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Abstract
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1 Introduction

The study of dynamic models of decision making under uncertainty when a flow of informa-

tion on future risks is expected over time is central in all fields of economics. For example,

investors decide when to invest and how much to invest based on what they expect to learn

about the distribution of future cash flows. The concepts of value of information and value of

flexibility (option value) quantify the positive effects of relying on more precise information

structures.1

A standard dynamic decision problem has three components: the first component is a

set of states of the world that capture all relevant aspects of the decision environment. The

second component is a set of feasible intermediate actions, each of which determines the

payoff for any realized state. The third component is a description of what the decision

maker expects to learn; this component is formalized as an information structure, which is

the set of possible signals about the states that are expected to arrive over time and the

joint distribution of signals and states.

In many situations, the analyst may be confident in his understanding of the relevant

state space and the relevant set of actions. He may, however, not be aware of the information

structure people perceive. People may have access to private data which is unforeseen by

others; they may interpret data in an idiosyncratic way; or they may be selective in the data

they observe, for example by focusing their attention on specific signals. We collectively

refer to those situations as “subjective learning”. Since information plays a key role in most

decision-making processes, if it is not observed, then it should be derived.

In this paper we show how one can infer an individual’s subjectively perceived information

structure (in addition to his subjective probabilities over states and cardinal utilities over

outcomes) solely from his observed choice behavior prior to the resolution of uncertainty. We

confine our attention to the study of two canonical ways of describing information, namely

identifying signals with the posterior beliefs they produce, and partitional-learning. For

each model, we provide an axiomatic foundation and show that the relevant parameters

are uniquely identified. The identification of anticipated arrival of information allows us

to compare the behavior of individuals who perceive different information structures. Such

comparisons are the subjective versions of the comparative statics for incremental increases

in informativeness when learning is objective. Lastly, we propose a new domain that allows

studying the behavioral implications of uncertainty that is anticipated to gradually resolve

over time by means of a subjective filtration.

The standard subjective expected utility models of Savage (1954) and Anscombe and

1For a comprehensive survey of the theoretical literature, see Gollier (2001, chapters 24 and 25).
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Aumann (1963) characterize subjective probabilities from observable choices among acts

(state-contingent payoffs). These models, however, are not rich enough to also identify un-

observed information. The reason is that information has instrumental value only when some

aspect of choice can be conditioned on it, which is not the case in the static domain of acts.

For example, in environments with potentially asymmetric information, the standard model

is not equipped to distinguish which side is better informed. Simultaneously identifying

beliefs and information thus requires us to enrich the choice domain, as we now describe.2

We consider an objective state space. Actions correspond to acts and preferences are

defined over sets (or menus) of acts. The interpretation is that the decision maker (henceforth

DM) initially chooses among menus and subsequently chooses an act from the menu. If the

ultimate choice of an act takes place in the future, then the DM may expect information to

arrive prior to this choice. Analyzing today’s preferences over future choice situations (menus

of acts rather than the acts themselves) allows us to capture the effect of the information the

DM expects to learn via his value for flexibility (having more future options available). The

preference relation over menus of acts is thus the only primitive of the model, leaving the

information structure that the DM faces, as well as his ultimate choice of an act, unmodeled.3

To see how our framework can address the question of subjective information acquisition,

suppose there are only two states of the world, s1 and s2, and consider the acts f, g, and h,

given by

s1 s2

f 1 0

g 0 1

h 3
4

3
4

Suppose the DM prefers committing to the constant act over either of the bets, that is,

{h} ≻ {f} ∼ {g}. Now consider the menu of acts {f, g, h}. If the DM thinks he might

receive a signal that reveals (or is highly indicative of) the true state before he has to choose

an act from the menu, then flexibility is valuable and {f, g, h} ≻ {h}. If, instead, the DM

knows for sure he will not receive such a signal, then {f, g, h} ∼ {h} . Similarly, if the agent

thinks he might not receive such a signal then {f, g, h} ≻ {f, g}, while if he knows for sure

that he will receive the signal, then {f, g, h} ∼ {f, g}. Thus, what the DM expects to know

at the time of choice from the menu is reflected in his preferences over menus of acts.

Section 2 outlines the most general model that captures subjective learning. Theorem

2In the body of the paper we will abstract from deriving the cardinal utility over outcomes and focus on
the identification of information and beliefs. We comment on this modeling choice in Remark 1, and supply
the most general model, in which all three components can be identified, in Appendix A.

