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In the paper “Sloppy-Model Universality Class and the Vandermonde Matrix”, Waterfall
et al[1] conjecture the following:

“Let S ∈ Rn×n be symmetric and positive definite. Let E ∈ Rn×n be diagonal with
Eii = εi−1 and 0 < ε � 1. Then the mth largest eigenvalue of ESE is O(ε2(m−1)).”

In this note, we characterize the asymptotics of eigenvalues (i.e. we can find formulae for
the eigenvalues up to leading order in ε) of EME for arbitrary complex n × n matrices M
and obtain the above as a corollary.

Conventions: Our indices for the rows and columns run from 0 to n−1, rather than from
1 to n. [M ]i1,i2,...,im denotes the minor given by excluding the indices {il}. In other words,
[M ]i1,i2,...,im is the determinant of the matrix we get by excluding the rows and columns
indexed by i1, i2, . . . , im. We have of course the convention that [M ] = det M , and we will
also take [M ]0,...,n−1 = 1.

The principal result of this note is:
Let M ∈ Cn×n, and let E be as above. The asymptotic behavior of the eigenvalues

of EME for ε � 1 and ε � 1 may be determined by balancing terms of the characteristic
polynomial against each other in the limit of large or small ε, respectively. The characteristic
polynomial may be written as follows (this holds for any ε in E):

PEME(λ) =
n∑

m=0

(−λ)m
∑

0≤j1<j2<···<jm≤n−1

[M ]j1,j2,...,jmε2(
∑n−1

l=0 l−
∑m

k=1 jk)

So for large ε the asymptotic eigenvalues are given by det M
[M ]0

, [M ]0
[M ]0,1

ε2, . . . , [M ]0,...,n−2

[M ]0,...,n−1
ε2(n−1).

For small ε, the asymptotic eigenvalues are det M
[M ]n−1

ε2(n−1), [M ]n−1

[M ]n−2,n−1
ε2(n−2), . . . , [M ]1,...,n−1

[M ]0,...,n−1
=

[M ]1,...,n−1 = a00, which are ratios of leading principal minors. These are valid as long as
none of the determinants involved vanish.

3× 3 matrix case

We work out the example of a 3 × 3 matrix to illustrate the ideas behind the proof. The
characteristic polynomial of a matrix EME with (M)ij = aij is:

PEME(λ) = −λ3 + (a00 + a11ε
2 + a22ε

4)λ2

−
(
(a00a11 − a01a10)ε

2 + (a00a22 − a02a20)ε
4 + (a11a22 − a12a21)ε

6)
)
λ

+ (a00a11a22 + a01a12a20 + a02a10a21 − a00a12a21 − a11a02a20 − a22a01a10) ε6

The constant term is just (det M)ε6, the coefficient of the λ1 term is
∑2

j=0[M ]jλ
2(0+1+2−j)

and the coefficient of the λ2 term is
∑

0≤j<k≤2[M ]j,kε
2(0+1+2−j−k). Assume for the moment
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that none of the principal minors vanish, which is certainly the case if M is positive definite
by the Sylvester criterion[2].

How might we approximate the roots of this polynomial and thus the eigenvalues of
EME? Let’s divide the characteristic polynomial by ε6. We need to solve:

0 = −ε−6λ3 + (a00ε
−6 + a11ε

−4 + a22ε
−2)λ2 −

(
[M ]2ε

−4 + [M ]1ε
−2 + [M ]0)

)
λ + det M

For large ε, we can neglect all the terms except for two:

0 = −[M ]0λ + det M

Now approximate λ by det M
[M ]0

. We can check that this solution will be self-consistent by
plugging this into the characteristic polynomial:

PEME

ε6
= −ε−6

(
det M

[M ]0

)3

+ (a00ε
−6 + a11ε

−4 + a22ε
−2)

(
det M

[M ]0

)2

−
(
[M ]2ε

−4 + [M ]1ε
−2 + [M ]0)

) det M

[M ]0
+ det M

This expression is zero up to O(ε−2) - which supports det M
[M ]0

as a self-consistent solution
of the characteristic polynomial.

By dividing by ε4 we get the self-consistent asymptotic approximation λ ∼ [M ]0
a22

ε2 and by

dividing by ε2 we get λ ∼ a22ε
4 up to O(ε−2) terms.

A brief mathematical aside: These approximations correspond to the finest triangulation
of the configuration of 4 points 0, 1, 2, 3 on the affine line. By a certain deep connection
in the theory of series solutions to polynomials, we get the above approximations from the
zeroth order terms in said series[3]. The asymptotics of polynomial roots and this connection
is the subject of some ongoing work by Michael Brenner and myself [4].

