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Executive Summary

The aim of work package 3 is to develop machine learning methods capable of modelling
real-valued time series based on contemporaneous textual input. The text is derived from
social media, initially using the streaming feed of public Twitter status messages, and
the time series are derived from the two use cases of the project: political polling and
financial markets. This first deliverable includes our initial work in constructing tools and
basic machine learning components for developing such models.

The central component of the deliverable is the processing pipeline which takes a
stream of Twitter status messages (‘tweets’), to which it applies a series of language
processing algorithms – namely tokenization, language detection, word stemming and
sentiment analysis. The processed data is then aggregated over a time-period to produce
features suitable for describing movements in a time-series, e.g., word frequencies or
aggregate sentiment relating to a given person, party or company. The sheer scale of
Twitter data complicates even this simple level of processing, necessitating a parallel
architecture in order to perform these steps in a real-time setting. For this reason we have
developed our pipeline for feature processing and machine learning in the Apache Hadoop
framework, an open source implementation of Google’s MapReduce parallel architecture.

In designing the pipeline, our intention was to reuse a number of pre-existing NLP
tools. However we discovered that although a few freely available tools did exist, they
either could not be directly applied to our data, or else were implemented very inefficiently
and consequently were not able to meet our high performance runtime requirements. For
these reasons we developed a number of processing components ourselves, which we have
built into the pipeline. Our implementation has been made open source, and we anticipate
considerable interest from the community as it is the first such tool to our knowledge for
processing social media text.

The second part of this deliverable provides initial analyses of the two project use
cases using a year of processed Twitter data.1 Previous research into predicting political
opinion and financial market value time-series has made extensive use of careful data
filtering combined with sentiment analysis in order to measure the aggregate sentiment of
the users of social media with respect to certain events, people or issues. For example, this
has taken the form of searching for the sentiment attached to tweets including ‘Obama’
for predicting the winner of the last US presidential election, or the number of tweets
expressing a ‘calm’ sentiment for tracking the Dow Jones industrial index. Our analysis

1This data was downloaded from the gardenhose streamining API.
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D3.1.1 Regression models of trends in streaming data

has aimed at replicating these approaches using our own Twitter data, processing pipeline
and time-series data (UK polls before the 2010 election, and the Apple share price).

The deliverable includes tools for measuring correlations between a feature and our
time series, and linear regression for predicting subsequent values for the time series.
Our findings are that the previous techniques cannot be directly ported to our data, but
require careful tuning, particularly in filtering for relevant messages and making good use
of sparse data.

TrendMiner/2012/D3.1.1/v1.1 May 1, 2012 3
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Chapter 1

Introduction

1.1 Relevance to TrendMiner

Deliverable D 3.1.1, scheduled to be completed at a very early stage of the project (M6) is
intended to establish a working dataset and initial algorithms for future use in the project.
The envisaged difficulties of having to deal with very large volumes of data by setting up
of the computing infrastructure and the software pipeline for preprocessing and feature
extraction. Preliminary regression analysis is included to confirm that the whole pipeline
works satisfactorily in extracting features from tweet data. The focus of this report is in
describing the implementations of each of the modules in the pipeline. For MicroBlog
data, these differ from conventional text analysis approaches in a number of ways, and
these challenges have been addressed and a system working to satisfactory performance
has been achieved.

1.1.1 WP 3 Description

WP3 of TrendMiner is aimed at the development of machine learning methods for mining
streaming media. Regression analysis to extract correlations between response variables
of relevance to the two application domains and input features extracted from text is the
starting point of the study. More difficult problems of learning in a non-stationary envi-
ronment using more advanced models, modelling spatial and demographic variations in
the information extracted and evaluation of both the above in the application areas are
aspects of this WorkPackage.

1.1.2 Relevance to project objectives

The work reported in this deliverable provides the computational framework and software
pipeline for pre-processing large volumes of tweet data. The outputs will be used in all

2



CHAPTER 1. INTRODUCTION 3

analyses to be carried out in WP3.

1.1.3 Relation to other workpackages

Similar to 1.1.2, the preprocessing infrastructure is essental for the provision of basic data
and features in all parts of the project whereever data is required.



Chapter 2

The Tools

In this section we describe our new open-source framework for efficient text processing
of streaming OSN (Online Social Network) data. Our system is focused on a real world
scenario where fast processing and accuracy is paramount. For this purpose, we make use
the MapReduce framework for distributed computing.

OSNs have seen a rapid rise in number of users and activity in the past years. The ac-
companying availability of large amounts of data pose a number of new natural language
processing (NLP) and computational challenges.

There are several challenges for text processing tools when faced with OSN data.
These include the short length of messages, inconsistent capitalization patterns, ad-hoc
abbreviations, uncommon grammar constructions and threaded discussions of friends in
a network structure. When standard text processing tools, like part-of-speech taggers or
named entity recognition systems, have been applied to OSN data their results have shown
a significant drop in accuracy [Gimpel et al., 2011, Ritter et al., 2011], making their use
in a pipeline untenable. Several researchers have addressed some of these problems in the
past years, creating specific text processing tools for OSN data. Our system is the first to
unify these tools with an emphasis on the adaptation to real world scenarios that include
processing batches of millions of items or online data processing.

We propose a framework that can combine existing tools whilst being extensible to
allow the addition of future components. Moreover, the system is built in as pipeline with
interchangeable modules which gives the end user control over what processing steps are
required for their given application. In order to achieve this, we keep the format of the
original data and at each step of the pipeline we augment the output of the previous steps
with extra fields corresponding to the results of preceding steps. The system is built using
Twitter data1 and the JSON data format2, but we can easily adapt it to data from other
OSNs (e.g. Facebook/Google+ status updates) that share similar features.

1https://dev.twitter.com/docs/streaming-api/methods
2http://www.json.org/

4
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Another important challenge posed by OSN data is the sheer size of the datasets that
we need to process. Our setting that includes massive datasets and the I/O bound nature
of the analysis lends itself perfectly to using the MapReduce distributed framework. Text
analysis tasks can mostly be done in parallel in the map part while the aggregation into
feature vectors is achieved in the reduce part of the framework.

In section 2.1 we present the architecture of our system and the modules we have
already implemented. A detailed description for developers of the tools and their usage is
presented in section 2.2.

2.1 Preprocessing Tool

In this section we describe the architecture of our system and the modules we have imple-
mented to date. For these modules we also provide quantitative and qualitative evaluation.
We present how our modules currently integrate in the system, with the planned modules
and with the analysis described in the next chapter.

2.1.1 Modules

We have implemented and tested to date 3 components of our preprocessing pipeline in
our analysis tools. All three stages are implemented in pure Java. These are: Twitter
specific tokenization, short text language detection and stemming. We present a brief
description of all these modules in the next subsections.

Tokenization

Tokenization is an essential part in any text analysis system and is normally amongst the
first steps to be performed in a preprocessing pipeline. Its goal is to divide the input text
into units called tokens, with each of these being a word, a punctuation mark or some
other sequence of characters that holds a meaning of its own.

Tokenization of OSN data, and in particular of Twitter data, poses challenges be-
yond those present in processing traditional sources (e.g. newswire). In particular, we
must handle URLs, sequences of punctuation marks, emoticons, Twitter conventions (e.g.
hashtags, @-replies, retweets), abbreviations and dates. Our system handles all of these
challenges as we show in the qualitative evaluation. The implementation works through
a chain-able set regexes which define patterns of token to “protect” in the first phase,
followed by blank space delimitation of the remaining tokens for the second phase. This
modular design means that this tokeniser can be easily extended to protect different tokens
in the future. This is useful for general analysis as protected terms include urls, twitter
hashtags and emoticons.
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Note that the current version only works with latin scripted languages and their con-
ventions (e.g. delimitation between words by punctuation or whitespace) and an extension
to other languages (e.g. Asian languages) is planned for future versions.