3In particular, our approach does not require the analyst to collect data on state-contingent random
choice from menus.

3



1 derives a subjective-learning representation that can be interpreted as follows: the DM

behaves as if he has beliefs over the possible posterior distributions over the state space

that he might face at the time of choosing from the menu. For each posterior, he expects

to choose from the menu the act that maximizes the corresponding expected utility. The

model is parameterized by a probability measure on the collection of all possible posterior

distributions. This probability measure describes the DM’s subjective information structure

and is uniquely identified from choice behavior. The axioms that are equivalent to the exis-

tence of a subjective-learning representation are the familiar axioms of Preference relation,

vNM Continuity, Nontriviality, and an appropriate version of Independence, in addition to

Domination, which implies monotonicity in payoffs, and Set monotonicity, which captures

preference for flexibility.

Identification enables us to compare different decision makers in terms of their preferences

for flexibility. We say that DM1 has more preference for flexibility than DM2 if whenever

DM2 prefers to retain an option to choose rather than to commit to a particular action,

so does DM1. Theorem 2 states that DM1 has more preference for flexibility than DM2 if

and only if DM1’s distribution of posterior beliefs is a mean-preserving spread of DM2’s.

This result is analogous to Blackwell’s (1951, 1953) comparisons of experiments (in terms

of their information content) in a domain where probabilities are objective and comparisons

are made with respect to the accuracy of information structures. To rephrase our result in

the language of Blackwell, DM1 has more preference for flexibility than DM2 if and only if

DM2 would be weakly better off if he could rely on the information structure induced by the

subjective beliefs of DM1.

A subjective-learning representation does not allow the identification of information inde-

pendently of the induced changes in beliefs. The reason is that signals do not correspond to

events in the state space. Section 3 addresses this issue by studying the behavioral implica-

tions of a (subjective) partitional information structure on a given state space. A partition of

the state space is a canonical formalization of information that ensures that the state space

captures all the DM expects to know about the decision problem under consideration.4 This

formalization is empirically meaningful: an outside observer who knows the state of the

world will also know the information that the decision maker will receive. Theorem 3 derives

a partitional-learning representation that can be interpreted as follows: the DM has in mind

a partition of the state space and prior beliefs over the individual states. The partition

describes what he expects to learn before facing the choice of an alternative from the menu.

4For example, it is standard to model information as a partition of the state space in the literature on
games with incomplete information, that originated in the seminal contributions of Harsanyi (1967) and
Aumann (1976).
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The DM’s posterior beliefs conditional on learning an event in the partition are fully deter-

mined from the prior beliefs using Bayes’ law. For each event, the DM plans to choose an act

that maximizes the corresponding expected utility. The partition and the beliefs are endoge-

nous components of the model, which are uniquely identified from choice behavior. Given

the assumptions of Theorem 1, Theorem 3 requires only one additional axiom, Indifference

to state contingent commitment. Suppose the DM knows what information he will receive

contingent on the true state of the world. In this case, for any two acts f and g, he is sure

which of them he will prefer ex post, contingent on the true state. The DM should then be

indifferent between choosing one of the two acts after learning the deterministic signal, and

committing, for every state, to receive the payoff his certain choice would have generated in

that state. Indifference to state contingent commitment captures this indifference.

Individuals who disagree on their prior beliefs are not comparable in terms of their

preference for flexibility. Since the description of information as a partition of the state space

does not depend on a specific probability distribution, a partitional-learning representation

facilitates the behavioral comparisons of such individuals. In particular, partitions can be

partially ranked in terms of their fineness, a property which provides a natural measure for

the degree of information, independently of any prior beliefs. The behavior of two individuals

who expect to receive different information differs in their desire for perfect insurance against

the uncertainty inherent in choosing from any given menu, where by perfect insurance we

refer to an act that yields the maximal payoff in every state. We say that DM1 values

perfect insurance less than DM2 if whenever DM2 is indifferent between a certain menu and

the perfect insurance act, so is DM1. Roughly, Theorem 4 states that if the prior beliefs of the

two DMs have the same support (though otherwise need not be identical), then DM1 values

perfect insurance less than DM2 if and only if DM1 expects to receive more information than

DM2, in the sense that his partition is finer.

