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In the paper “Sloppy-Model Universality Class and the Vandermonde Matrix”, Waterfall
et al[1] conjecture the following:

“Let S € R™" be symmetric and positive definite. Let E € R"™ ™ be diagonal with
E; = ¢ 1 and 0 < € < 1. Then the mth largest eigenvalue of ESE is O(¢2(m—1).”

In this note, we characterize the asymptotics of eigenvalues (i.e. we can find formulae for
the eigenvalues up to leading order in €) of EME for arbitrary complex n x n matrices M
and obtain the above as a corollary.

Conventions: Our indices for the rows and columns run from 0 to n — 1, rather than from
1 to n. [M];, iy, denotes the minor given by excluding the indices {4;}. In other words,
[Miy iy....4, is the determinant of the matrix we get by excluding the rows and columns
indexed by 41,14, ...,%,. We have of course the convention that [M] = det M, and we will
also take [M]y -1 = 1.

The principal result of this note is:

Let M € C™" and let E be as above. The asymptotic behavior of the eigenvalues
of EMFE for e < 1 and € > 1 may be determined by balancing terms of the characteristic
polynomial against each other in the limit of large or small €, respectively. The characteristic
polynomial may be written as follows (this holds for any € in E):

n

n—1; m .
Ppnp(d) = Z(_/\)m Z [M]jl,jg,...,jmg(zlzo =X k)
m=0 0<j1<ja<+<jm<n—1
So for large € th totic e ] iven by detM  [Mlo 2 [M]o....n—2 _2(n—1)
ge € the asymptotic eigenvalues are given by %, G € -0 Qo2 ,
For small €, the asymptotic eigenvalues are ﬁ%?("—l), [M[?ﬁﬁg(n—%’ o _{%}; 77777 nl

[M]y...n—1 = ago, which are ratios of leading principal minors. These are valid as long as
none of the determinants involved vanish.
3 X 3 matrix case
We work out the example of a 3 x 3 matrix to illustrate the ideas behind the proof. The
characteristic polynomial of a matrix EME with (M);; = a;; is:
PEME(/\) = —)\3 + (CL()() + CL11€2 + a2264))\2
- ((aooan — ap1a10)€” + (agoass — ag2az0 )€’ + (ar1aze — a12a21)66)) A

6
+ (agoa11G22 + Go1a12a20 + A2a10G21 — AopG12G21 — A11Ge2020 — G22001010) €

The constant term is just (det M )e%, the coefficient of the A! term is Z?ZO[M]j A\H0+142-7)
and the coefficient of the X* term is Y. oo [M];4€ @ +27775) " Assume for the moment
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that none of the principal minors vanish, which is certainly the case if M is positive definite
by the Sylvester criterion|2].

How might we approximate the roots of this polynomial and thus the eigenvalues of
EME? Let’s divide the characteristic polynomial by €®. We need to solve:

O = —6_6/\3 —f- (a006_6 —|— CL11€_4 + CL22€_2)/\2 — ([M]2€_4 —f- [M]1€_2 + [M]Q)) /\ + det M
For large €, we can neglect all the terms except for two:
0= —[M]oA + det M

Now approximate A by d[‘j\z]]\j . We can check that this solution will be self-consistent by

plugging this into the characteristic polynomial:

PEME o 6 det M 3 6 _4 _9 det M 2
o € ([M]o + (agoe > + arre " 4 age ) [M]o
det M
— ([M)e~* + [M]1€72 + [M]o)) ;\4] +det M
0

det M

o, s 2 self-consistent solution

This expression is zero up to O(¢~2) - which supports
of the characteristic polynomial.

By dividing by €* we get the self-consistent asymptotic approximation \ ~ %62 and by
dividing by € we get A ~ age? up to O(e72) terms.

A brief mathematical aside: These approximations correspond to the finest triangulation
of the configuration of 4 points 0, 1, 2, 3 on the affine line. By a certain deep connection
in the theory of series solutions to polynomials, we get the above approximations from the
zeroth order terms in said series[3]. The asymptotics of polynomial roots and this connection
is the subject of some ongoing work by Michael Brenner and myself [4].

It’s now not too hard to see that if any of the dominant principal minors did vanish,
the asymptotic behavior of the eigenvalues would be modified and follow then a new leading
order balance (in €) in the principal minors.

Eigenvalue asymptotics

We will make a dominant balance argument on the terms of the characteristic polynomial of
EME written in the following form:

n

PEME()\) - Z(_/\)m Z [M]j17j2,...,jm€2(2?:_01l_zznzl jk)

m=0 0<j1<j2 < <gm<n—1

We first discuss the case when M is positive definite. In this case, the Sylvester criterion
ensures that all of the principal minors are positive|[2].

For the large € case, the dominant contribution to the coefficient of the degree m term is
[M]o,m,m_leQZE}al (Choose j1,j2, -+, Jm = 0,1,2,...,m — 1, to maximize the sum of €). We
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Figure 1: The absolute values of eigenvalues of some complex 4 x 4 matrix M sandwiched

between E = diag(1,¢, €2, €3) vs €. Note the power law behavior in |A| for large and small e.
now argue that the asymptotic eigenvalues are given by det}M , [%3}‘?1 e ..., F\Aﬁg::ﬁe%"*l).