Language Detection

There are many language detection systems readily available to be used for this task. The
main challenge for these when faced with OSN data is the short number of tokens (10
tokens/tweet on average) and the noisy nature of the words (abbreviations, misspellings).
Due to the length of the text, we can make the assumption that one tweet is written in only
one language. Most language detection tools work by building n-gram language models
for each language and then assigning the text to the most probable language from the
trained model.

We choose to use the language detection method presented in Lui and Baldwin [2011]
which we have reimplemented in Java. We choose this method over others for the follow-
ing reasons: it is reported as being the fastest, it is standalone and comes pre-trained on
97 languages, it works at a character level without using the script information (this way
we need to feed only the text field) and it was used by other researchers with good results
[Han and Baldwin, 2011].

Stemming

Stemming is the linguistic process that reduces inflected and derived words to their root
form. We use a pure Java implementation of the traditional Porter Stemmer, which is the
standard stemmer used in NLP and Information Retrieval tasks. We chose the Snowball
stemmer [Porter, 2001] backed by the Terrier Snowball stemmer implementation [Ounis
et al., 2006].

2.1.2 Architecture

In this section we present the architecture of our pipeline of preprocessing tools. We
identified two main use cases. Firstly, the batch analysis of several terabytes of tweets
and applying filters for keywords, language, etc in order to compute aggregate counts of
features, sentiment, etc over them when dealing with archival scenarios. Secondly, the
analysis of millions of tweets per hour when dealing with real time analysis scenarios. To
address these concerns, we propose a set of command line tools. The tools implement the
stages of our preprocessing pipeline, the stages of which were presented in section 2.1.1.

We expect that any particular task in the pipeline applied to an individual tweet will
have little processing requirements as compared to the I/O requirements of reading, pre-
processing and outputting in a useable format several terabytes of compressed tweets.
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This I/O bound nature of twitter analysis has been addressed in the past (both by various
authors as well as Twitter’s own in house development team3) with the use of clusters
of machines with shared access to distributed tweets using the MapReduce framework
and distributed filesystem. MapReduce is a software framework for distributed compu-
tation. MapReduce was introduced by Google in 2004 to support distributed processing
of massive datasets on commodity server clusters. Logically, the MapReduce computa-
tional model consists of two steps, Map and Reduce, which are both defined in terms of
inputs and outputs of < key, value > pairs. For example, the keys could be filenames,
and the values could be the actual contents of the files, or the keys could be the line num-
ber of a text file. In the case of processing twitter data, our keys are null and our values
are individual twitter statuses held in the standard Twitter JSON format. Any analysis is
augmented to this JSON map. We discuss the data format consistency considerations in
greater detail below.

We take advantage of the relatively mature Apache Hadoop4 MapReduce framework
to apply distributed processing to tweets. When interacting with Hadoop it is possible to
dictate the map and reduce functions using either Hadoop Streaming5 or writing custom
Java tools interacting with the underlying Hadoop Java libraries. Hadoop streaming al-
lows the specification of the mappers and reducers through POSIX like standard in and
standard out enabled command line utilities. This allows for quick prototyping using any
language the user wishes, but doesn’t provide the flexibility exposed when using Hadoop
as a library in Java. Instead we choose to implement a Hadoop enabled preprocessing
tool written in Java. This tool exposes the various stages of our preprocessing pipeline
as modes. The inner components of the tool are shared between two separate tools: a
local command line utility (primarily for local testing purposes) and a Hadoop processing
utility. The individual stages of the preprocessing pipeline are implemented in pure Java
and exposed as modes in the tools. In the local utility, individual tweets are loaded one
at a time and each selected pipeline stage is applied to each tweet as it is loaded. In the
Hadoop implementation the map stage is used to load each tweet wherein each prepro-
cessing step is applied to an individual tweet and emitted by the Mapper and the Null
reducer is used as no further processing needs to occur after map. The key consideration
in the design of these tools are:

Modularity Our tools are engineered for extensibility. Firstly, the Hadoop and Standard
tools are both driven through the same “mode” specifications and implementations.
To implement a new mode which works in both tools, a simple Java interface is im-
plemented which specifies a single function which accepts a twitter status and adds
analysis to the status’s analysis field. Furthermore, multiple implemented modes
can be executed in a single invocation of the tool. Concretely, this results in multiple
analysis being performed on a single tweet while it is in memory (in the Standard

3http://engineering.twitter.com/2010/04/hadoop-at-twitter.html
4http://hadoop.apache.org/
5http://hadoop.apache.org/common/docs/r0.15.2/streaming.html
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Figure 2.1: Module diagram

tool) or multiple analysis being performed in the single map task (in the Hadoop
tool). A diagram of the current stage of the modules, how they relate to each other
and with the analysis performed in the next chapter is presented in figure 2.1.2.

Data Consistency Related to modularity is the notion of data consistency. Components
of the pipeline may run in isolation, or as a chain of preprocessing tasks. To this
end each component must be able to predict what data is available and be able to
reuse or reproduce the output of preceding stages it relies upon. Concretely this
means that the original twitter status data must remain unchanged and instead the
Twitter status JSON map is augmented with an “analysis” entry which is itself a
map that holds all the output of the pipeline’s stages. Implemented components of
the pipeline use this analysis map to retrieve the output of previous stages6 and they
also add their own analysis to this map.

Reusability To guarantee the repeatability of all our experiments, we will make each
stage of our preprocessing pipeline available to the wider community in a form
which can be easily used to reproduce our results or achieve novel results in dif-
ferent experiments. To these ends the current versions of the both tools are made
available in the OpenIMAJ multimedia library7. In doing so we allow third parties

6A stage has a unique name which it uses to store data.
7http://openimaj.org



CHAPTER 2. THE TOOLS 9

Table 2.1: Example tweet tokenisations
Tweet A “@janecds RT badbristal np VYBZ KARTEL - TURN & WINE¡ WE

DANCEN TO THIS LOL? http://blity.ax.lt/63HPL”
Tokens A [@janecds, RT, badbristal, np, VYBZ, KARTEL, -, TURN, &, WINE,

<, WE, DANCEN, TO, THIS, LOL, ?, http://blity.ax.lt/63HPL]
Tweet B “RT @BThompsonWRITEZ: @libbyabrego honored?! Everybody

knows the libster is nice with it...lol...(thankkkks a bunch;))”
Tokens B [RT, @BThompsonWRITEZ, :, @libbyabrego, honored, ?!, Everybody,

knows, the, libster, is, nice, with, it, ..., lol, ..., (, thankkkks, a, bunch,
;))]

to access future releases and module extensions, as well as complete source code
access and the ability to preprocess tweets following our methodologies.

2.1.3 Evaluation

In this section we focus on testing the accuracy of the implemented components in the sys-
tem. In order to produce useful results, our system needs to perform its tasks both quickly
and with high accuracy. An evaluation of the running times for our tools is presented in
section 2.2.3.

Tokenization

For the tokenization module we will evaluate the performance qualitatively by presenting
some tweets that pose tokenization problems specific to microblogging text. Some rep-
resentative examples are presented in Table 2.1 and we can conclude that our tokenizer
handles OSN text very well.

