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a b s t r a c t 

Social media has now become the de facto information source on real world events. The 

challenge, however, due to the high volume and velocity nature of social media streams, 

is in how to follow all posts pertaining to a given event over time – a task referred to 

as story detection. Moreover, there are often several different stories pertaining to a given 

event, which we refer to as sub-stories and the corresponding task of their automatic de- 

tection – as sub-story detection . This paper proposes hierarchical Dirichlet processes (HDP), 

a probabilistic topic model, as an effective method for automatic sub-story detection. HDP 

can learn sub-topics associated with sub-stories which enables it to handle subtle varia- 

tions in sub-stories. It is compared with state-of-the-art story detection approaches based 

on locality sensitive hashing and spectral clustering. We demonstrate the superior perfor- 

mance of HDP for sub-story detection on real world Twitter data sets using various evalua- 

tion measures. The ability of HDP to learn sub-topics helps it to recall the sub-stories with 

high precision. This has resulted in an improvement of up to 60% in the F-score perfor- 

mance of HDP based sub-story detection approach compared to standard story detection 

approaches. A similar performance improvement is also seen using an information theo- 

retic evaluation measure proposed for the sub-story detection task. Another contribution 

of this paper is in demonstrating that considering the conversational structures within the 

Twitter stream can bring up to 200% improvement in sub-story detection performance. 

© 2016 Published by Elsevier Ltd. 

 

 

 

 

 

 

1. Introduction 

Online social networks play a major role in generating and disseminating information. They provide a platform for people

to voice their opinion and viewpoints. Moreover, social media provide main stream media, governments, companies, and

citizens the opportunity to obtain real time information about events happening around the world. The challenge, however,

due to the high volume and velocity nature of social media streams, is in how to follow all posts pertaining to a given event

over time – a task referred to as story detection Petrovi ́c, Osborne, and Lavrenko (2010) . 

Story detection is a specific form of Topic Detection and Tracking (TDT) ( Allan, 2002 ), which is concerned with discov-

ering posts pertaining to real-world stories as they unfold over time. This paper, in particular, is concerned with tracking

event-related posts within the micro-blogging social network, Twitter. 
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When considering posts related to a given real-world event (e.g. the Ferguson unrest), researchers (e.g. Procter, Crump,

Karstedt, Voss, and Cantijoch (2013) ; Zubiaga, Liakata, Procter, Wong Sak Hoi, and Tolmie (2016) ) have found that there

are often different sub-stories pertaining that event (e.g. ‘Ferguson police shot Brown’, ‘Ferguson police confiscated all video

evidence’). In this paper we address the question how such substories can be identified automatically. This is particularly

beneficial for mainstream media, governments, law enforcing agencies, companies, and other organisations who are increas-

ingly faced with the challenge of tracking and responding to emerging sub-stories, rumours, and misinformation. 

Automatic sub-story detection is a harder task than story detection as sub-stories on the same event have a lot of vocab-

ulary in common. For instance, all the posts related to the Ferguson unrest share words such as ‘Ferguson’, ‘police’, ‘Brown’.

Sub-stories tend to overlap considerably in time and are often associated with low tweet rates. Also, they are not necessarily

true (e.g. different rumours emerged simultaneously during the England riots ( Procter et al., 2013 )) and thus may not have a

corresponding sub-story in the real world. Standard story detection (also known as event detection) approaches fail to take

these into account and do not perform well on sub-story detection task. 

This paper investigates a sub-story detection approach based on hierarchical Dirichlet processes (HDP). This hierarchical

topic model can detect sub-topics associated with a main topic and is thus well suited to the sub-story detection task. For

instance, in the Ferguson unrest example, the approach can detect ‘Ferguson police’ as the main topic, while ‘shot Brown’

and ‘video evidence’ as different sub-topics. The effectiveness of the proposed approach is established by comparing it with

state-of-the-art story detection approaches based on locality sensitive hashing (LSH) Petrovi ́c et al. (2010) and spectral clus-

tering (SC) Preotiuc-Pietro et al. (2013) (see Section 6 for details). 

Sub-story detection in Twitter streams is particularly challenging, since reply tweets often do not share sufficient vocab-

ulary with the tweets they reply to. For instance, in one of the tweet data set used for experiments here ( Zubiaga et al.,

2016 ), there is a sub-story claiming that Fox News is not covering the Ferguson protests. In particular, one of the earlier

tweets has text ‘Currently the #FoxNews website has zero, repeat, ZERO coverage of the #Ferguson protests’. A subsequent

reply tweet, however, states “Too busy bitching about POTUS for sure”, i.e. does not mention neither Ferguson, nor Fox News

explicitly. Since many reply tweets exhibit similar lack of linguistic overlap with the originating tweet, this makes it difficult

to cluster them as pertaining to the same sub-story cluster. To address this problem, our approach takes into account the

conversational structure, in addition to linguistic features, in order to improve sub-story detection performance. 

Sub-story detection performance is evaluated on real world Twitter data sets. Twitter is ideal for this task because it

provides a large source of publicly available posts on major events, e.g. the 2014 Ferguson unrest and the 2011 London

riots. In particular, we experiment with five different Twitter data sets. Three of these arise from rumour detection research

( Procter et al., 2013; Zubiaga et al., 2016 ) and come annotated with events (2011 London riots, the 2014 Ferguson unrest,

and the 2014 Ottawa shooting) and tweets grouped by sub-story within each of the events. The fourth public data set was

created for first story detection (FSD) with Locality Sensitive Hashing (LSH), which is one of our baselines ( Petrovi ́c et al.,

2010 ). The fifth public data set (FAcup ( Aiello et al., 2013 )) contains tweets about various events occurring during a football

match. The properties of the data sets are discussed further in Section 5 and comparative evaluation results for all methods

and data sets are detailed in Section 7 . 

We propose to use a mutual information based evaluation measure, adjusted mutual information (AMI) ( Vinh, Epps, &

Bailey, 2009 ), in addition to the standard precision-recall metrics which avoids agreements by chance by considering the

number of clusters produced. The experimental results establish the superior performance of HDP for sub-story detection

task. The approach could detect sub-story specific topics which helps journalists and government agencies to monitor the

evolution of new topics associated with a story. The runtime performance of HDP is comparable to established story detec-

tion approaches and can be used to perform real-time detection of sub-stories. 

The main contributions of the paper are summarized as follows: 

• Introduces the sub-story detection task and proposes a hierarchical Dirichlet process based approach to solve the problem

of sub-story detection. 

• Provides rigorous experimental comparison of the proposed sub-story detection approach with state-of-the-art story de- 

tection approaches, establishing the effectiveness of HDP for sub-story detection. 

• Proposes a mutual information based metric for evaluating the performance of sub-story detection approaches. 

• Demonstrates the usefulness of conversational structure in improving sub-story detection performance. 

2. Related work 

A number of techniques have been employed for detecting and tracking stories in social media streams ( Allan, 2002 ).

Story detection is typically done by extending traditional clustering algorithms to a streaming data setting ( Aggarwal, 2014 ).

A comprehensive survey of the literature on story detection techniques in Twitter data is given in ( Farzindar & Wael, 2015 ).

Story detection in Twitter for a particular topic such as ‘earthquake’ is studied in ( Sakaki, Okazaki, & Matsuo, 2010 ).

