies” of the 2-handles in these two examples actually hide
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Figure 8: How to determine the 0-framing of a D2-bundle over RP2, and the
trouble with a certain “twist”. Based on GS fig. 4.37, 4.38.

Figure 9: An isotopy which changes the framing? Based on GS Exercise
4.4.4 and figure 12.2.
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Figure 10: The 3-dimensional analogue of the notions for introducing the
dotted-circle notation. Based on GS Fig. 5.34, with suggestions from Andrew
Lobb.

handle slides.

4 Dotted circle diagrams

The dotted circle notation was introduced by Selman Akbulut in the late
1970s. This notation will help us resolve the difficulties we had with framings
above, and also makes it easier to slide 1- and 2-handles. It was originally
motivated by a surgery technique, however, we shall discuss here a more
elementary way of seeing it.

Recall that we can cancel a 1-handle and 2-handle when the 2-handle
runs once over the 1-handle. Thus, attaching a 1-handle to ∂D4 is equiv-
alent to removing some 2-handle in ∂D4. To see exactly what this means,
consider figure (10) (roughly GS Figure 5.34), which shows the operation in
3 dimensions. In the first image, we identify a 2-handle in the interior of the
manifold. We have also labeled the cocore D1. To remove the 2-handle, it
suffices to remove a tubular neighborhood of the cocore,2 in our figure, this
is a cylinder D1 ×D2.

2If we consider the Morse function corresponding to this handle decomposition of our
manifold, removing a tubular neighborhood of the cocore corresponds to removing a neigh-
borhood of the critical point with index 2 corresponding to this 2-handle. What remains
is homotopy equivalent to the manifold minus the 2-handle.
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Figure 11: Circles and surfaces in the two notations and a way of visualizing
conversion between the usual notation and dotted-circle notation. Based on
GS fig. 5.36 and 5.35.

If we push the boundary of the cylinder S0 ×D2 to the boundary of the
manifold S2, the 1-handle appears as a bridge over a tunnel. In the plane of
S2, the 1-handle looks either like an identification of two disks (corresponding
to the usual notation in Heegaard diagrams) or a “missing” S0×D2 (a dotted
circle type notation). We see the former if we pull the bridge up and fill in
the tunnel, and we see the latter if we bring the tunnel lower and flatten
the bridge. We have drawn in circles running over/under the 1-handle in
the final two components of figure (10) - we will compare this to 2-handles
running over 1-handles and surfaces under 1-handles in 4 dimensions.

In 4 dimensions, the cocore of the 2-handle is an unknotted D2 in the
interior of the manifold. After removing a tubular neighborhood of this disk,
we can push the boundary of this disk to S3, and we draw it by an unlinked
unknot decorated with a single dot. This dotted circle thus represents our 1-
handle. Now attaching 2-handles to this 1-handle is equivalent to threading
the knots through the unknot. Figure (11) shows how circles and surfaces
correspond in the two different notations - compare the circles in figure (10).
It is useful to think of the dotted circle as a 0-framed unknot in many in-
stances. We will see later that the handle moves in this notation are quite
similar in form.
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Figure (11) also shows that we can convert between the two notations by
pushing the spheres towards another (avoiding other obstacles) while flatten-
ing them into pancakes, and then disks. As they get closer, we cut out the
interior of the disks, and we end up with the dotted circles. Obviously, if we
have any 2-handles attached to the 1-handle, we must keep track of how they
move as well, however, the framing does not change as we push the spheres
into a dotted circle!

5 Comparison of Kirby moves in each nota-

tion

It turns out that handle slides involving dotted circle representations of 1-
handles are almost the same as slides for 0-framed unknots. The reason for
this is that performing surgery on a 0-framed unknot will give us a 1-handle
with the properties we expect from before. So sliding a 0-framed unknot first
and then performing the proper surgery is the same as first surgering it into
a 1-handle and then sliding.

5.1 2-handle slides over 1-handles

Figure (12) shows this operation in both notations. This move allows us to
change the sign of a crossing between the strand that we’re sliding and any
strand running through the 1-handle. Recall that when we slide a 2-handle
hi with framing ni embedded on knot Ki over a 2-handle hj with framing nj

embedded on knot Kj, ni changes according to the following formula:

n′
i = ni + nj ± 2lk(Ki, Kj) (1)

When we slide over a 0-framed unknot, nj = 0, so ni simply changes by
twice the linking number of Ki and the unknot. This is exactly how the
framing coefficient changes when sliding over a 1-handle.

5.2 1-handle slides over other 1-handles

Figure (13) shows this operation. As we might expect, when we use the
dotted circle notation, 1-handle slides over other 1-handles look like 0-framed
unknots sliding over other 0-framed unknots. The one caveat is that the
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(a)

(b)

Figure 12: 2-handle slides over 1-handles. Based on GS Fig. 5.36a, b.
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(a)

(b)

Figure 13: 1-handle slides over 1-handles. Based on GS Fig. 5.39.
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(a)

(b)

Figure 14: Cancelling a 2-handle and 1-handle. Based on GS Fig. 5.38.

unknot which slides in the picture actually represents the 1-handle which is
the target of the sliding, as you can verify from the figure.

5.3 1- and 2- handle creation/cancellation

Figure (14) shows a case of handle cancellation where we must first slide
non-cancelling 2-handles off the 1-handle. We do this by sliding them over
the cancelling 2-handle. This operation brings us back to our first picture
for this notation. Since the disk D which spans the unknot appears as a 0-
framed meridian, we can identify D with the cocore of the canceled 2-handle
- thus removing D is the same as removing the 2-handle.

6 Troublesome Examples Redux

If we change figures (8) and (9) to the new notation (fig. (15(a)), (15(b))), we
see that indeed, the isotopies of the 2-handles before corresponded to moves
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(a)

(b)

Figure 15: Revisiting the troublesome examples. (a) is based on GS fig. 6.4.
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which moved the 2-handles through the region between the 1-handles - in the
dotted circle notation, we see that these moves would cause the 2-handles to
intersect the unknots. Therefore, to perform these moves, we must actually
slide a 2-handle under a 1-handle.

We can now explain the changes in the framing coefficients. In figures
(8/15(a)) - the linking number of the 2-handle and the 1-handle is 2, thus
equation (1) tells us that the framing coefficient changes by 2 ∗ 2 = 4. Simi-
larly, in figures (9/15(b)), the linking number is 1, thus the framing coefficient
changes by 2.

The dotted circle notation is therefore helpful in that it allows us to more
fully understand these nuances of handle moves.
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