Language Detection

Language detection of short and noisy text has been shown to be a challenging problem.
Baldwin and Lui [2010] reports a decrease in performance from around 90-95% down to
around 70% with state-of-the-art language detection algorithms when restricting the input
text’s length.

We test the method that we integrated to our pipeline on the same microblog dataset
used by Carter et al. [2012]. They report an accuracy of 89.5% when classifying into
5 different languages. Our accuracy is 89.3% on 2000 tweets using a 97-way classifier.
For our setting, in which we want to assign texts to many languages, we conclude that
our language identification system performs well, but with room for future improvement.
Improvements are suggested in [Carter et al., 2012] where they use microblog specific
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information to improve accuracy to up to 97-98% when discriminating between 5 lan-
guages.

2.2 Standard and Hadoop TwitterPreprocessingTool

In this section we describe, with examples, exactly how the implementations of tools
described in the previous sections can be used. This includes an in depth description of
the various options of the tools, how various stages of the pipeline can be invoked and
how different output modes and filtering operations can be used. In this section we also
briefly describe the usage of the hadoop implementation of the tool.

The TwitterPreprocessingTool is an open source command line tool written in java. It
allows command line POSIX like access to java implementations of the text preprocessing
pipeline discussed in Section 2.1.1. The tool is written with modularity and usability in
mind. Behind the scenes, the tool uses modular java implementations of the various
pipeline stages which can be used as library functions in java programs independently of
the tool. Furthermore, components written for the single machine command line tool are
automatically available in the HadoopTwitterPreprocessingTool.

2.2.1 Basic Usage

Listing 2.1: TwitterPreprocessingTool help
Usage: java -jar JClusterQuantiser.jar [options...] [files...]
--encoding (-e) STRING : The outputstreamwriter’s text encoding
--input (-i) STRING : Input tweets
--input-file (-if) VAL : Get a set of inputs as listed in a

file
--mode (-m) [TOKENISE | LANG_ID | : How should the tweets be processed.
PORTER_STEM] :
--n-tweets (-n) N : How many tweets from the input should

this be applied to.
--output (-o) STRING : Tweet output location
--output-mode (-om) [APPEND | : How should the analysis be outputed.
CONDENSED | ANALYSIS] :
--quiet (-q) : Control the progress messages.
--remove-existing-output (-rm) : If existing output exists, remove it
--time-before-skip (-t) N : Time to wait before skipping an entry
--verbose (-v) : Be very loud (overrides queit)

Preprocess tweets for bag of words analysis

When ran with no options, help information is displayed as shown in Listing 2.1. In
the default mode, input is taken from the standard input and output to the standard output.
Therefore, the most basic mode of operation of the tool is that a single pipeline process is
selected and ran directly on input from the stdio. In Listing 2.2 we demonstrate a simple
invocation of the tool using curl and the Twitter API8.

In this example we make a request to the Twitter API for a stream of tweets. This
8https://dev.twitter.com/docs/streaming-api
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Listing 2.2: cURL example
curl -u $USER:$PASSWORD https://stream.twitter.com/1/statuses/sample.json | \
java -jar TwitterPreprocessingTool.jar \

-m TOKENISE -m PORTER_STEM -m LANG_ID -q

Listing 2.3: cURL example
{

"text": "as my TL keeps refreshing ;; taking notes",
"id": 192274076037947394,
"created_at": "Tue Apr 17 15:31:26 +0000 2012",
#... OTHER TWITTER DATA ...,
"analysis": {

"stemmed": ["as", "my", "TL", "keep", "refresh", ";;", "take", "note"],
"langid": {

"confidence": 0.0038440583169374962,
"language": "en"

},
"tokens": {

"unprotected": ["as", "my", "TL", "keeps", "refreshing", "taking", "notes"],
"protected": [";;"],
"all": ["as", "my", "TL", "keeps", "refreshing", ";;", "taking", "notes"]

}
}

}

stream is fed directly into the TwitterPreprocessingTool which in turn is told to tokenize,
stem and language detect each tweet. The output of this example is shown in Listing 2.3.
Beyond this basic, though powerful, use case this tool provides a set of input, analysis
mode and output options to help better obtain desired results. These are described in
further detail below.

Input

The TwitterPreprocessingTool takes input in 3 major ways:

• stdio: Input from the standard input. This is achieved with either no options or
-i -

• single file: Input is taken from a single file, this can be achieved with
-i filename

• multiple files: A single file is given with filenames, one per line. Each file is treated
as a source of tweets. -if filecontainingfilenames

Regardless of input method, each line in the input is treated as a single tweet. By de-
fault, every line in all inputs is analysed unless the --n-tweets N option is specified in
which case N tweets are analysed (across multiple files if specified). The encoding of the
data is assumed to be UTF-8 unless specified otherwise using the --encoding option.
Either raw text can be inputed per line, or json from the twitter streaming API. At present
if json is provided, an attempt is made to read the JSON as a TwitterStatus message. In
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future versions the tool will be extended to support arbitrary data input formats, allowing
the specification of the location of the text field in the particular format.

Analysis Mode Selection

At present, 3 key components of the pipeline have been implemented in the TwitterPre-
processingTool:

• Tokenisation A java implementation of the tokenizer as mentioned in 2.1.1, acces-
sible through the option -m TOKENISE. As output, this step makes a distinction
between tokens specifically protected by patterns, and those that were not. This
separation is helpful for the stemming mode as described below.

• Language Detection A pure java implementation of language detector mentioned
in Section 2.1.1 specified using -m LANG_ID. Currently the language detector
implementation loads a single language model as trained by the algorithm’s original
authors. For future implementations the construction and specification of different
language models will be implemented.

• Stemming This mode can be activated using the -m PORTER_STEM option.
Stemming uses both the language detection and tokenisation steps as part of its
operation. The language detector is used to guarantee that the correct stemmer is
applied to tokens and the tokenisation step is used to apply stemming only to non-
protected tokens. This guarantees that stemming is not incorrectly applied to tokens
for which it makes no sense and is in fact damaging to do so. Such tokens include
hashtags and urls whose whole initial form is important and must be maintained.

When launched, the tool can be configured to apply multiple preprocessing steps
through the specification of multiple -m options. For each input, each requested mode
is applied in series. When a mode is ran over the text of a given social media item (e.g. a
tweet), the output of the analysis is held in a separate “analysis” data field. For each mode
selected, specific keys are added to this analysis construct (see Listing 2.3). A result of this
approach is that no given mode is ever applied multiple times. For example, if both lan-
guage detection and stemming are specified using -m LANG_ID -m PORTER_STEM,
the language detection is performed only once and the output used by the stemming step.

Output Mode

Various output mode options are available, namely:

• Full mode in this mode the entire json of the input is maintaned and analysis
requested is simply added as another field. This mode can be launched using
-om APPEND.
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Listing 2.4: HadoopTwitterPreprocessingTool help
hadoop jar target/HadoopTwitterPreprocessingTool.jar
Option "--mode (-m)" is required
Usage: java -jar JClusterQuantiser.jar [options...] [files...]
--encoding (-e) STRING : The outputstreamwriter’s text encoding
--input (-i) STRING : Input tweets
--input-file (-if) VAL : Get a set of inputs as listed in a

file
--mapper-mode (-mm) [STANDARD | : Choose a mapper mode.
MULTITHREAD] :
--mode (-m) [TOKENISE | LANG_ID | : How should the tweets be processed.
PORTER_STEM] :
--n-tweets (-n) N : How many tweets from the input should

this be applied to.
--output (-o) STRING : Tweet output location
--output-mode (-om) [APPEND | : How should the analysis be outputed.
CONDENSED | ANALYSIS] :
--quiet (-q) : Control the progress messages.
--remove-existing-output (-rm) : If existing output exists, remove it
--return-immediately (-ri) : If set, the job is submitted to the

cluster and this returns immediately
--reudcer-mode (-redm) [NULL | : Choose a reducer mode mode.
DAY_SPLIT] :
--time-before-skip (-t) N : Time to wait before skipping an entry
--verbose (-v) : Be very loud (overrides queit)

Preprocess tweets for bag of words analysis

• Partial mode in this mode, selective components of the original are maintained
plus the analysis. By default these selective components are the “id” and “cre-
ated at” date. This mode can be selected using -m CONDENSED and components
to maintain can be selected using -te component1 -te component2 etc.