It’s now not too hard to see that if any of the dominant principal minors did vanish,
the asymptotic behavior of the eigenvalues would be modified and follow then a new leading
order balance (in ε) in the principal minors.

Eigenvalue asymptotics

We will make a dominant balance argument on the terms of the characteristic polynomial of
EME written in the following form:

PEME(λ) =
n∑

m=0

(−λ)m
∑

0≤j1<j2<···<jm≤n−1

[M ]j1,j2,...,jmε2(
∑n−1

l=0 l−
∑m

k=1 jk)

We first discuss the case when M is positive definite. In this case, the Sylvester criterion
ensures that all of the principal minors are positive[2].

For the large ε case, the dominant contribution to the coefficient of the degree m term is
[M ]0,...,m−1ε

2
∑n−1

l=m l (Choose j1, j2, . . . , jm = 0, 1, 2, . . . ,m− 1, to maximize the sum of ε). We
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Figure 1: The absolute values of eigenvalues of some complex 4 × 4 matrix M sandwiched
between E = diag(1, ε, ε2, ε3) vs ε. Note the power law behavior in |λ| for large and small ε.

now argue that the asymptotic eigenvalues are given by det M
[M ]0

, [M ]0
[M ]0,1

ε2, . . . , [M ]0,...,n−2

[M ]0,...,n−1
ε2(n−1).

We obtained these by solving two term equations like:

[M ]0,...,m−1ε
2

∑n−1
l=m l (−λ)m + [M ]0,...,mε2

∑n−1
l=m+1 l (−λ)m+1 = 0

Consider the rth such asymptotic approximation [M ]0,...,r−2

[M ]0,...,r−1
ε2(r−1). If we put this into our

expression for the characteristic polynomial, we have:

PEME (λ) =
n∑

m=0

(
− [M ]0,...,r−2

[M ]0,...,r−1

ε2(r−1)

)m ∑
0≤j1<j2<···<jm≤n−1

[M ]j1,j2,...,jmε2(
∑n−1

l=0 l−
∑m

k=1 jk)

The power of ε in the dominant contribution to the term of degree p (with coefficient

[M ]0,...,p−1ε
2

∑n−1
l=p l) is:

2

(
p(r − 1) +

n−1∑
l=p

l

)
= 2p(r − 1) + n(n− 1)− p(p− 1) = p(2r − p− 1) + n(n− 1)

This is concave down and so maximized when d
dp

(p(2r−p−1)+n(n−1) = 0, or p = r− 1
2
.

Thus the powers of ε in the dominant contribution to the degree r and r−1 are greater than
the powers of ε in any of the other terms. If we divide the characteristic polynomial by this
maximum power of ε, at large ε, all terms other than the degree r and r − 1 will drop out.
Now we recover (up to terms of O(ε−2)) the equation we used to derive this expression for
the eigenvalue:

[M ]0,...,r−2ε
2

∑n−1
l=r−1 l(−λ)r−1 + [M ]0,...,r−1ε

2
∑n−1

l=r l(−λ)r = 0

So [M ]0,...,r−2

[M ]0,...,r−1
ε2(r−1) captures the asymptotic behavior of the rth eigenvalue at large ε. This

argument holds for any of the expressions we wrote, so we have fully characterized the large
ε asymptotics of the eigenvalues of EME.
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We may repeat these steps for the case of small ε, but now the dominant contribution
to the term of degree m is instead [M ]0,...,m−1ε

2
∑n−m−1

l=0 l (choose j1, . . . , jm = n−m, . . . , n),

and our asymptotic expressions for the eigenvalues are det M
[M ]n−1

ε2(n−1), [M ]n−1

[M ]n−2,n−1
ε2(n−2), . . . ,

[M ]1,...,n−1

[M ]0,...,n−1
= [M ]1,...,n−1 = a00.

If we sort these asymptotic expressions for the eigenvalues, we see that they agree with
the conjectured bounds by Waterfall et al.

For arbitrary n × n matrices M , we may perform this procedure, but now we aren’t
guaranteed that any given [M ]j1,...,jm will be nonzero, so we must instead use whatever the
dominant contribution in powers of ε or ε−1 happen to be.

Derivation of the formula for the characteristic polynomial of EME

The mth coefficient of the characteristic polynomial defined to be det(M̃ − λI) is:

1

m!

dm

dλm
det(M̃ − λI)

∣∣∣
λ=0

Now we use the identity d
dt

det A =
∑

j det(A)j where (A)j is the matrix formed by
replacing the jth row (or column) of A with the derivative of the jth row (or column) of A
with respect to t[5]. Then let A = M̃ − λI, t = λ:

1

m!

dm

dλm
det(M̃ − λI) =

(−1)m

m!