We then study an individual who anticipates gradual resolution of uncertainty over time.

In many applications, the process of information acquisition over time may affect the optimal

timing of decisions. For example, an investor may decide to bear the cost of delaying an

investment with positive net present value if more information is expected to be received

about the distribution of future cash flows. To model such behavior, we introduce the choice

domain of dated-menus of the form (F, t), where F is a menu and t is the time by which an

alternative from the menu must be chosen. Suppose that fixing t, DM’s preferences satisfy

all the postulates underlying the partitional-learning representation. Furthermore, suppose

that the DM prefers to delay his choice from any menu F , in the sense that (F, t) is weakly

preferred to (F, t′) if t > t′, and he is indifferent to the timing if F is a singleton (since

then the future choice is trivial). Under these assumptions, the DM has more preference
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for flexibility at time t than at t′, which means, by Corollary 1, that the partition at time

t must be finer than that at t′. Using this observation, we provide a learning by filtration

representation, which suggests that the DM behaves as if he has in mind a filtration indexed

by continuous time. Both the filtration, which is the timing of information arrival with the

sequence of partitions it induces, and the DM’s prior beliefs are uniquely determined from

choice behavior.

1.1 Example: insider trading

The investigation of potential insider trading is an example of a situation where the analyst

(here the regulatory authority) does not know a priori what information is available to the

suspect and wishes to elicit it.5 To illustrate how our approach might allow the authority to

infer (the anticipation of) insider trading, consider an employee in a given company, who is

offered a compensation package which involves the company’s stock. The real value of the

company depends on the objective state of the world, where a unit stock generates net gains

of vh and vl in states h and l respectively, with vh > vl. A unit stock of the company is

thus an act f that pays vs in state s ∈ {h, l} . A stock can be either restricted, so that the

employee cannot sell it for a fixed period of time, or unrestricted. Suppose there are three

periods. In period 0 the employee is granted a stock. A public announcement of the state

s ∈ {h, l} is scheduled to be given in period 2, after which payoffs are received. In period 1

restricted stock can not be sold; with respect to choice in that period, it is identified as the

singleton {f}. Unrestricted stock, on the other hand, can be traded at time 1. We can thus

identify the unrestricted stock as a menu {f, v} , where at time 1 the employee can choose

between holding the stock and selling it for its market value v ∈ (vl, vh), which reflects the

public valuation of stock f prior to the arrival of news (i.e., in periods 0 and 1).6

Consider now the suspected employee’s period 0 preferences between {f} and {f, v}. If

only relying on public news, the employee should expect with certainty to value f at v in

period 1 and, thus, be indifferent between {f} and {f, v}. In contrast, if he expects to

receive and take into account private information in period 1 (insider trading), then he will

value the unrestricted stock strictly more, that is, {f, v} ≻ {f}.7 In particular, the ranking

{f, v} ≻ {f} implies that the employee expects at least two private signals; one tells that h is

5Insider trading refers to the buying or selling of a public company’s stock or other securities by someone
who has access to material information about the company that is not yet publicly available.

6As part of the menu, v simply denotes the constant act that pays v in each stage.
7In reality, unrestricted stock may be more valuable then restricted stock even without private informa-

tion, for example because it can be sold in reaction to surprise (unscheduled) public-news in period 1. Taking
this into account, there is some cost c > 0 for which the market considers {f − c, v − c} and {f} to be of
equal value. In that case the anticipation of additional private information would lead the suspect to value
{f − c, v − c} more than {f}.

6



more likely (in which case he would like to keep f – and also buy more stock at market price)

and the other signal tells the opposite. This suggests that the regulatory authority might

be able to predict (the anticipation of) insider trading based on the employee’s aversion to

accept restricted stock as part of the compensation package.

If, in addition, the authority is able to elicit the insider’s subjective information structure,

then it can predict insider trading more precisely. For instance, if it is clear that the insider

expects to act upon learning the state perfectly in period 1 (an example of a partitional

information structure), then he will sell the stock he owns in l and buy more of the same

stock in h. In that case, upon observing the state in period 2, the authority can deduce

whether the insider sold or bought stock illegally even without having observed actual period

1 trade.