Becker et al. (2011) use an online clustering algorithm to detect stories and distinguish real vs. non-real stories using a

classification method. Twevent ( Li, Sun, & Datta, 2012 ) is a story detection approach which clusters bursty segments in

Twitter data. A fast and efficient approach based on locality sensitive hashing (LSH) is first used in ( Petrovi ́c et al., 2010 ) to

detect the emergence of new stories (first story detection) in Twitter. Locality sensitive hashing reduced the computational

complexity associated with nearest neighbour search and detected clusters of documents in constant space and time. Later,
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they extended this approach to counter lexical variations in documents by using paraphrases ( Petrovi ́c, Osborne, & Lavrenko,

2012 ). An alternative approach to detect new events by storing the contents of already seen documents in a single hash table

is proposed in ( Wurzer, Lavrenko, & Osborne, 2015b ). Further, LSH based techniques are also developed to handle topic

streams emerging in Twitter ( Wurzer, Lavrenko, & Osborne, 2015a ). Here, topics are also hashed into a bucket in addition

to the tweets. A multi-view clustering algorithm is proposed in ( Fang, Zhang, Ye, & Li, 2014 ) to detect hot topics in Twitter

by considering semantic relations, social tag relations and temporal relations. A multi-layer event detection algorithm is

proposed in ( Abramson et al., 2014 ) to detect global and local events occurring in Twitter. An ontology based semantic

clustering approach, where hash-tags are mapped to Wordnet terms, is used in ( Vicient & Moreno, 2015 ) to discover topics

in Twitter. Lately, a formal concept based approach is introduced in ( Cigarran, Castellanos, & Garca-Serrano, 2016 ) to perform

topic detection in Twitter by considering the relationship between tweet terms and tweets. 

Topic models are also used to detect stories in Twitter, for instance latent Dirichlet allocation (LDA) ( Diao, Jiang, Zhu, &

Lim, 2012 ) to detect bursty topics by considering the user and time at which a post is published. Twitter-LDA ( Zhao et al.,

2011 ) models a tweet to consist of a single topic and a background topic. Later, this was extended to an online setting by

Sasaki, Yoshikawa, and Furuhashi (2014) . A non-parametric topic model based on Dirichlet process is used in ( Wang, Zhu,

Jiang, & Li, 2013 ) to detect newsworthy stories in Twitter, where topics are shared among tweets from consecutive time

periods. Topicsketch ( Xie, Zhu, Jiang, Lim, & Wang, 2013 ) uses a novel sketch based topic model to detect bursty topics from

millions of tweets. Latent Dirichlet allocation is combined with Concepnet in ( Vo, Hai, & Ock, 2015 ) to learn distinguishing

terms among tweets from different events in Twitter. 

A spectral clustering based approach is developed in ( Preotiuc-Pietro, Srijith, Hepple, & Cohn, 2016 ) to address the task

of story detection. The approach uses a mutual information based metric to represent the similarity matrix in spectral

clustering. Real world events happen at different scales of time and space. Multi-scale event detection ( Dong, Mavroeidis,

Calabrese, & Frossard, 2015 ) aims to detect stories evolving at different pace and spanning different geographic locations

by using the properties of wavelet transform. Supervised machine learning techniques such as support vector machines

and logistic regression are used to detect events corresponding to specific topics such as those related to traffic ( D’Andrea,

Ducange, Lazzerini, & Marcelloni, 2015 ), lifestyle and wellness ( Akbari, Hu, Nie, & Chua, 2016 ) and uprisings ( Boecking, Hall,

& Schneider, 2015 ). These event detection techniques will not be able to distinguish different sub-stories associated with a

main story due to content overlap. 

Whilst story detection has received considerable attention, less attention has been paid to sub-story detection task. Aiello

et al. (2013) discuss tasks similar to sub-story detection like finding important events happening over time in a main event

such as a football match. They used standard story detection approaches to find events on their tasks. There exists ap-

proaches ( Nichols, Mahmud, & Drews, 2012; Zubiaga, Spina, Amigó, & Gonzalo, 2012 ) which rely on tweet rates in an in-

terval to detect major moments in a game. Chakrabarti and Punera (2011) use a modified hidden Markov model combining

tweet rate and text features to summarize events in a game. Shen et al. (2013) use a time-content mixture model which

effectively combines burstiness and cohesiveness to detect key moments in a story. Chierichetti, Kleinberg, Kumar, Mahdian,

and Pandey (2014) use non-textual features based on tweet rate and communication pattern among users to detect points

in time where an important event happens within a story. An approach based on graph-of-words to represent sequence of

tweets was used in ( Polykarpos, Giannis, Francois, Yannis, & Michalis, 2015 ) to detect important events happening within a

football match. Recently, a mutually generative LDA ( Xing, Wang, Liu, Huang, & Ma, 2016 ) is proposed for the same task by

considering the effect of hash-tags in Twitter. These approaches will not be effective for detecting sub-stories which overlaps

considerably in time and have low tweet rates. 

There exists a hitherto unaddressed problem – finding sub-stories related to a particular real world event. These sub-

stories may or may not correspond to real-world events (e.g. false rumours about the London riots ( Procter et al., 2013 ) do

not), they tend to overlap in time (i.e. tweets on more than one sub-story circulate simultaneously), and share significant

common vocabulary ( Zubiaga et al., 2016 ). As demonstrated in the rest of this paper, state-of-the-art approaches for story

detection do not perform well on this type of task. 

3. Research objective 

The following are our main research objectives: 

1. Introduce the task of sub-story detection in Twitter. Sub-story detection differs from story detection and we discuss

the properties specific to sub-story detection which makes it a harder task than story detection. 

2. Propose hierarchical Dirichlet processes as an effective approach for sub-story detection. Unlike story detection ap-

proaches, HDP can learn sub-topics associated with sub-stories which makes it particularly useful for modelling sub-

story detection task. 

3. Verify experimentally the effectiveness of HDP for sub-story detection task. We compare HDP with standard story

detection approaches based on locality sensitive hashing and spectral clustering on real world Twitter data sets to

establish the fitness of HDP for sub-story detection. 

4. Show the usefulness of conversational structure in Twitter for improving the performance of sub-story detection task.

By considering conversational structure, reply tweets which does not share a topical similarity with the source tweets

gets clustered along with the source tweet. 
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Table 1 

Description of major stories in the Ferguson data set. 

Sub-story id Description # Tweets # Source 

1 M. Brown was involved in a robbery before being shot 2312 89 

2 Ferguson police are leading a smear campaign or character assassination of M. Brown 623 18 

3 Initial contact between police officer and M. Brown was not related to the robbery 553 28 

4 Ferguson police to release name of police officer who shot M. Brown today 536 26 

5 Ferguson police are lying about the circumstances leading up to M. Brown’s death 426 23 

6 Ferguson police once beat up a man and charged him for bleeding on their uniforms 369 24 

7 M. Brown was stopped by police for walking in the middle of the street 236 10 

8 Fox News is not covering the Ferguson protests 102 2 

Fig. 1. Temporal profile of sub-stories in the Ferguson data set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Introduces adjusted mutual information score as an effective metric to measure clustering performance in sub-story

detection. Standard metrics based on precision typically favour clustering approaches which produces large number of

small sized clusters. Such clustering approaches are not useful in practice and we propose to use AMI as an effective

alternative metric which can take care of such problems. 