• Analysis mode in this mode only analysis data is outputted, all other context infor-
mation is lost. This can be selected using -m ANALYSIS

By default, all output is piped to the standard output, output files can be set using the
-o location option. Existing output in the specified location will not be overwritten
unless specified using -rm.

2.2.2 Hadoop implementation

The tool described in this section has been written in a modular way, detaching input,
processing and output of the data from each other. This allowed the relatively simple step
of the development of a version of the tool that works against the Hadoop Map/Reduce
framework. Through Hadoop’s implementation of map-reduce and the distributed file
system HDFS, users can take advantage of multiple machines to apply a given set of
preprocessing stages to large datasets of social media items in a scalable way.

This is actualized in the HadoopTwitterPreprocessingTool. As shown in Listing 1, the
options are mostly identical to the TwitterPreprocessingTool. In fact both tools are backed
by identical code, the important difference being only in how the user runs the tools. By
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Table 2.2: Number of tweets (in millions) analyzed and created in an hour. Analysis
performed: tokenization and language detection

Time Standard Hadoop 10% Twitter Total Twitter
1 hour 0.51 7.6 1 10

using hadoop instead of java and specifying data input and output as locations which
exist on the HDFS in the -i and -o options, the tool runs across multiple machines and
takes advantage of machine parallelism to handle larger datasets. Timing improvements
which we have registered using this tool on our relatively small cluster are discussed in
further detail in the next subsection.

2.2.3 Running times

The results in Table 2.2 show timings of both our Standard and Hadoop tweet preprocess-
ing tools. Both experiments were run on tweets generated in one day on October 10th,
2010. The local tool was run on a single core whilst the Hadoop tool was run on a Hadoop
cluster of 6 machines, totaling 84 virtual cores across 42 physical cores. Our timings show
that on our relatively small Hadoop cluster our tools can preprocess tweets in the order
of those created in a single day on Twitter in total 9, making our tools appropriate for
analyzing the tweets we have access to in real time. More importantly for our purposes,
we can easily analyze 10% of the tweets generated per hour in under 10 minutes. Fur-
thermore, due to Hadoop’s ability to scale with the addition of new machines, we believe
that the addition of a few machines will allow our tools to scale easily as Twitter grows in
popularity.

Using the Hadoop tool we have extracted and preprocessed all tokens from 2010 and
used these in our analysis in Chapter 3.

9http://techcrunch.com/2011/10/17/twitter-is-at-250-million-tweets-per-day/



Chapter 3

Initial Analysis

The modern world is filled with various multimedia sources of information, regularly up-
dated with increasingly staggering amounts of rich data which, to a large extent, have not
been exploited. Amongst these sources, social media communities (Blogs, Twitter, Face-
book, etc.), have seen increasing user uptake and have therefore attracted a great deal of
interest from the research community during the last decade. Amongst the many use cases
of social media [Marwick, 2011], users take time to express opinions towards celebrities,
topics of interest as well as current events. This kind of contemporaneous creation ac-
tivity results in a potentially powerful resource for mining information and opinion about
real world events. In this chapter we present preliminary work conducted towards the
integration of textual data sources with financial and political predictive models. The rest
of this chapter is organised as follows. In Section 3.1 we outline our approach to using
textual information sources to improve predictive financial data models. This includes an
exploration into the existing approaches, our strategy for dealing with large scale textual
data sources, an exploration of implemented tools and frameworks and initial results from
a simple linear regression model. In Section 3.2, our approach to mining political opinion
is described, including problem statement, algorithms, and experimental results.

3.1 Financial Markets

In this section we outline Southampton’s initial work towards the development of regres-
sion models of trends in streaming data. Towards this, we explored methods to analyse
data from sources and in formats which we expect to address in Trendminer. This in-
cludes work towards: storing and analysing archival textual media streams in a scalable
way as well as tools for acquiring and representing text and financial data streams. To
these ends, an in house hadoop map-reduce environment was expanded with more ma-
chines and more storage capability. The cluster was also modified to allow the analysis of
split-able compressed text data. On this environment’s distributed file system, 3 years of

15
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tweets1 are stored in a compressed, split-able format, providing the test data for our initial
experiments and explorations.

Beyond these preparation activities, we have implemented some basic, yet extensible,
frameworks for the representation, preprocessing and analysis of time series data. This
includes efficient map-reduce text token preprocessing algorithms; data structures for time
series representation; synchronised collections of time series; smoothing and interpolation
of time series as well as some initial work on linear regression models of synchronised
time series.

The structure of the rest of this section is as follows. In Section 3.1.1 we explore
existing work. The field of econometrics is clearly vast, so we mainly concentrate on
approaches which attempt to integrate textual time series data with financial data models
to improve predictions in some way. In Section 3.1.2 we explore the data we hope to
process including discussion on: sources, representations and processing techniques for
both textual and financial data streams. In Section 3.1.3 we describe and evaluate some
initial regression techniques, namely the construction of a time lagged linear regression
model using Ordinary Linear Regression to learn model parameters from data. We show
that by involving contextual text as an independent model variable we estimate model
parameters which produce less error than using historical financial data alone.

3.1.1 Background

Under the assumption of a semi-strong Efficient-Market hypothesis (EMH) [Fagan, 2009,
chapter 11], the current market price is a direct reflection of all current events, historical
events and past and present price information. Behavioural finance challenges this no-
tion by emphasising the importance of behavioural and social factors, including overall
social mood with regards to given companies or the economy as a whole as the main vari-
able which effects market price. Though it has been argued that these perspectives are
contradictory, many researchers have successfully incorporated corpuses of secondary in-
formation into economic models with both ideologies as starting points. The overarching
message is that incorporation of secondary sources of information2 can improve the pre-
dictive ability of economic models, whether the intuition is that: “markets are in fact a
direct reflection of this information3” or “social sentiment is the main market effector”4.

The importance of such contextual secondary information has not escaped past econo-
metric research. Traditional sources of such secondary information include the Gallup
Well-being index5 or the University of Michigan Consumer Sentiment Index as a mea-
sure of social sentiment; or investment newsletters of curated financial information [Da

110% twitter data from the Garden Hose stream care of Sheffield
2those beyond historical prices and indexes
3assuming EMH
4assuming Behavioural economic theory
5http://www.well-beingindex.com/
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and Engelberg, 2010]. Though useful, such data is expensive to curate and as an alterna-
tive secondary information can also be found from both financial and non-financial text
sources which discuss current events, opinions etc. To our knowledge there exist 2 main
sources from which authors have incorporated information aggregated from textual con-
tent into financial models. In the past main source was the news6 and in recent years
social media sources. In their recent work [Mao, 2011] compare these sources, as well as
search engine data and traditional surveys, in terms of their financial data correlation and
predictive ability. In the rest of this section we highlight various interesting works in the
area of textual information integration with with financial models.

