A user-centric model of voting intention from Social Media

Vasileios Lampos, Daniel Preoțiuc-Pietro & Trevor Cohn
Computer Science Department, University of Sheffield, UK

\[
\min_{W, U, \beta} \sum_{p=1}^{n} \sum_{t=1}^{\tau} \left(u_p^T Q_t w_p + \beta_p - y_{tp} \right)^2 + \lambda_1 \sum_{j=1}^{m} \| w_j \|_2 + \lambda_2 \sum_{j=1}^{m} \| U_j \|_2
\]

\(u_p \)\(Q_t \)\(w_p \) bias

\(W = [w_1 \ldots w_p \ldots w_n] \in \mathbb{R}^{m \times n} \)
\(U = [u_1 \ldots u_p \ldots u_n] \in \mathbb{R}^{k \times n} \)
\(\beta, \lambda_1, \lambda_2 \in \mathbb{R}^{>0} \)
\(Q_t \in \mathbb{R}^{k \times m} \)
\(y \in \mathbb{R}^{m \times \tau} \)

Voting intention % for political party \(p \) during time interval \(t \)

Filtering out words & users

Bi-linear

\(\ell_2,1 \)-norm

1. Solve \(\min_{W, \beta} \cdot \)
2. Fix \(W \) and solve \(\min_{\beta} \cdot \)
3. Fix \(\beta \) and solve \(\min_{W} \cdot \)
4. Validate ? Go to Step 2 : END

Prediction performance

RMSE (%)	Method	Austria	UK
Training set benchmark mean(poll) | 1.851 | 1.69
Last poll | 1.47 | 1.723
Linear | 1.442 | 3.067
Bilinear | 1.699 | 1.573
Bilinear Multi-task | 1.439 | 1.478