4. Problem definition: sub-story detection 

This paper addresses the problem of detecting sub-stories associated with a main story (collection of tweets related to a

real world event) as they emerge in social media streams. The scope of the story could be any event of interest to the user

(for e.g. Olympics or a sports category in Olympics). Sub-story detection separates tweets pertaining to the same real world-

event into clusters related to different sub-stories. Sub-story detection poses additional challenges over story detection: the

sub-stories have an overlapping vocabulary and tweet rates are comparatively lower. 

Table 1 shows 8 major sub-stories related to the Ferguson unrest from one of our five data sets. All these sub-stories are

related to the shooting of M. Brown by the Ferguson police and thus share words such as ‘M. Brown’, ‘Ferguson’, ‘police’

etc. Standard story detection approaches fail to produce good results in this setting where vocabulary is shared across the

sub-stories because they look at tweet similarity or overlapping words to cluster tweets. 

Sub-stories can have considerably larger lifespan, overlap in time, and are set within a broader over-arching story, that

contains many thematically related sub-stories. The themes discussed in these sub-stories are referred to as sub-topics . For

example, consider the temporal profile of sub-stories from the Ferguson data shown in Fig. 1 . We can observe that these sub-

stories overlap in time and have relatively low tweet rate. This is mainly due to the fact that there are multiple conversations

within a sub-story, each evolving at a different point in time. A sub-story which becomes active at some point in time can

become dormant temporarily and then re-activate again at a later time. 

5. Data set description 

The core of our experiments are carried out on three sub-story annotated data sets (Ferguson unrest, Ottawa shooting

and London riots). The first two are very recent and have been collected and human annotated as part of a rumour analysis

project ( Zubiaga et al., 2016 ), while the London riots one arose from an earlier qualitative social science analysis of related

tweets ( Procter et al., 2013 ). All three data sets consist of tweets, grouped together into human annotated sub-stories related

to the particular real-world event. Other tweets pertaining to the same event count as background data. 
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Table 2 

Description of sub-stories for London riots data set. 

Sub-story id Description # Tweets 

1 Army deployed in Bank 192 

2 Rioters attack children’s hospital 1666 

3 London Eye set on fire 657 

4 Rioters cook food in McDonalds 218 

5 Miss Selfridge set on fire 5581 

6 Police beat girl 902 

7 Rioters attack London zoo 937 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We also consider two other publicly available data sets, FSD and FAcup, which have been created for story detection.

Even though these data sets are not strictly suitable to the sub-story detection task, we use them for comparative purposes

and have vocabulary overlap across some sub-stories. 

Next we describe these data sets in more detail. 

5.1. Ferguson 

This data set consists of tweets collected between August and September 2014, all related to the unrest that took place in

Ferguson, USA ( Zubiaga et al., 2016 ). This data set is not only sub-story annotated, but also includes “reply-to” information,

which connects together subsets of tweets into conversational graphs. We refer to reply tweets as those that reply to a tweet

present in the data set, and source tweets as all those which do not have such a “parent”. In other words, the data set is

regarded as a collection of conversational threads, each of which has a single source tweet at its root. 

As detailed in ( Zubiaga et al., 2016 ), journalists categorised manually source tweets as belonging to one of 45 different

sub-stories. A reply tweet is assumed automatically to belong to the sub-story to which its source tweet has been assigned

(if any). 

After discounting sub-stories with fewer than 10 tweets, the final data set consists of 6598 labelled tweets spread

across 35 sub-stories and 18,650 tweets as background, i.e. not belonging to any of those sub-stories. Considering source

tweets alone, there are 284 labelled source tweets and 899 background source tweets. Table 1 lists major sub-stories in

the data ( Zubiaga et al., 2016 ), illustrating how the sub-stories are very similar and have the Ferguson unrest as a common

topic. 

5.2. Ottawa 

The Ottawa data set consists of tweets related to shootings at the parliament building in Ottawa during October

2014 ( Zubiaga et al., 2016 ). Similar to the Ferguson data, it also has a conversational structure including source and reply

tweets. The data set consists of 6414 tweets spread across 39 sub-stories and 5975 tweets as background. 

Considering source tweets alone, there are 462 labelled tweets and 439 background tweets. Some major sub-stories

associated with the Ottawa shooting event are ‘Soldier shot dead is Nathan Cirillo’, ‘Soldier shot at War Memorial has died’,

‘Suspected shooter is dead’, etc. All these sub-stories have a common theme of shooting and death which makes them

an ideal candidate for the sub-story detection task. With respect to temporal patterns, the evolution of sub-stories is very

similar to the patterns observed in the Ferguson data. 

5.3. London riots 

The London riots data set consists of 2.5 million tweets related to the riots that took place in London during August,

2011 ( Procter et al., 2013 ). It includes 10,0 0 0 tweets that are labelled as belonging to 7 different sub-stories, all with a

common background topic – the London riots. Table 2 provides a summary of number of tweets in each sub-story in this

data set. Unlike Ferguson and Ottawa, the conversational structure was not made available by the researchers. 

5.4. First story detection 

This is a publicly available story detection data set ( Petrovi ́c et al., 2012 ) with approximately 2400 tweets labelled as

belonging to 27 stories, from the period June to September 2011. This is augmented with background tweets from the same

period, to create a corpus of approximately 80,0 0 0 tweets. Originally this data set was created by Petrovi ́c et al. (2012) for

evaluation of their first story detection (FSD) system. This FSD data set can be seen to represent the standard story detection

task, in contrast to the sub-story task represented by the former three data sets. It should be noted, however, that there is

some overlap of stories here as well, e.g. four of the stories are related to the London riots in 2011 and another four are

about death of some celebrities. These commonalities make this data also applicable to sub-story detection, as well as

enabling us to benchmark our methods on the related story detection problem. 
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5.5. FAcup 

This is a publicly available data set ( Aiello et al., 2013 ) with approximately 70 0 0 tweets belonging to 13 different sub-

stories associated with a football match story. These tweets represents sub-stories such as goals, fouls etc. in the 2012

Football Association (FA) final match between Chelsea and Liverpool. This data set is augmented with approximately 20,0 0 0

tweets related to the same football match as background. Due to the shared common story (football game), sub-story tweets

in this data set share a common vocabulary and is useful for evaluating the proposed sub-story detection approach. However,

they differ from sub-story data sets such as Ferguson and Ottawa in that the sub-stories in this data set are temporally

separated. 

6. Methods 

The main sub-story detection method investigated in this paper uses hierarchical topic modelling. In particular, we ex-

periment with hierarchical Dirichlet processes (HDP), a non-parametric Bayesian model, which can effectively model the

sub-story detection task. HDP is also compared to two story detection state-of-the-art approaches: spectral clustering and

locality sensitive hashing. 

6.1. Hierarchical dirichlet process 

Latent Dirichlet allocation (LDA) ( Blei, Ng, & Jordan, 2003 ) and hierarchical Dirichlet processes (HDP) ( Teh, Jordan, Beal,

& Blei, 2006 ) have shown promising results in topic modelling due to their probabilistic interpretations. They model a

document (i.e. tweet in our case) as a mixture of topics, where each topic has a distinct distribution over the words. These

generative models can infer the latent topics associated with the tweets. 

In this paper, we propose to use HDP for sub-story detection, since it can model the hierarchical structure underlying the

topic distribution. As argued above, in sub-story detection we need to find sub-topics associated with the main story (e.g.

the Ferguson unrest), and HDP is developed specifically to handle such kinds of tasks. HDP achieves this by extending the

Dirichlet process mixture model (DPMM) Murphy (2012) to a hierarchical setting. 