1.2 Related literature

Few papers have explored the idea of subjective learning. Dillenberger and Sadowski (2014)

study the relationship between subjective learning and an appropriate notion of dynamically

consistent behavior. They characterize the class of information structures that induce such

behavior as a generalization of a set partition, which does not require deterministic signals

(that is, the true state of the world may appear in more than one event). Dillenberger and

Sadowski also show that their model can be applied to study an individual who anticipates

gradual resolution of uncertainty over time, without extending the domain as we do in Sec-

tion 4. Takeoka (2007) uses a different approach to study subjective temporal resolution of

uncertainty. He analyzes choice between what one might term “compound menus” (menus

over menus etc.) Hyogo (2007) derives a representation that features beliefs over posteriors

on a richer domain, where the DM simultaneously chooses a menu of acts and takes an action

that might influence the (subjective) process of information arrival. Lu (2013) takes a ran-

dom choice approach to the problem of eliciting information from behavior. He establishes

an intimate link between our subjective learning representation and an information repre-

sentation of the (stochastic) ex post choice from menus. He also shows that our comparative

notion of more preference for flexibility corresponds to more ex post variability in random

choice.

More generally, our work is part of the preferences over menus literature initiated by

Kreps (1979). Most papers in this literature study uncertainty over future tastes, and not

over beliefs on an objective state space. Kreps (1979) studies preferences over menus of

deterministic alternatives. Dekel, Lipman, and Rustichini (2001) extend Kreps’ domain of

choice to menus of lotteries. Our proof of Theorem 1 relies on a sequence of geometric
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arguments that establish the connection between our domain and theirs. In the setting

of preferences over menus of lotteries, Ergin and Sarver (2010) provide an alternative to

Hyogo’s (2007) approach of modeling costly information acquisition. Recently, De Olivera,

Denti, Mihm, and Ozbek (2013) combine the framework of the present paper with Ergin and

Sarver’s idea of costly contemplation to give behavioral foundations to rational inattention.

2 A general model of subjective learning

Let S = {s1, ..., sk} be a finite state space. An act is a mapping f : S → [0, 1]. Let F be the

set of all acts. Let K (F) be the set of all non-empty compact subsets of F , endowed with the

Hausdorff metric. Capital letters denote sets, or menus, and small letters denote acts. For

example, a typical menu is F = {f, g, h, ...} ∈ K (F). Let ≿ be a binary relation over K (F).

The symmetric and asymmetric components of ≿ are denoted by ∼ and ≻, respectively. We

interpret payoffs in [0, 1] to be in utils; that is, we assume that the cardinal utility function

over outcomes is known and payoffs are stated in its units. An alternative interpretation is

that there are two monetary prizes x > y, and f (s) = ps (x) ∈ [0, 1] is the probability of

getting the greater prize in state s. For any number c ∈ [0, 1], we simply denote by c the

constant act that yields c in every state.

Remark 1 Our analysis can be easily extended to the case where, instead of [0, 1], the range

of acts is a more general vector space. In particular, it could be formulated in the Anscombe

and Aumann (1963) setting. Since our focus is on deriving the DM’s subjective information

structure, we abstract in the main text from deriving the utility function (which is a standard

exercise) by looking directly at utility acts instead of the corresponding Anscombe-Aumann

acts. Appendix A formally provides this extension and derives the utility function, thereby

establishing the mapping between Anscombe-Aumann acts and utility acts.

The interpretation of the domain is that a menu F is chosen ex-ante according to ≿.

This choice is made with the understanding that at the unmodeled ex-post stage, the agent

will choose an act from F in the face of uncertainty about the true state of the world. The

true state is revealed and payoffs are received in the terminal period. The ranking ≿ is

governed by the anticipated choice from the menu, which, in turn, depends on what the DM

expects to learn before making that choice. Subjective learning is captured in the following

definition of a utility function over menus.

Definition 1 The binary relation ≿ has a subjective-learning representation if there

is a probability measure p on ∆(S), the space of all probability measures on S, such that the
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function V : K (F) → R given by

V (F ) =
∫

∆(S)

max
f∈F

(∑
s∈Sf (s) π (s)

)
dp (π)

represents ≿.