∑
j1

∑
j2

· · ·
∑
jm

det(M̃ − λI)j1,j2,...,jm

=
(−1)m

m!

∑
j1 6=j2 6=···6=jm

det(M̃ − λI)j1,j2,...,jm

= (−1)m
∑

0≤j1<j2<···<jm≤n−1

det(M̃ − λI)j1,j2,...,jm

1

m!

dm

dλm
det(M̃ − λI)

∣∣∣
λ=0

= (−1)m
∑

0≤j1<j2<···<jm≤n−1

[M̃ ]j1,j2,...,jm

Above we’ve used the fact that only the entries on the diagonal contain λ, and the fact
that taking the derivative on any row yields a row of just 0’s except for a -1 on the diagonal
element, then canceled the 1

m!
factor due to the different permutations of the {jl}, and finally

used the definition of the principal minor. Our conventions for [M ] = det M (when m = 0)
and [M ]0,...,n−1 = 1 have been chosen so that this expression remains true at those values of
m.

Let M̃ = EME. The structure of this matrix is as follows:
a00 a01ε a02ε

2 . . . a0,n−1ε
n−1

a10ε a11ε
2 a12ε

3 . . . a1,n−1ε
n

...
...

...
. . .

...
an−1,0ε

n−1 an−1,1ε
n an−1,2ε

n+1 . . . an−1,n−1ε
2(n−1)


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EME with j1, j2, . . . , jm removed looks like:



a00 . . . a0,j1−1εj1−1 a0,j1+1εj1+1 . . . a0,jm−1εjm−1 a0,jm+1εjm+1 . . . a0,n−1εn−1

.

.

.
.
. . . . . . . . . . . . . . . . . . . .

.

.

.

aj1−1,0εj1−1
.
.
. aj1−1,j1−1ε2(j1−1) aj1−1,j1+1ε2j1

.

.

. aj1−1,jm−1εj1+jm−2 aj1−1,jm+1εj1+jm

.

.

. aj1−1,n−1εj1+n−2

aj1+1,0εj1+1
.
.
. aj1+1,j1−1ε2j1 aj1+1,j1+1ε2(j1+1)

.

.

. aj1+1,jm−1εj1+jm aj1+1,jm+1εj1+jm+2
.
.
. aj1+1,n−1εj1+n

.

.

.

.

.

.

.

.

.

.

.

.
.
.
. . . . . . . . . . . . .

ajm−1,0εjm−1
.
.
. ajm−1,j1−1εj1+jm−2 ajm−1,j1+1εj1+jm

.

.

. ajm−1,jm−1ε2(jm−1) ajm−1,jm+1ε2jm

.

.

. ajm−1,n−1εjm+n−2

ajm+1,0εjm+1
.
.
. ajm+1,j1−1εj1+jm ajm+1,j1+1εj1+jm+2

.

.

. ajm+1,jm−1ε2jm ajm+1,jm+1ε2(jm+1)
.
.
. ajm+1,n−1εjm+n

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

an−1,0εn−1 . . . an−1,j1−1εj1−1 a0,j1+1εj1+1 . . . an−1,jm−1εjm+n−2 an−1,jm+1εjm+n . . . an−1,n−1ε2(n−1)



When evaluating the determinant of this (this is the principal minor excluding j1, . . . , jm),
we can factor out εl from each of the lth columns, and we get:

ε
∑n−1

l=0 l−
∑m

k=1 jk det


a00 a01 a02 . . . a0,n−1

a10ε a11ε a12ε . . . a1,n−1ε
...

...
...

. . .
...

an−1,0ε
n−1 an−1,1ε

n−1 an−1,2ε
n−1 . . . an−1,n−1ε

n−1


And we may do the same with the rows:

ε2(
∑n−1

l=0 l−
∑m

k=1 jk) det


a00 a01 a02 . . . a0,n−1

a10 a11 a12 . . . a1,n−1
...

...
...

. . .
...

an−1,0 an−1,1 an−1,2 . . . an−1,n−1


We’ve shown that

[M̃ ]j1,...,jm = [M ]j1,...,jmε2(
∑n−1

l=0 l−
∑m

k=1 jk)

And so the characteristic polynomial takes the form:

PEME(λ) =
n∑

m=0

(−λ)m
∑

0≤j1<j2<···<jm≤n−1

[M ]j1,j2,...,jmε2(
∑n−1

l=0 l−
∑m

k=1 jk)
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