In more detail, the DPMM considers a tweet as consisting of words generated by a mixture of topics. The mixture distri-

bution is modelled using a non-parametric prior based on a Dirichlet process (DP) ( Hjort, Holmes, Mller, & Walker, 2010 ). A

DP is parameterized by a base distribution H and a concentration parameter α and is denoted as DP ( α, H ). The base measure

specifies the a-priori distribution over some parameter space θ which is used to generate observed data. 

In our case, θ represents the parameters of a multinomial distribution over the words w in a tweet. A draw from DP ( α,

H ) is a discrete probability measure G providing a distribution over θ. It can be represented as G (θ) = 

∑ ∞ 

i =1 πi δθi 
(θ) , where

δθi 
is the Kronecker delta function which gives a value of 1 when the parameter takes value θ i , θ i is a draw from H and

π i is the probability mass associated with θ i . The sequence of values π i is obtained from α using a stick breaking pro-

cess ( Sethuraman, 1994 ) 

πi = π̄i 

i −1 ∏ 

l=1 

(1 − π̄l ) π̄i ∼ Beta (1 , α) . (1) 

The process ensures that π represents a probability distribution i.e. 
∑ ∞ 

i =1 πi = 1 and is often represented as π ∼ GEM ( α).

The concentration parameter α determines the probability mass associated with a topic π i as a parameter in Beta distri-

bution. A draw from G results in θ i with probability π i , with θ i representing the parameters of a multinomial distribution

associated with a topic i . Thus each topic i occurs in a tweet with probability π i . Modelling tweets independently as a

DPMM does not allow topics to be shared across tweets, which is needed in our task. 

Hierarchical Dirichlet processes are developed to handle grouped data and share topics across the groups ( Teh et al.,

2006 ). We use them to model the tweet as consisting of a set of topics and to share topics across multiple tweets. HDP

achieves this by drawing tweet specific probability distribution G d for a tweet d from DP ( γ , G 0 ), where γ represents the

concentration parameter and G 0 is the base distribution shared by all the tweets. The common base distribution G 0 is indeed

a draw from DP ( α, H ). The common base distribution has the form G 0 (θ) = 

∑ ∞ 

i =1 π0 i δθi 
(θ) and the tweet specific distribution

has the form G d (θ) = 

∑ ∞ 

i =1 πdi δθi 
(θ) . Here, both the common base distribution and tweet specific distributions share the

parameters θ i (or the topics) with tweet specific mixture distribution πd over the topics. Thus, the tweets modelled using

HDP share the topics but with different probabilities. The mixing proportions πd is generated as follows ( Teh et al., 2006 ) 

πd ∼ DP (γ , π0 ) π0 ∼ GEM(α) . (2) 

Fig. 2 shows the graphical model representation of the HDP model. A word w dn in a tweet d comes from a topic with

parameter θdn drawn from the Dirichlet Process G d associated with the tweet. The topics are shared across the tweets due

to the hierarchical modelling of DPMM. 

Since in sub-story detection tweets relate to the same real world event, HDP can model this effectively, coupled with the

fact that individual tweets address different sub-topics (corresponding to the sub-stories). These sub-topics are characterized

by words and each word is associated with a probability indicating the importance of the word in representing the sub-topic.
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Fig. 2. Graphical model for HDP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The identified sub-topics are used to cluster tweets based on the words common in the tweet and the sub-topics. For each

tweet, we detect common words and calculate a similarity score to a sub-topic by summing the probability associated with

these words in representing the sub-topic. The tweet is assigned to the sub-topic with the maximum similarity score. We

use sub-topics for clustering the tweets as they can better discriminate the tweets associated with sub-stories. 

6.2. Spectral clustering 

Clustering techniques have been used widely to detect stories in social data streams ( Aggarwal, 2014 ). Here, we discuss

one based on spectral clustering using point-wise mutual information ( Preotiuc-Pietro et al., 2013 ). The spectral clustering

(SC) algorithm ( Shi & Malik, 20 0 0 ) has been shown to achieve the state-of-the-art performance for tasks such as community

detection in graphs ( White & Smyth, 2005 ). This method treats clustering as a graph partitioning problem. It projects the

objects into a lower dimensional space by performing singular value decomposition of a similarity graph constructed over

the objects. It then discovers clusters of objects which are maximally separated in this space using standard clustering

techniques, such as k-means. A good spectral clustering relies on a good similarity graph which best reflects the connections

between objects. 

We apply spectral clustering to detect sub-stories in a stream of tweets ( Preotiuc-Pietro et al., 2013 ). The approach rep-

resents a similarity graph by constructing a matrix which captures the similarity over words that appear in the data. It uses

normalized point-wise mutual information (NPMI) ( Bouma, 2009 ) to capture the word similarity. NPMI measures the prob-

ability of co-occurrence of words in the same tweet. The idea is that if two words appear consistently in the same tweet,

then they are indicative of the same story. For example, the co-occurrence of words such as “Ferguson” and “police” over a

period of time indicate there is a story related to Ferguson police. 

The NPMI measure between words pairs x and y is calculated as 

NP MI(x, y ) = − log p(x, y ) log 
p(x, y ) 

p(x ) p(y ) 
(3)

where p ( x ) denotes the probability of occurrence of a word x in a tweet, and p ( x, y ) provides the probability of co-occurrence

of words x and y in a tweet. We consider two words as co-occurring if they appear in the same tweet, which gives us a

straightforward measure of co-occurrence frequencies. The NPMI measure takes values between −1 and 1 with positive

values indicating a higher chance of co-occurrence and negative value indicating a lower chance of co-occurrence. 

The spectral clustering algorithm proceeds by filtering out less frequent words and constructing a similarity graph over

words using the NPMI measure. It ignores all NPMI values less than a threshold and keeps the largest connected component

from the resulting graph. Singular value decomposition is performed over a graph Laplacian constructed from this similarity

graph to obtain a representation of words in a lower dimensional space. A k-means algorithm then finds clusters of words

in this reduced space. 

The word clusters discovered by the spectral clustering algorithm represents a coherent topic. The words are associated

with a score, which provides a measure of importance of the word in representing the topic. For each tweet, a similarity

score is computed with respect to each topic, using the co-occurrence score of the words in the tweet. The tweets are then

clustered by assigning them to the topic with the highest similarity score. Thus, tweets in the same cluster form a topically

coherent cluster. 

6.3. Locality sensitive hashing 

The second state-of-the-art approach is locality sensitive hashing (LSH) Rajaraman and Ullman 2011 ), which was pro-

posed originally for first story detection in Twitter ( Petrovi ́c et al., 2010 ). LSH finds nearest neighbour tweets in constant

time and keeps only a constant number of tweets in memory. 

The LSH approach uses the nearest neighbour algorithm to find the tweet closest to the incoming tweet. The computa-

tional overhead of finding the nearest neighbour is overcome using locality sensitive hashing. LSH maps incoming tweets to

buckets using a hashing function which maps similar tweets to the same bucket. The method then finds the nearest neigh-

bour to the incoming tweet by searching the bucket to which it has been mapped. This greatly reduces the search space.
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The approach clusters tweets based on the cosine similarity of the tweets which are hashed into the same bucket. It as-

signs an incoming tweet to the cluster of its nearest neighbour if the cosine similarity is greater than a particular threshold.