Several authors have attempted to integrate traditional news sources into financial
models. A popular approach is to derive some notion of sentiment of the economy as a
whole or sentiment towards specific companies and combine this sentiment metric with
historic market price values in a linear regression model. Tetlock [2007] use the General
Inquirer (GI) 7 system to encode news reports from the Wall Street Journal. They perform
a PCA against the 77 categories to which words can belong in the GI model and choose the
first principal component of this analysis as their metric. They define this derived metric
as being some notion of “pessimism” and show that it improves model predictive ability
over pure linear regression without text, as well as the simple inclusion of GI categories
such as Negative or Weak. In a similar vein, Tetlock and Tsechansky [2008] uses GI’s
notion of Negative and Positive words to incorporate information from textual sources.
Choosing news articles related to companies in the S&P index from a mixture of the Dow
Jones News Service and the WSJ, a ratio of the negative words to the positive words is
used as part of a linear regression with historic time data. They show negative sentiment
derived from news sources at points in the past can predict low earnings for individual
companies. Going beyond these simple linear models Schumaker [2009] experimented
with several regression models using SVMs. They show that regression using past price
is improved upon through the involvement of textual data. Their study is interesting
because they don’t attempt to extract sentiment, and instead learn directly from bags of
words, identified noun phrases and identified named entities which they extract from news
articles using the Arizona Text Extractor (AzTeK).

Comments and articles on various kinds of online social media provide an easily col-
lectable, extremely large, regularly updated corpus of textual information which has the
potential to correlate with financial time series. It is therefore of no surprise that authors
have attempted to integrate these sources of information, opinion and sentiment into their
financial models. An early example by [Antweiler and Frank, 2004] attempted to ex-
plore the financial significance of text from the Yahoo and Raging Bull financial message
boards. Using Naive Bayes and SVM based classifiers they coded forum messages as
bullish, bearish or neutral. They showed correlation and predictive ability between these
variables, trading volume and volatility. Blogs have also served as a rich sources of infor-
mation, authors have successfully extracted sentiment towards particular companies from

6either traditional or web
7http://www.wjh.harvard.edu/˜inquirer/
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financial blogs [O’Hare et al., 2009]. Zhang [2010] show that blog, twitter and news polar-
ities extracted from documents referring to particular companies correlate well with stock
return for those companies. This correlation varies in potency between industries and re-
duces in potency as polarity is measured further in the past with respect to return. Similar
studies and results have also been shown for other social media sources including con-
structing financial models by: analysing anxiety, worry and fear on LiveJournal [Gilbert,
2010]; calculating Gross National Happiness using Facebook [Karabulut, 2011]; and mea-
suring mood using Twitter [Bollen and Mao, 2011].

3.1.2 Data

The primary effort by Southampton to date has been the preparation infrastructure to
handle textual and financial test data. These preparation efforts were split between frame-
works to analyse and process time series data and techniques for dealing with the ex-
tremely large scales of textual data proposed to be integrated with financial models.

A set of java tools and classes have been written for the modelling and processing of
time series. We have developed efficient data representations of arbitrary events over time,
as well as techniques for smoothing, averaging and clustering time series. Beyond this we
have also developed data models for extensibly processing synchronised time series. This
is the notion that two time series (e.g. words and prices) can be measured over the same
time period and can therefore be meaningfully processed together in some way. Using
this notion, regression and statistical processors have been implemented. Example usage
of these data models and processes are shown below in the sections where example text
and financial time series data is presented.

The issue of data scale is inherent with all proposed data sources of Trendminer, re-
gardless of whether the data is in the form of: realtime streams or bulk archival data; news
sources or blogs; or from social media networks such as Facebook, twitter or google plus.
Due to the nature of this data, the primary concern of any algorithms or modelling tech-
niques developed during Trendminer must be the ability to deal with data on extremely
large scales in a timely manner. To effectively build such scalable algorithms, it was
required that we build a large scale testing infrastructure. It was important that this in-
frastructure not only be able to deal with large scales “theoretically”, but to also permit
practical tests within reasonable timescales against datasets of realistic sizes. Only with
such a test systems can an honest effort be made towards generation of truly scalable algo-
rithms. On this note, in the tests conducted below, we use Twitter as our primary textual
data source. However, we are confident that our approaches will extend well to other data
sources (news articles, Wikipedia, Youtube comments etc.) as we believe the challenges
they pose (scale, fuzzy and incomplete data etc.) are mirrored well by twitter data.

In the rest of this section we describe our data testing infrastructure, the source, format
and preprocessing of our textual data and also the source of our financial data.
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Infrastructure

Our initial experiments have attempted to address problem of data scale by using a hybrid
MapReduce framework based on the Apache Hadoop software framework. The MapRe-
duce framework defines a model for distributed computation over large volumes of data.
One of the key ideas of the framework is that data is stored on a distributed filesystem
across all the nodes. This allows data transfer to be minimised by pushing the compu-
tation to where the data is stored, rather than pulling data across the network from the
storage to the compute node. It is assumed that the data is in the form of records which
are stored as key-value pairs. The keys and values could be anything from chunks of text
to binary data such as images.

We have extended our in house hadoop cluster to consist of 6 nodes, 3 with 16 virtual
cores and 11Gb of RAM, 2 with 8 virtual cores and 32Gb or RAM and 1 machine with 24
virtual cores (4 of which are not used by mapreduce) and 16Gb or RAM. Spread across
the machines are 52Tb of storage space mounted on a distributed file system (HDFS). We
have installed Cloudera’s latest stable version of hadoop8 as well as some modifications
such as Twitter’s hadoop LZO module9 which allows for compressed, yet split-able files.
This setup allows us to run 84 map tasks in parallel, though fewer can be run depending
on task memory requirements.

Text Data - Twitter 2010

For our tests, we have decided to model financial activity in 2010. To this end we have
loaded all garden hose tweets from 2010 onto our cluster. The year is held in the form of
1 file per day which in their lzo compressed format, total to 782Gb for 201010. Each file
contains the tweets for a single day held as twitter stream statuses 11, the format our tools
described in Chapter 2 were designed to deal with.

As the first stage in preparing this data for analysis, tweets were language detected
and tokenised using the HadoopTwitterPreprocessingTool. Only tweets detected as en-
glish were considered in our initial linear model. Furthermore we chose not to stem the
tokens in our initial analysis to maintain process simplicity. That is to say, though we
expect better results if words deemed to mean the same thing were clustered in terms of
count in a particular time period, we believe the most useful baseline results to explore
initially are those which take the least amount of effort to reproduce and yet have the
potential to produce reasonable results. Furthermore, to save disk space of the processed
output, we specifically dropped certain components of the original twitter status, holding
only our generated analysis, the tweet id, the original text and the date of creation. For
reference, the command using to launch the HadoopTwitterPreprocessingTool can be seen

8http://www.cloudera.com/
9http://bit.ly/JfrJHm

10Each day comes to between 1Gb and 4Gb, some days data missing due to various technical issues
11http://bit.ly/TWTRSTAT
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Listing 3.1: Command used to preprocess tweets from 2010.
hadoop tool.jar -m TOKENISE -m LANG_ID \

-om CONDENSED -te id -te created_at -te text \
-ri -rm -i <tweets location on HDFS>

in Listing 3.1

This command took between 1 to 3 hours per day of tweets (depending on the volume
of tweets in that day), the year was analysed within the space 6 days over which roughly
2.3 billion tweets were processed and emitted by the map reduce tasks. This process
represents the most expensive portion (so far investigated) of the analysis algorithm. Note
that these timings complement those in Chapter 2 and show the tweets generated in a
single day can be tokenised and language detected extracted in well under a single day,
meaning these algorithms are potentially executable on chunked streams of data in real
time. These analysed tokens are the source of data for the exploration of political data in
Section 3.2.