We obtained these by solving two term equations like:
(Mo, .mor€? it (- >m+wmmﬂﬁwxzﬂw—nWH:o

Consider the rth such asymptotic approximation . If we put this into our

expression for the characteristic polynomial, we have:

- M T— " n—1 m .
Ppae (V) = Z (_h\/[}zv%g(rlv Z [M]jl,jz,...,jmg(zlzo =X )

m=0 0<j1<y2<<jm<n—1

The power of € in the dominant contribution to the term of degree p (with coefficient
n—1
[Mo,..p-1¢*>i=0 ) s

2<p(r—1)+il> =2p(r—1)4+nn—1)—pp—-1)=p2r—p—1)+n(n-—1)

l=p

This is concave down and so maximized when dip(p(Zr—p— )+n(n—1)=0,orp=r—3.
Thus the powers of € in the dominant contribution to the degree r and r — 1 are greater than
the powers of € in any of the other terms. If we divide the characteristic polynomial by this
maximum power of €, at large €, all terms other than the degree » and r — 1 will drop out.
Now we recover (up to terms of O(e~2)) the equation we used to derive this expression for
the eigenvalue:

[M]o....ra€ =t (=) 4 (Mo 120 {(=A) = 0

=1 captures the asymptotic behavior of the rth eigenvalue at large e. This

.....

argument holds for any of the expressions we wrote, so we have fully characterized the large
€ asymptotics of the eigenvalues of EMFE.
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We may repeat these steps for the case of small €, but now the dominant contribution

to the term of degree m is instead [M]o, _,,_1€22i=0 "' (choose Ji, ..., jm =n—m,...,n),
and our asymptotic expressions for the eigenvalues are ﬁ—]‘i@("*), [1\/[[%—"2717162(”72), e
Mi..om— ’

Ml)—n_i = [M]i,.n—1 = aoo-

If we sort these asymptotic expressions for the eigenvalues, we see that they agree with
the conjectured bounds by Waterfall et al.

For arbitrary n x n matrices M, we may perform this procedure, but now we aren’t
guaranteed that any given [M];, ; will be nonzero, so we must instead use whatever the
dominant contribution in powers of € or ¢! happen to be.

Derivation of the formula for the characteristic polynomial of EMFE

The mth coefficient of the characteristic polynomial defined to be det(M — \I) is

1 dm
— M — N
m! d\™ det( A ),\=0
Now we use the identity <4 det A = >_;det(A); where (A); is the matrix formed by
replacing the jth row (or column) of A with the derivative of the jth row (or column) of A
with respect to ¢[5]. Thenlet A= M — A\, t = X:

1 dm

— i de et(M — \) ZZ Zdet (M = M)y dniim
Jj1 J2
(=)™ -
= > det(M = AD)j ...
NFjeFEFim
= (" > det(M — Al)jy jo,..m
0<j1<j2 < <jm<n—1
L A" Get(WT = A1 = (-1)™ M
T et ) o (-1) Z (M1 s

Ogjl <j2<"'<j7n§n_1

Above we’ve used the fact that only the entries on the diagonal contain A, and the fact
that taking the derivative on any row yields a row of just 0’s except for a -1 on the diagonal
element, then canceled the — factor due to the different permutations of the {j;}, and finally
used the definition of the prmmpal minor. Our conventions for [M] = det M (when m = 0)
and [M]o. -1 = 1 have been chosen so that this expression remains true at those values of
m.

Let M = EME. The structure of this matrix is as follows:

2 —

Qoo Qg€ Qo€ e aom_le”
2 3 n

a10€ ai1€ a19€ . a1,n—1€

n—1 n n+1 2(n—1
Qp—1,0€ Ap—1,1€" Ap—1.2€ Ap—1, —16( )
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EME with jl,jg, NN

apo

) j1-1 ) )
ajy—1,0¢’1 aj1—1,51—

) J1+1 ) )
ajy+1,0€7t aji+1.5
) dm—1 ) )
Qo —1,0€° ™™ Ajm —1,41
) Jm+1 ) )
@ +1,067™ @jm+1,51

e
an—1,0€" an—1,5;

When evaluating the determinant of this (this is the principal minor excluding ji, . . .

, Jm removed looks like:

i1—1
0,5y —1€71

2G1-1)

17152j1

_ eiitim =2

_ I1tim

_qedi1—t

j 1
ag,jy+1¢1t

. ] 271
Ajp—1,j1+1¢€

2 1
ajy41,5; 416201

. . J1+3i
A, —1,51+1€ m

) ) j1+im+2
Ay +1,5p+16717™

PR
a0$j1+1eJ1+

j —1
@0,y —1€7™

. . J1+im—2
Aj1—1,im—1¢€

. . J1+i
A1+l jm—1€71TI™

) ) 2(jm—1)
Cjm —1,jm—1€ """

0
m+1,gm =167

J n—2
an—l,jm—lfjm+ v

we can factor out € from each of the lth columns, and we get:

n—1 .
621:0 =37k Jk det

And we may do the same with the rows:

2150 -0 0k) et

We’ve shown that

Qjm+1,im+1€

j 1
a0, jm+169m T

) . J1+i
@j1—1,jm—+1€ m

o 1 Fim+2
@j) 1, Gm 1€ 1™

. . 2jm
Ajm —1,im+1€

2(3m+1)

Ap—1,jm+1 edm+n

7jm)7

Qoo Qo1 02 ao,n—1
a10€ a11€ a12€ a1 n—1€
n—1 n—1 n—1 n—1
Apn—1,0€ Ap—1,1€ Apn—1,2€ Ap—1,n—1€
oo ao1 o2 apn—1
aio a1 a2 a1,n—1
p—-1,0 Qn-1,1 Op—12 Ap—1,n-1
(M), = [M];, . 2(Ei =T )
Jlyeensm J1yeensdm

And so the characteristic polynomial takes the form:

Poyp(\) =) (=A™

n

m=0

2.

n—1 -5 m .
I:M:Ij17j27---7j7n62<21:0 Zk:l ]k)

0<j1<jo < <gm<n—1
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