Otherwise, it assigns the tweet to a new cluster. 

In more detail, LSH uses a series of random hyperplanes sampled from a normal Gaussian distribution. These hyperplanes

divide the space into subspaces and similar tweets fall into the same subspace. We consider k such hyperplanes. The number

of hyperplanes k can be considered as a number of bits per key in this hashing scheme. Let u i , i = 1 , . . . , k represent the

hyperplanes and x be the tf-idf representation of the tweet. The hash value is considered to be a binary vector with k bits.

We set the bit i to be 1 if x . u i > 0 and 0 otherwise. The tweets falling in the same subspace have the same hash value in

the hash table and is stored in a bucket of size b . The higher k is, the fewer collisions there will be in the buckets, but more

time will be needed to compute the hash values. However, increasing k also decreases the probability of collision with the

nearest neighbour, and hence multiple hash tables ( h ) are required to increase the chances of finding the nearest neighbour.

Thus, a tweet is compared with the tweets belonging to the same bucket in multiple hash tables in order to find its nearest

neighbour using cosine similarity. The nearest neighbour tweets with cosine similarity below a user specified threshold

forms a cluster. This cluster represents tweets with some topical similarity, which helps one to detect stories evolving in

Twitter. 

7. Experimental results 

This section reports on the comparative evaluation of HDP and all state-of-the-art baselines on the sub-story detection

data sets. We follow a cluster-based approach, as it accounts for the varying popularity of sub-stories and the related user

endorsement aspect. This also provides a fair comparison with LSH. Alongside this, we also consider an event extraction

setting where major sub-stories detected by HDP and SC are described in terms of detected topics. 1 Results are reported

using the standard metrics of precision, recall, F-score and adjusted mutual information ( Vinh et al., 2009 ). The latter is

included as it has certain advantages over the others with respect to cluster evaluation. 

In particular, the experiments compare Hierarchical Dirichlet processes (HDP), spectral clustering (SC) and locality sensi-

tive hashing (LSH) on the data sets introduced in Section 5 (Ferguson, Ottawa, London riots, FSD, and FA Cup). 

The text of each tweet is pre-processed to remove unusual characters, tokens, and stop words, followed by stemming.

In particular, the filtered tokens are: user-mentions (tokens starting with @), hashtags (words starting with #) and URLs.

The rationale behind hashtag removal is that hashtags often tend to refer to the shared real world event (e.g. #Ferguson,

#Londonriots) and are thus shared across sub-stories. 

7.1. Method comparison using precision, recall and F-score 

Our first comparative evaluation experiment uses the standard information retrieval metrics of precision and re-

call ( Manning, Raghavan, & Schütze, 2008 ). Detected tweet clusters are evaluated against the gold standard tweets in the

respective sub-stories. Since the approaches are unsupervised, the number of automatically discovered clusters does not al-

ways align to the sub-stories in the gold standard. Therefore, for each sub-story, we find the automatically produced cluster

with the maximum overlap, in terms of number of tweets from that sub-story. It should be noted that multiple sub-stories

may get aligned to a single cluster. In this case, precision measures how many of the retrieved tweets belong to the actual

sub-story, while recall measures whether the system could retrieve all known tweets associated with the aligned sub-story.

Performance is reported using micro-averaged precision and recall, due to the varying sizes of each sub-story (in terms of

number of contained tweets). 

More formally, let N be the total number of known sub-stories in a given data set. TP i , FP i , and FN i are the true positives,

false positives, and false negatives associated with a sub-story i . Then, micro-averaged precision and recall are calculated

as: 

P micro = 

∑ N 
i =1 T P i ∑ N 

i =1 T P i + F P i 
(4) 

R micro = 

∑ N 
i =1 T P i ∑ N 

i =1 T P i + F N i 

(5) 

We also report micro-averaged F-score, which is the harmonic mean of micro-averaged precision and recall. Approaches

with a high F-score are preferred. 

F micro = 

2 · P micro · R micro 

P micro + R micro 

(6) 

The free HDP parameters (e.g. the concentration parameters) are learnt from the data using Gibbs sampling. We put an

upper bound on the number of topics produced by HDP ( k ) and this allows for a fair comparison with SC. The effective
1 Please note that LSH does not assign topics to sub-stories, due to the nature of the algorithm. 
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Table 3 

Results of HDP, SC, and LSH on Ferguson and Ottawa data sets for different parameter 

settings. Best results appear in bold letters. 

Method Ferguson Ottawa 

P micro R micro F micro P micro R micro F micro 

HDP (k200) 0 .0536 0 .0889 0 .0668 0 .1799 0 .1431 0 .1594 

HDP (k300) 0 .1366 0 .1057 0 .1191 0 .2182 0 .1249 0 .1588 

SC (k400) 0 .0131 0 .1622 0 .0242 0 .0519 0 .1821 0 .0807 

SC (k20 0 0) 0 .0422 0 .0861 0 .0566 0 .0873 0 .1244 0 .1025 

LSH (k12h56b10) 0 .3441 0 .0301 0 .0554 0 .4797 0 .0314 0 .0589 

LSH (k13h71b10) 0 .3430 0 .0407 0 .0728 0 .3768 0 .0285 0 .0529 

Table 4 

Results of HDP, SC, and LSH on London riots for dif- 

ferent parameter settings. Best results are indicated in 

bold letters. 

Method London riots 

P micro R micro F micro 

HDP (k50) 0 .4188 0 .2759 0 .3326 

HDP (k100) 0 .4194 0 .2013 0 .2720 

SC (k50) 0 .1833 0 .2666 0 .2172 

SC (k100) 0 .4522 0 .2539 0 .3252 

LSH (k12h56b10) 0 .5948 0 .2258 0 .3273 

LSH (k13h71b10) 0 .4976 0 .2323 0 .3167 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

number of topics could be less and is determined by the concentration parameter learnt from the data. The spectral cluster-

ing approach depends primarily on the parameter k , which determines the number of clusters in the data set. The approach

is run by filtering out words with an NPMI threshold of 0.1 and with word frequency threshold of 10. We perform experi-

ments with different values of k for HDP and SC. Lastly, the LSH approach depends on the parameters k (number of bits), h

(number of hash tables), and b (bucket size). The experiments are conducted with different values of these parameters. We

present only the results obtained with the best two parameter settings (in terms of F-score) for each of the approaches. 

As can be seen in Table 3 , HDP is the best performing method on the Ferguson and Ottawa sub-story data sets. In

particular, HDP’s F-score is significantly better than the SC and LSH F-scores. With respect to precision, LSH performs best,

while SC has the best recall. The low recall of LSH, however, is due to the fact that it generates a large number of very small

tweet clusters, which is also the reason for its high precision. On the other hand, SC is not able to differentiate sufficiently

between similar sub-stories and groups them together in a small number of very large clusters. While this increases recall,

it leads to the observed low precision. In contrast, HDP can detect subtle differences in sub-stories, thanks to the sub-topics,

which are then used to cluster the tweets. This leads to improved precision for HDP over SC and an ultimately higher

F-score. 

Next, Table 4 reports the experimental results on the much larger London riots data set. The methods here are executed

by partitioning the data set into 50 sub-partitions with approximately 50,0 0 0 tweets in each. The table shows the number

of clusters per partition for the HDP and SC approaches. As above, HDP has the best recall and F-score, while LSH has the

highest precision. 