Tokens, though interesting, cannot be used alone for regression analysis. A numerical
representation of each textual token is required which gives some notion of its relative
importance at a given point in time. By representing the importance of a token through
some metric it is a relatively simple step to building selective tokens into a linear re-
gression model. One simple technique would be the count of a given token’s occurrence
within some time period. We have developed a map reduce implantation of this simple
occurrence counter.

Though simple, this metric has a major issue with regards to the relative importance
of words. Common words (stop words etc.) may appear at a high rate through all time
periods. Also, no special distinction is made for values given to a token wi that appears
x times throughout all time periods t ∈ [1, 2, ..., T ], as compared to a token wj which
also appears x times but only in a single time period t = τ . Arguably at τ the token
wj should be rewarded higher significance than wi even though technically they appeared
the same number of times. A metric which encapsulates this notion well in document
analysis is the TF-IDF metric which states that the importance of a given term wi in a
particular document d is a function of its count in a given document tf(wi, d) = |{t ∈
d}| multiplied by a weighting factor of its relevance across ALL documents which can
be measured as the inverse of the fraction of documents which contain the term wi i.e.
idf(w,D) = log(|D|/d ∈ D : t ∈ d).

In their paper on event detection in tweets Weng et al. [2011] note that in the context
of twitter, the exact count of a term in a given tweet is not of consequence given the
relative short nature of a tweet. Instead what matters is the number of tweets containing a
particular term in a particular time period, in this formulation a time period can be thought
of as a document in the definition of TF-IDF. To this end, they recommend a metric called
DF-IDF which is described in Equation 3.1.
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Figure 3.1: Example time series generated form the DF-IDF tool. The peak coincides
with apple’s main news event in 2010 announcing the iPad

DFIDF (wi, Tc) =
N(wi, Tc)

N(Tc)
× log

( ∑Tc
j=1N(j)∑Tc

j=1N(wi, j)

)
(3.1)

This formulation states that the DF-IDF metric of a given term wi at a time Tc is a func-
tion of the ratio of the number of tweets which contain that term N(wi, Tc) and the total
number of tweets at that time N(Tc) weighted by the inverse of the ratio of the number of
times the word has ever been seen up to that point in time

∑Tc
j=1N(j) and the total number

of tweets seen up to that point in time
∑Tc

j=1N(wi, j). The rational here is that if a term
hasn’t been seen often before Tc and is suddenly observed many times, it will get a higher
score than a term that has been seen many times in the past. Also scores are measured
as a ratio to the number of words seen, which normalises for varying amounts of tweets
across time (heteroscedasticity).

We have implemented a map-reduce tool which given a set of tokenised tweets from
our previous tool can generate a DF-IDF time series for all distinct tokens, or a prede-
fined set of tokens 12. By selecting only the english language tweets of the previous tool,
this DF-IDF token analysis tool can create this DF-IDF metric for all 963 million english
tweets of 2010 in 3 hours. From this process we can generate time series as in Figure 3.1.
This diagram also shows some of the time series processing we have implemented includ-
ing a gaussian processor and a moving average of 30 days.

12in our tests we use words likely to be related to the AAPL stock
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Figure 3.2: Example time series generated from the Yahoo Finance API for the AAPL
stock daily High value in 2010

Financial Data

As compared to the extraction of political data as time series, the acquisition of financial
data is relatively trivial, easily achieved thanks to the various web APIs13 available which
allow access to historical financial data and stock tickers. We have implemented a module
which encapsulates some of the functionality of the Yahoo! Finance Stock API. We’ve
constructed a class which given stock name, a beginning and end date we can get the
opening value, high value, low value, closing value, trading volume, and adjusted close
value of the stock. This data is provided for every day of trading14 between the two dates,
sources of lower higher granularity (i.e. by hour, minute or second) are available but are
not required for this initial analysis. As with the DF-IDF scores we can represent these
financial scores in our timeseries framework, a rendering of which we show in Figure 3.2.
Note that here we show the moving average as well as using timeseries interpolation to
estimate values for weekends and holidays for the year 2010, which at this resolution
match those of actual values very closely.

3.1.3 Linear Regression for AAPL

Here we describe Ordinary Least Squares, the model we have selected to model and pre-
dict financial time series. A classical model for linear regression is to represent some

13Yahoo - http://finance.yahoo.com/, Google - http://www.google.co.uk/
finance

14The markets close on weekends and public holidays
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dependant variable as a linear weighted sum of a set of independent variables, plus some
constant.

y = xb+ b0

The constant b0 can be blended in with the rest of b assuming the independent vari-
ables are augmented with an extra 1 entry. To construct a predictive model from data, the
task becomes learning the values for the weightings b; as given b, we can estimate values
of y for a novel observations x (i.e. estimate stock price given term scores and historic
prices for example). This can be achieved by formulating a set of observations of the
dependant variable y and an associated set of observations X. In Ordinary Least Squares
(OLS) we define the Sum of Squared Error (SSE) for a given b as:

SSE(b) = (Xb− y)2

SSE(b) = (Xb− y)(Xb− y)′

This is a quadratic expression and since the value for SSE(b) > 0 by differentiating
this function, setting the differential to 0 and rearranging with respect to b we can create
an estimate for the b which minimises the sum of squared error from between true values
y given some observations X.

b = (X′X)−1X′y

Because the inversion in the first half of this equation can become numerically unsta-
ble, a common approach is to apply the pseudo-inverse using the singular value decom-
position.

X = UDVT

b = VD−1UTy

This fairly simple linear model serves as the basis for our financial time series model.
Given the above, y becomes the price we hope to predict, but x can take various values.
For example, a simple model may state that x is simply time (i.e. x = {ty}), and that the
price of a stock y is dependant only on time. We choose another approach which says the
independent variables x are historic values for a given price. That is to say:

x = [1, price(t−m− n), ..., price(t−m))]

price(t) = [1, price(t−m− n), ..., price(t−m))] · b
= b0 + b1 ∗ price(t−m− n) + ...+ bn ∗ price(t−m)
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Figure 3.3: End of Day high value for the AAPL stock regressed using various Ordinary
Linear Regression (OLR) models of historic time.

Where t is a time that must be estimated, m is some offset into the past and n is a window
size of prices in the past15. This is equivalent to predicting a price m days into the future
using the prices from n days in the past up until now.

In Figure 3.3 we show the results of learning such a model from only historical finan-
cial data. In this figure we show both varying window sizes and offsets and also the effect
of learning the model on all the data vs a subset. In these experiments, in the unseen case,
the subset selected for training are prices from the first 4 months of the year (i.e. all prices
from january 1st until May 1st). Note that the further the window selected from the past,
the less accurate the regression. Also, the model learnt on data from only the first half
of the year is worse at predicting the latter half than the model learnt on the whole year.
Though visually obvious, we enumerate this difference using the Mean Squared Error
(MSE) between the predicted price and the actual price.