Nevertheless, it should be noted that precision, recall and F-score are still very low on the Ferguson and Ottawa data

sets, which is due to the presence of conversational threads within the sub-story clusters. As discussed in Section 1 , some

of the tweets within the conversational tweets tend to discuss completely unrelated topics. For instance, even if the source

tweet mentions the sub-story explicitly, often reply tweets within the thread do not have significant word overlap with

the source. Consequently, these reply tweets are not deemed topically similar to the source tweet and are assigned to a

completely different cluster, which negatively impacts performance. 

7.1.1. Conversational structure experiments 

The effect of reply tweets in lowering the performance of the system is verified by conducting clustering experiments on

the Ferguson and Ottawa data sets, using source tweets alone. As can be seen in Table 5 , algorithm performance improves

significantly, compared to the results reported in Table 3 . In some cases, the improvement in performance is by an order

of magnitude. Again we observe that HDP outperforms both LSH and SC, with similar precision and recall patterns as those

observed in the full data sets. 

The next experiment considers the sub-story assignment of entire conversational threads. The first step is to cluster only

the source tweets, while reply tweets are assigned automatically to the cluster of their corresponding source tweet. This
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Table 5 

Results of HDP, SC, and LSH on Ferguson and Ottawa data sets (considering source 

tweets alone) for different parameter settings. Best results are indicated in bold letters. 

Ferguson Ottawa 

P micro R micro F micro P micro R micro F micro 

HDP (k200) 0 .2578 0 .3042 0 .2790 0 .4615 0 .4172 0 .4382 

HDP (k300) 0 .3482 0 .3688 0 .3582 0 .4212 0 .5248 0 .4673 

SC (k400) 0 .0508 0 .3691 0 .0893 0 .1574 0 .3055 0 .2077 

SC (k20 0 0) 0 .1614 0 .2617 0 .1996 0 .1373 0 .3055 0 .1894 

LSH (k12 h56 b10) 0 .6083 0 .2402 0 .34 4 4 0 .6417 0 .2603 0 .3703 

LSH (k13 h71 b10) 0 .5591 0 .2508 0 .3462 0 .6975 0 .2451 0 .3627 

Table 6 

Results of HDP, SC, and LSH on Ferguson and Ottawa data sets (considering conversa- 

tional structure) for different parameter settings. Bold letters indicate the best results 

among HDP, SC, and LSH. 

Method Ferguson Ottawa 

P micro R micro F micro P micro R micro F micro 

HDP (k200) 0 .273 0 .3674 0 .3132 0 .4749 0 .4612 0 .4679 

HDP (k300) 0 .3822 0 .4199 0 .4001 0 .4398 0 .5691 0 .4 96 8 

SC (k400) 0 .0722 0 .4091 0 .1227 0 .1786 0 .3581 0 .2383 

SC (k20 0 0) 0 .2149 0 .3034 0 .2515 0 .1588 0 .3143 0 .2109 

LSH (k12 h56 b10) 0 .5589 0 .3087 0 .3977 0 .5428 0 .3038 0 .3895 

LSH (k13 h71 b10) 0 .5079 0 .3106 0 .3854 0 .7777 0 .2877 0 .4200 

Baseline 1 .0 0 .2545 0 .4057 1 .0 0 .1696 0 .2900 

Table 7 

Results of HDP, SC, and LSH on most prominent stories in the Ferguson and Ottawa data sets. 

Method Sub-story 1 Sub-story 2 Sub-story 3 

P R F P R F P R F 

Ferguson 

HDP (k300) 0 .96 0 .26 0 .41 0 .45 0 .40 0 .42 0 .59 0 .74 0 .66 

SC (k400) 0 .32 0 .26 0 .28 0 .16 0 .19 0 .17 0 .23 0 .29 0 .26 

LSH (k12h56b10) 0 .99 0 .16 0 .28 1 0 .17 0 .29 0 .31 0 .26 0 .28 

Ottawa 

HDP (k300) 0 .99 0 .65 0 .78 0 .82 0 .66 0 .73 0 .46 0 .47 0 .46 

SC (k400) 0 .95 0 .27 0 .42 0 .15 0 .31 0 .20 0 .11 0 .28 0 .16 

LSH (k13h71b10) 0 .99 0 .44 0 .61 1 0 .15 0 .26 0 .4 0 .16 0 .23 

 

 

 

 

 

 

 

 

 

 

 

 

 

is a realistic setting on these data sets, and on unseen Twitter data in general, since the source-reply structure is readily

available. 

Table 6 shows that considering conversational threads achieves an order of magnitude improvement in recall and F-score,

as compared to those in Table 3 . Again, we observe that LSH has better precision, while HDP has better recall, and ultimately

HDP has the best F-score. 

This experiment also considered an additional baseline, which clusters tweets using only the conversational structure.

Here, we consider each conversation as a cluster and the largest conversation as the representative of a substory. The aim

here is to investigate whether the sub-story detection approaches can get a better recall, than this readily available baseline.

By design, this approach has a precision of 1. This simple baseline has a recall of 0.2545 and 0.1696 for Ferguson and

Ottawa respectively, which is lower than the recall of the other three methods. The story detection approaches are able to

cluster together tweets from other conversations of the same sub-story. The F-score of the baseline is unusually high due

to a precision of 1. However, it is not useful as it could detect only one conversation of a sub-story and generates a large

number of clusters (same as the number of conversations). 

In order to investigate the variation in performance across individual sub-stories, 3 major sub-stories are selected at

random in the Ferguson and Ottawa data sets. As can seen in Table 7 , performance patterns for LSH, SC, and HDP remain

unchanged, i.e. LSH has the best precision, while HDP – the best recall and F-score. The latter is able to find most of the

tweets associated with sub-stories with a good precision. 
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Table 8 

Results of HDP, SC, and LSH on FSD for different parameter settings. Best 

results are indicated in bold letters. 

Method FSD 

P micro R micro F micro 

HDP (k200) 0 .3181 0 .7765 0 .4523 

HDP (k300) 0 .3558 0 .7549 0 .4863 

SC (k200) 0 .1564 0 .7683 0 .2598 

SC (k400) 0 .1529 0 .5406 0 .2383 

LSH (k12h56b10) 0 .9792 0 .2279 0 .3697 

LSH (k13h71b10) 0 .8128 0 .2428 0 .3739 

Table 9 

Results of HDP, SC, and LSH on FAcup for different parameter settings. 

Best results are indicated in bold letters. 

Method FAcup 

P micro R micro F micro 

HDP (k100) 0 .1441 0 .1683 0 .1552 

HDP (k200) 0 .3023 0 .1438 0 .1949 

SC (k400) 0 .0582 0 .0947 0 .0721 

SC (k10 0 0) 0 .1281 0 .0875 0 .1039 

LSH (k12h56b10) 0 .4975 0 .0881 0 .1496 

LSH (k13h71b10) 0 .4992 0 .0979 0 .1636 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.1.2. Performance on FSD data 

The next experiment compares the methods on the publicly available FSD data set. As noted before, FSD is a story

detection data set with some stories having vocabulary overlap. We evaluate the performance of the HDP approach against

the standard story detection approaches (see Table 8 ), which provide a good performance in this data set. Here, LSH has

very high precision but low recall. HDP and SC outperform LSH in recall, while HDP precision is better than that obtained

for SC. HDP is again found to have the highest F-score, indicating the dominance of HDP over SC and LSH on the FSD data

set. 

Similar to the sub-story data sets, LSH produces very small clusters, which split the tweets belonging to a particular

story across multiple threads resulting in higher precision but low recall. For instance in the case of the story on “Death of

Amy Winehouse” with 726 tweets, the corresponding LSH cluster contains 109 tweets mostly from that story. The precision

for this story is thus 0.90, while recall is only 0.13. 

In the FSD data, we observed that LSH produced around 1500 clusters in total, after ignoring clusters with fewer than 3

tweets. Spectral clustering, on the other hand, tends to cluster together tweets from related stories, resulting in few large

story clusters. For example, some of the tweets from the two stories (‘Death of Amy Winehouse’ and ‘Betty Ford dies’) are

put into the same cluster. In the case of ‘Death of Amy Winehouse’, the corresponding SC cluster has 821 tweets, with 0.59

precision and 0.67 recall. This is mainly due to SC clustering words rather than messages, and thus merging sub-stories

sharing common vocabulary. 

HDP provides a more balanced result with comparatively higher precision and recall. It is a more fine grained approach

which can distinguish subtle differences in various stories, due to the hierarchical modelling of the topics with some shared

vocabulary. In the case of ‘Death of Amy Wine house’, the corresponding HDP cluster has 660 tweets with 0.81 precision

and 0.73 recall. 

In conclusion, this experiment has demonstrated that HDP performs very well also on story detection data sets and tasks.

7.1.3. Performance on FAcup data 

We study the performance of the approaches on another publicly available data set, FAcup. This data exhibits properties

similar to Ferguson and Ottawa since all the tweets belongs to a common main event, i.e. a football match. However, it is

more challenging due to the very high overlap in vocabulary across the sub-stories (most of the sub-stories are related to

goals) and the occurrence of sub-stories in a small time frame. 

Table 9 compares the performance HDP, SC, and LSH on the FAcup data. The methods struggle to separate the tweets into

the different sub-story clusters, which leads to lower precision. Broadly speaking, the results obtained on the FACup data

are similar to those reported in Table 3 on the sub-story detection data sets. Again, HDP outperforms LSH and SC, thanks to

superior recall and F-score, while LSH maintains the best precision. Overall, the performance is low as this data set is more

challenging than FSD, Ferguson, and Ottawa. 
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Table 10 

Adjusted mutual information scores for HDP, SC and LSH on the 

Ferguson, Ottawa, FSD and FAcup data sets. The best AMI scores 

obtained for different parameter setting of the approaches are 

reported and the best results are shown in bold. 

Method Ferguson Ottawa FSD FAcup 

HDP (k100) 0 .46 0 .59 0 .70 0 .10 

HDP (k200) 0 .46 0 .55 0 .67 0 .11 

HDP (k300) 0 .47 0 .60 0 .65 0 .10 

SC (k200) 0 .40 0 .39 0 .65 0 .07 

SC (k400) 0 .38 0 .43 0 .45 0 .07 

SC (k20 0 0) 0 .39 0 .42 0 .31 0 .08 

LSH (k12 h56 b10) 0 .40 0 .46 0 .23 0 .08 

LSH (k13 h71 b10) 0 .40 0 .47 0 .24 0 .09 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.1.4. Discussion 

The experiments presented above demonstrated that LSH generally produces a large number of clusters with high preci-

sion but low recall. For instance, on the London riots data set, it produced around 45,0 0 0 clusters. In contrast, HDP and SC

achieve similar performance with only 2500 and 5000 clusters, respectively. 

In general, LSH tends to create numerous very small clusters (mostly containing re-tweets), which explains its very high

precision. On the other hand, SC tends to cluster together similar categories, which lowers precision. HDP distinguishes

subtle topical differences, resulting in more balanced precision and recall. Another noteworthy observation is that, in general,

increasing the number of clusters in HDP and SC leads to improved precision but at the cost of recall. Thus, depending on

application needs, HDP and SC make it possible to trade off some recall for better precision. 

With respect to the metrics used above, precision, recall and F-score do not penalize methods, such as LSH, which pro-

duce a large number of small clusters, and thus the corresponding F-score is often high due to their high precision. Such

methods, however, are not useful in practice as an user has to navigate over a large number of clusters, in search of im-

portant sub-stories. Therefore, in our final experiment we use adjusted mutual information (AMI) ( Vinh et al., 2009 ), which

takes cluster size and cluster numbers into account. The improvement in clustering quality due to HDP is clearly visible also

with adjusted mutual information, which corrects for agreement by chance due to a larger number of clusters. 

7.2. Adjusted mutual information experiments 

The information theoretic, adjusted mutual information measure (AMI) ( Vinh et al., 2009 ) is used to evaluate cluster

quality. In prior work, information theoretic measures, such as mutual information, have been shown as being well suited

to comparing the performance of clustering approaches ( Banerjee, Dhillon, Ghosh, & Sra, 2005; Meil ̌a, 2005 ). These measures

are theoretically grounded and provide a better evaluation of cluster quality. 

Mutual information (MI) between two clusterings U = { U 1 , . . . , U R } (true clustering of tweets) and V = { V 1 , . . . , V C } (gen-

erated clustering of tweets) quantifies the information shared among them and provides the reduction in uncertainty on U

upon observing V . The MI score between U and V , is computed as 

MI(U , V ) = 

R ∑ 

i =1 

C ∑ 

j=1 

p(i, j) log 
p(i, j) 

p(i ) p( j) 
. (7) 

Here, p ( i ) is the probability that tweets belong to the cluster U i , p ( j ) is the probability that tweets belong to the cluster V j ,

and p ( i, j ) is the probability that tweets belong to both the clusters U i and V j . When clusterings are identical, MI score takes

a higher value upper bounded by max { H ( U ), H ( V )}, where H(U ) = − ∑ R 
i =1 p(i ) log (p(i )) is the entropy of the clustering U . If

the clusterings are disjoint, MI score is close to zero. One can also use a normalized MI (NMI) score, which normalizes the

MI score to be between zero and one. 

The shortcoming of the MI and NMI scores, however, is that they do not correct for clusters that occur by chance. They

do not have a constant baseline value, i.e. the average value obtained for a random clustering of the data ( Vinh et al.,

2009 ). Consequently, these scores tend to be higher for results with larger number of clusters, or when the ratio of the total

number of data points to number of clusters is small. In particular, they would produce a high score for an approach, which

categorizes each tweet into a separate cluster. 

Therefore, in our experiments we consider adjusted mutual information (AMI) ( Vinh et al., 2009 ), which is corrected for

chance by subtracting the expected mutual information score from both the numerator and denominator of the normalized

mutual information score. The AMI score is calculated as follows 

AM I(U , V ) = 

M I(U , V ) − E { MI(U , V ) } 
max { H(U ) , H(V ) } − E { MI(U , V ) } . (8) 

Tables 10 and 11 provide the AMI scores obtained by HDP, SC and LSH on the different data sets. As can seen, HDP has

the best performance, as measured by its AMI score. In this case, we also note that SC demonstrated improved performance
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Table 11 

Adjusted mutual information scores for HDP, SC and LSH on the London 

riots data set. The best AMI scores obtained for different parameter set- 

ting of the approaches are reported and the best results are shown in 

bold. 