Extending the ordinary least square model to include more information is a simple
matter of including more variables into x and providing appropriate training data. With
this in mind it is trivial for us to construct an OLR model for the observation of any
number of words and historic prices. In Figure 3.4 we show the results of learning such
models from data. Specifically we use the DF-IDF techniques described in the previous
section to generate time series for various words which are related to the AAPL stock,
specifically: “apple”,“#apple”, “iphone” and “ipad”. In our regression results we show
varying window sizes, offsets and training data, using the same window configurations for
extracting data from the DF-IDF time series as the historic high value time series. Note

15e.g. if we set m = 2, n = 3 and t =July 30th, we mean that the price on July 30th is a function of the
prices from July 25th to 27th inclusive.
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Figure 3.4: End of Day high value for the AAPL stock regressed using various Ordinary
Linear Regression (OLR) models of historic time and DF-IDF scores.

that across all configurations, the involvement of the occurrences of the selected words
do indeed improve price predictions. However, the amount improved varies greatly with
window configuration.

3.1.4 Conclusion

In this section we have presented Southampton’s initial work on integrating large scale
textual information sources into financial models. We presented an investigations into
current approaches to this problem and attempted to implement an end to end textual
information integration procedure which simulates some existing approaches. Firstly, we
have developed a set of scalable tools which, given the tokens produced by the tools
discussed in Chapter 2, allow simple counting and more sophisticated DF-IDF encoding
a token’s importance on an individual day. We have also produced tools which allow
easy access to historical financial information; data models for time series as well as a
framework which allows various kinds of fundamental time series processing. Finally,
we deliver a linear regression model which uses the time series representations of stock
activity and token activity to improve the prediction of stock prices through the integration
of textual information on top of historical financial data. All software described in this
section is made available on the project git repository16 mentioned in the introduction
section.

16http://github.com/sinjax/trendminer
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3.2 Political Opinion

In this section we highlight Sheffield’s initial exploration of political opinion analysis
using textual information sources. Public opinion plays a significant role in politics and
the media, especially in the run up to an election. A traditional approach to measuring
public opinion is a poll. A polling company contacts a group of randomly selected citizens
and asks them a series of standard questions that are related to various candidates and
issues. The collected public opinion data can then be used to estimate the views of the
entire population.

Though useful, such sources of public opinion are expensive to curate. With the in-
creasing popularity of social networks, on which general opinion is expressed by various
members of the public, we ask: “is it possible to predict public opinion using textual in-
formation aggregated from social networks?” In this section we first review related work
that seeks to address this question, and then conduct our own experiments on US and UK
political opinion data, using as input the stream of Twitter status messages.

3.2.1 Problem Statement

Our main task is the prediction of polling trends based on sentiment analysis a computa-
tional study on public political opinions. This task entails many challenges, particularly
the engineering challenge of processing the vast amounts of textual data available effi-
ciently, and in a real-time setting. The amount of streaming status messages from Twitter
is immense, with at least 340 million tweets published daily. Even given our limited
access to the garden hose stream (10% of all messages), we are currently pulling down
14 gigabytes every day (compressed). As described in Chapter 2, we use the Hadoop
map-reduce framework in order to process this data in parallel and in a timely fashion.

Although a huge amount of tweets are generated every day, the tweets related to po-
litical topics are limited. Further, the usage of Twitter by UK residents accounts for only
a small fraction of the total number of tweets, and other countries in Europe have even
smaller footprints.17 This raises the problem of data sparsity: given that only a few tweets
on a given day will relate to domestic politics, how can we make the best user of these?
While course filtering approaches may work when data is plentiful, this will not be the
case for many of our applications. Related, we are likely to see rapid changes in text fre-
quencies over the course of time, as a simple consequence of our sparse corpora leading
to significant effects of noise. Finally, it will be critical in developing our models to se-
lect discriminative features, bringing in both domain knowledge and robust computational
analysis.

A number of approaches have been proposed for prediction of real valued time-series,

17http://www.techinasia.com/twitter-world/ reports the number of Twitter users segre-
gated by country. UK is ranked 4th with about a quarter as many users as the top ranked US. Spain, France
and Germany are much lower with ranks 9, 16 and 18 and less than a tenth as many users as the US.
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largely in the natural language processing literature. These have taken the forms of either
a carefully engineered heuristic, which is shown to correlate well with the time-series, or
some form of regression based model. Based on textual contents, [Yogatama et al., 2011]
applied generalised linear models to predict a scientific communitys response to an article,
e.g., the number of its downloads after publication in the first year, whether it will be cited
or not in the future [Yogatama et al., 2011]. In [Joshi et al., 2010], linear regression was
used to predict a movies opening weekend revenue by review texts. Surprisingly, regres-
sion models can also be adopted to forecast disease and financial markets. [Culotta, 2010]
combined filtering with regression to detect future influenza outbreaks through analysing
500 millions of tweets. Similarly, in [Lampos and Cristianini, 2011], actual rainfall in
a given location and time, as well as the regional influenza-like illness rates can be in-
ferred from the contents of tweets by applying a constrained version of ordinary least
squares regression. Kogan et al. constructed a regression model of to predict market risk
from 10,000 financial reports [Kogan et al., 2009]. [O’Connor et al., 2010] linked text
sentiment to public opinion time series using Twitter status messages. Given the strong
similarity of their setting to ours, and the simplicity of their approach, we have chosen to
replicate their work. We now describe their method in detail.

[O’Connor et al., 2010]’s study modelled the 2010 US presidential race and US con-
sumer confidence. They defined topic keywords by hand to suit their applications: econ-
omy, job, and jobs for consumer confidence; and obama and mccain for the election and
presidential approval. Only the tweets containing a topic keyword were used for analysis.
Next, the following steps are executed:

1. count the number of positive and negative terms for the tweets on a given day;18

2. calculate the ratio of the positive counts to negative counts for each day;

3. smooth the ratio by a moving average At =
1
k
(xt−k+1 + xt−k+2 + · · · + xt) over a

window of past k days;

4. finally the smoothed ratios are compared to the time-series data using correlation
analysis, then used as input to a regression model.

The last step analyzed the correlation between the daily sentiment ratios xj and poll
outcomes yt. This was done using a linear least-squares regression model yt+L =
b + a

∑k−1
j=0 xt−j + εt, where a is the slope, b is a bias, εt is the Gaussian noise, and

the lag parameter indicates L days before the poll outcome. The lag allowed the model to
be tuned to predict the time-series values in the past, current or future; their work showed
that performance peaked when predicting the values in the current week.

We chose to replicate this algorithm, first on their US data and subsequently for the
UK. Unfortunately we did not have access to historical Twitter data for the the full period

18This used a hand-generated list of words deemed to be positive or negative, as defined in the subjectivity
lexicon in OpinionFinder http://www.cs.pitt.edu/mpqa/.
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of their study, which covered 2 years. Instead we only have a little over two months of
data, from 24/07/2009 to 11/10/2009. We applied the Twitter processing pipeline from
chapter 2 to this data to perform tokenisation. Next we filtered the tweets using the key-
word jobs. Figure 3.5 shows the sentiment ratios (step 3, above) with smoothing constant
of k = 1, 3, 5, 7. Figure 3.6 reports the correlation between the sentiment ratio and Gallup
Economic Confidence Index during this period. The correlation reported in [O’Connor
et al., 2010] was 73.1% when using a 15-day smoothing window for the same experiment.
However, as shown in Figure 3.6, the text-poll correlation we observe is considerably
weaker – the correlation coefficient is only 32.2%. We suggest that this is a consequence
of the short period of time-series data we used in our experiment, and were we to use the
full 2 years of data we would see a different result.19 In the next sub-section, we apply
this method to UK political data to test whether the UK poll trend also can be predicted
from text input.

3.2.2 UK Data

Compared with the various US public opinion polls (e.g., index of Consumer Sentiment
from the Reuters and Gallup Organizations Economy Confidence index), there are fewer
UK political polls available. We chose to use YouGov20, a polling company that runs
frequent polls. Most importantly, they make their full poll data available free of charge
and have an extensive archive.

We developed a semi-automated system for crawling the YouGoc archive and pulling
down all the poll results, which are in PDF format. We then run a conversion tool21 to
convert the PDF into an Excel spreadsheet. Finally, we automatically extract the poll
outcomes from these spreadsheets.

YouGov has a poll frequency of roughly 5 polls per week, although the frequency
changes over time, particularly in the run-up to an election. Each poll was conducted on
about 30,000 people over the course of two days. Our experiment pays special attention
to the pre-election period in 2010, a 5-month period between 01/01/2010 and 06/05/2010.
We explore the correlation between the text and the poll outcome using twitter data from
this 5 month period analysed using the process described in Sections 3.1.2 and 3.1.2.
Figure 3.7 shows the pre-election poll trend of YouGov for three representative parties
(Conservative, Labour, Liberal Democrat) in UK, where Con-Lead shows the leading
percentage of Conservative. For this figure and in our experiments we used simple win-
dow smoothing over the poll outcomes to reduce the noise from spurious results where
there are closely spaces polls and to provide a value for days in which there were no polls.

We process the tweets using the standard pipeline for tokenisation and language de-

19Note that the index exhibited significant fluctuations during the 2 years, however the index was fairly
stable in our sub period.

20http://labs.yougov.co.uk/
21http://www.wondershare.net/pdf-converter/
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Figure 3.5: Daily sentiment ratio values for tweets containing the term jobs. These are
smoothed with different sized windows for each of the plots.
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Figure 3.6: Correlation between the sentiment ratio and Gallup Economic Confidence
Index. The x-axis shows the lag coefficient, L, which is the day offset between the text
appearing and the date when the index value was reported. The different coloured curves
are obtained using different smoothing windows, k = 1, 3, 5, 7, 9, 11, 13, 15, which can
be identified by the vertical bars which are positioned such that L = −k.
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tection as described in Section 2.2, taking only English language tweets. An example
of extracted tweet is shown in Listing 2.3. Note that this filtering meant that our data
included tweets not just from the UK, but also from other English speaking countries, in
particular the USA. This will have adversely affected the precision of our subsequent fil-
tering and the sentiment statistics derived from the data. We are seeking to address this by
developing a method for automatic location detection to provide a more accurate filtering
of the data.
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Figure 3.7: The Polling trend of YouGov

In order to adapt [O’Connor et al., 2010]’s method to our data, we first define a list
of keywords for each of the three prominant political parties in the UK, namely the Con-
versatives, Labour and the Liberal Democrats. These terms will be used to filter the data,
and the resulting sentiment ratio compared with the poll outcomes for the given party. For
the Conservative party (con) we used the terms david, cameron, george, osborne, con-
servative; for the Labour party (lab), gordon, brown, milliband, labour; and for Liberal
Democrats (lib), clegg, liberal, democrat. Also, we experimented with adding some com-
mon keywords to the lists to capture general economic sentiment: jobs, job, economy.
We should stress that these keyword lists are very important, and that further tuning of
these by hand has the potential to greatly improve our results. We then run the O’Connor
algorithm on this filtered data, and relate the smoothed sentiment ratios to the YouGov
poll outcomes.

In order to efficiently process the large amounts of data present in this corpus, we
developed a Map-Reduce algorithm for solving Step 1. This consists of two components:
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Table 3.1: Map-Reduce algorithm for counting sentiment words. Here we show the input
and output formats for processing batches of full-days worth of tweets.

Mapper Input:

1. lists of tweet files, each contains tweets for a number of
days:tweets pre1.list, tweets pre2.list, tweets pre3.list

2. three lists of keywords for con, lab, and lib, respectively: keywords con,
keywords lab, keywords lib

Output:

1. a single file is generated for each day, containing tweet file name, topic,
positive counts, negative counts and sentiment ratio.
For example:
tweets.2010-02-14.filtered_en con 19687 9716 2.03
tweets.2010-02-14.filtered_en lab 21209 10930 1.94
tweets.2010-02-14.filtered_en lib 19375 9482 2.04

Reducer Input:

1. the output from Mapper.

Output:

1. three separate files for con, lab, and lib, respectively: results con, re-
sults lab, results lib.
For Example:
tweets.2010-02-13.filtered_en con 22965 11348 2.02
tweets.2010-02-14.filtered_en con 19687 9716 2.03
tweets.2010-02-15.filtered_en con 21977 11118 1.98

the Mapper and the Reducer (see Chapter 2 for details of the architecture). For our task
of counting sentiment words for each topic, the task and data format used in the Mapper
and the Reducer algorithms are illustrated in Table 3.2.2. The source code was written in
Python, and subsequent analysis and plotting of figures was done using Matlab.

After counting the sentiment bearing words, the subsequent steps of the algorithm
are conducted and the correlation of tweets and polling results for the Conservatives are
given in Figure 3.8. Note that all but the most heavily smoothed curves peak at a lag of
about zero (e.g., the green curve). This corresponds to predicting the poll outcome on the
same day of the tweets (recall the polling period is only two days). Note also that the
correlation between tweets and UK polling data is much better than for the US consumer
confidence data, as shown in Figure 3.6. We think this is a consequence of two factors:
firsly, we have used more polling data, and therefore have a more reliable estimate of the
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correlation, and secondly our keyword lists allow for high-precision filtering of the tweets
to those relevant to UK politics. We anticipate that with further tuning of these lists –
initially by hand, and then automatically – we can further improve performance.
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Figure 3.8: Correlation against YouGov

3.2.3 Discussion and Conclusions

Based on the experimental results on both US data and UK data, we found smoothing
is a critical step to deal with the high variability problem, where a large k may ignore
fine-grained changes of sentiment ratio. Therefore, choosing a suitable k is important for
specific tasks using different data. We have shown that the lag parameter in the regres-
sion model, is also very helpful for correlating tweets with polls. This allows for tuning
the outputs against historical versus current or future data. Although satisfactory results
have been obtained on our UK data, there are still some issues that need to be concerned.
Location is an important factor in analysing political opinions. According to the geo-
graphic boundaries, UK can be divided into 5 regions, namely London, Rest of South,
Midlands/Wales, North, and Scotland. As seen in Figure 3.9, the voting intention in dif-
ferent regions is highly divergent, and although they tend to follow similar patterns this is
not uniformly true (see the sharp decline in London in early 2012). Separately modelling
the voting intensions in each region may help to enhance our overall predictions for each
party. Sparse data is also a key problem. Although the quantities of text are staggeringly
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large, after filtering for UK political terms we often end up with very little data. This is
illustrated in Figure 3.10 which shows the frequency of the terms cameron, conservative
and economy (some of the keywords we used for the Conservative party). The frequen-
cies vary dramatically between days, which is sometimes due to a speech or news article,
or simply a viral tweet being passed around the Twitter network. This second problem
is more insidious, as the text frequencies easily become non-representative of the overall
opinion of the Twitter users, leading to invalid results. Careful filtering is required to
mitigate this effect.

We need to pay attention to the keyword-selection in order to get large numbers of
tweets that are relevant to our topics of study, such that statistics derived from this data
are sound and have low bias. We plan to develop more robust automatic techniques for
disambiguating entity mentions in order to obtain higher recall at finding relevant data.
Additionally, we plan to extract other types of complementary features besides the senti-
ment ratios, and for each learn an independent weight in a regression model.
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