Method LondonRiots 

HDP (k25) 0 .32 

HDP (k50) 0 .31 

HDP (k100) 0 .29 

SC (k50) 0 .31 

SC (k100) 0 .31 

SC (k200) 0 .28 

LSH (k12 h56 b10) 0 .29 

LSH (k13 h71 b10) 0 .30 

Table 12 

Top 5 Topics identified by HDP and SC on the Ferguson data set. 

HDP SC 

Shared Police, Ferguson Shared None 

Topic 1 Suspect, Robbery, Brown, Mike, Officer, Involved Topic 1 Beat, Charged, Man, Property, Uniforms 

Topic 2 Officer, Darren, Wilson, Shot, Brown, Michael Topic 2 Brown, Darren, Michael, Officer, Shot, Wilson 

Topic 3 Chief, Stopped, Robbery, Says, Street, Walking Topic 3 Law, Live, Militarized, State, Town, Victim 

Topic 4 Charged, Beat, Man, Bleeding, Uniforms, Property, Destruction Topic 4 Before, Boy, Community, Dogs, Fergusonshooting 

Topic 5 Store, Video, Stills, Surveillance, Robbery, Brown, Release, Michael Topic 5 Mike, Name, Release, Police 

Table 13 

Running times of the approaches on London riots, Ferguson, Ottawa, FSD and FAcup 

data sets. 

Method LondonRiot (h) Ferguson (s) Ottawa (s) FSD (s) FAcup (s) 

HDP 2 196 55 661 188 

SC 1 .5 183 52 550 128 

LSH 4 151 35 511 152 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and tends to be better than LSH on most data sets. As expected, the AMI score penalizes the LSH algorithm, which produces

a very large number of clusters, since the expected mutual information score grows as the number of clusters increases.

Note that the AMI scores of FSD is high and that of FAcup is low due to the same reasons mentioned in Sections 7.1.2 and

7.1.3, respectively. 

7.3. Topic detection 

Since HDP and SC are topic based and can describe a cluster through key terms, this is not the case for LSH. Therefore,

in this section we examine topics within sub-stories, as identified automatically by these two methods. 

In particular, Table 12 shows 5 major topics learnt by HDP and SC from the Ferguson data. We found that HDP learns

topics corresponding to major stories in the Ferguson data set. For instance, Topic 1, Topic 2 and Topic 3 correspond to Story

1, Story 4 and Story 7 in the Ferguson data set, described in Table 1 . The first two topics detected by SC correspond to Story

6 and Story 4 of the Ferguson data. 

7.4. Runtime efficiency 

We study the runtime of different approaches on the data sets and check their practical usability. Table 13 provide

runtime comparisons of HDP, LSH and SC approaches on different data sets. The algorithms are run on a Linux computer

having 4 core Intel CPU with 3.40 GHz speed and 16 GB RAM. In terms of run time, the performance of all the approaches

are comparable in Ferguson, Ottawa, FSD and FAcup. In the case of London riots, LSH is found to have relatively higher

runtime. 

8. Discussion and implications 

Social networks such as Twitter provide real time information on various events happening around the world. Sub-story

detection in Twitter provides researchers, journalists, and government organizations the ability to track the evolution of

various stories associated with a main story. For instance, it helps journalists to detect various stories associated with U.S.

presidential elections and government to track stories arising around natural disasters such as earthquakes. The proposed
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approach based on HDP could detect accurately most of the sub-stories associated with a main story in real time. HDP learns

sub-topics which can distinguish subtle differences in the topics associated with the sub-stories. It will be useful for news

agencies and governments to more accurately track the evolution of sub-stories and take appropriate remedial measures.

The sub-topics learnt by HDP from the Twitter helps humans to understand the content of sub-stories without actually

inspecting a large volume of tweets. The keywords extracted from sub-topics also implicitly offer a way of summarizing the

sub-stories or can be used as input to more sophisticated summarization algorithms. 

We take into account the conversational structure in Twitter which allows our model to more accurately track the evo-

lution of sub-stories. This is particularly useful in applications such as rumour detection where early detection of rumours

is important. Categorizing the conversational tweets into the cluster of the source tweet helps in debugging the truthfulness

of a rumour mentioned in the source tweet. For instance, the presence of words such as ‘incorrect’ and ‘unbelievable’ in the

reply tweets often indicate that the topic mentioned in the source tweet is not true. 

We provide a better measure to evaluate the clustering quality in sub-story detection by using adjusted mutual informa-

tion. We observed that standard story detection approaches such as LSH when applied to sub-story detection task, produced

a large number of small sized highly accurate clusters. Standard metrics based on precision favor such clustering approaches

but they may not be useful in practice. Though F-score consider recall as well, very high precision often leads to a good

F-score. AMI takes into account number of clusters produced by the approach and penalizes those which produces large

number of clusters. By correcting agreement between clusters due to chance, AMI measure better reflects the clustering

quality of the approaches. We proposed to use it for comparing the quality of clusters produced in the sub-story detection

task. HDP performed far better than other approaches in terms of AMI score which makes it an ideal candidate for sub-story

detection. 

The application of the proposed approach to streaming data requires one to partition the stream into intervals and apply

the HDP algorithm to the textual content in each interval. The same procedure has to be followed for the SC algorithm, while

LSH is directly applicable to the streaming data setting. Topics in the adjacent intervals could overlap and the proposed

approach in the current form treat the topics across the intervals to be independent. In order to capture this dependence,

one could consider an additional hierarchy over the base distributions generating topics in the adjacent intervals. We intend

to develop this model for sub-story detection as a future work. Runtime experiments showed that HDP is as fast as LSH and

is useful for real time sub-story detection. The HDP approach requires multiple passes over the data to learn the parameters.

An improvement in the runtime performance could be achieved by considering an online HDP algorithm ( Wang, Paisley, &

Blei, 2011 ), which performs a single pass over the data to learn the parameters. Our preliminary experiments showed that

this comes at the cost of deteriorated precision-recall performance in sub-story detection. 

9. Conclusion 

This paper introduced the sub-story detection task, which differs from the previously studied story detection task. Sec-

ondly, we proposed a probabilistic topic model (hierarchical Dirichlet processes (HDP)) for automatic sub-story detection.

HDP performs hierarchical modelling of topics and is effective in modelling sub-stories by learning sub-topics associated

with the common topic of the shared real-world event. 

HDP performance was compared against spectral clustering and locality sensitive hashing on several sub-story detection

and story detection data sets. In general, we found that SC provides good recall, while LSH provides good precision. HDP,

on the other hand, was found to have balanced precision and recall and achieves the best F-scores on all data sets. This

demonstrates that HDP can handle effectively the subtle differences in sub-stories, which leads to an improved clustering

performance. The performance of HDP is better than the rest with respect to F-score on the best parameter settings, but not

on all the parameter settings. The superior performance of HDP is substantiated by evaluating cluster quality via adjusted

mutual information. Here, HDP is found to perform better than the rest of the approaches in all the parameter settings. 

Lastly, our experiments also demonstrated that considering the conversational structure of tweet threads significantly

improved performance of the sub-story detection approaches. 

Future work will address sharing of the topics across adjacent intervals, adding one more layer of hierarchy in the HDP

model. We will also address the task of automatic sub-story ranking, which will enable users, such as journalists or emer-

gency responders, to identify and focus on the most important sub-stories within a large volume of tweets surrounding

major world events. 
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