A subjective-learning representation has the following interpretation: before choosing an

act from F , the DM can observe a signal, which allows him to update the prior probability

distribution over the states. Given the posterior probabilities π, the DM chooses an act

that maximizes his expected utility. Prior to observing the signal, his ex-ante expected

utility is the weighted average of these maximal expected utilities, where the weights are the

likelihood of receiving each signal. The probability distribution over posterior beliefs p is the

information structure.8 Figure 1 illustrates the timing of events and decisions.

Menu Choice: Choice from Menu:

Information:

Payoffs received

s ∈ S realizedπ ∈ ∆(S) realized

f ∈ FF ∈ K(F)

p ∈ ∆(∆(S))

Figure 1: Subjective Learning Timeline

It is evident from the description of the model that the information structure in a

subjective-learning representation is not given to us objectively. Instead, the probability

measure p should be derived from choice behavior. To do this, we impose Axioms 1-6 below

on ≿, and then show that they are necessary and sufficient for the existence of a subjective-

learning representation with uniquely identified information structure p.

2.1 Axioms and representation result

We impose six axioms on the relation ≿. The first three are standard, and play the same

role in this paper as they do in more familiar contexts.9

Axiom 1 (Preference relation) The relation ≿ is complete and transitive.

8Formally p ∈ ∆(∆(S)), the set of all Borel probability measures over ∆ (S) . Note that signals in a
subjective-learning representation are identified with the posterior beliefs in the support of p.

9We refer the reader to Dekel, Lipman, and Rustichini (2001) for a discussion of these axioms in the
context of preferences over menus of lotteries.
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Definition 2 Let αF +(1− α)G := {αf + (1− α) g : f ∈ F, g ∈ G}, where αf +(1− α) g

is the act that yields αf (s) + (1− α) g (s) in state s.

Axiom 2 (vNM Continuity) If F ≻ G ≻ H then there are α, β ∈ (0, 1), such that

αF + (1− α)H ≻ G ≻ βF + (1− β)H.

Axiom 3 (Nontriviality) There are F and G such that F ≻ G.

Axiom 4 (Independence) For all F, G, H, and α ∈ [0, 1],

F ≿ G ⇔ αF + (1− α)H ≿ αG+ (1− α)H.

In our context of choice between menus of utility acts, Axiom 4 is justified by the following

two steps: First, for any two menus F,H and α ∈ [0, 1], denote by α◦F+(1−α)◦H the lottery

which assigns F with probability α and H with probability (1−α). The vNM independence

axiom implies that for any α ∈ [0, 1], F is preferred to G if and only if α ◦F +(1−α) ◦H is

preferred to α ◦G+ (1− α) ◦H. Second, we argue that a DM who wants to obey the vNM

axioms when evaluating lotteries and acts, should be indifferent between α ◦F +(1−α) ◦H
and αF + (1− α)H. To see this, suppose the DM would choose f ∗ from F and h∗ from H.

Then, the realization of the lottery α ◦F + (1−α) ◦H together with a subsequent choice of

an alternative from either F or H implies that, from the ex-ante perspective and contingent

on state s, the DM faces the lottery α ◦ f ∗ (s) + (1− α) ◦ h∗ (s). Since f ∗ (s) and h∗ (s) are

utils, the expected utility of this lottery is simply αf ∗ (s)+ (1−α)h∗ (s). The corresponding

choice of αf ∗ + (1 − α)h∗ from αF + (1 − α)H also yields utility αf ∗ (s) + (1 − α)h∗ (s),

contingent on state s. Since α◦F +(1−α)◦H and αF +(1−α)H give the same consequence

from the ex-ante perspective, the DM should be indifferent between them.

The next axiom was first proposed in Kreps (1979). It captures preference for flexibility,

that is, bigger sets are weakly preferred.

Axiom 5 (Set monotonicity) If F ⊂ G then G ≿ F .

Axiom 5 is the observable indication of information in the model; the DM likes bigger

sets since more available options allow him to better adjust his choice to his updated beliefs.

The interpretation of f (·) as a vector of utils requires the following payoff-monotonicity

axiom.

Axiom 6 (Domination) If f (s) ≥ g (s) for all s ∈ S and f ∈ F , then F ∼ F ∪ {g}.

We now present our first representation theorem.
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Theorem 1 The relation ≿ satisfies Axioms 1–6 if and only if it has a subjective-learning

representation. Furthermore, the probability measure p is unique.

Proof. See Appendix B.1.

Dekel, Lipman, and Rustichini (2001) analyzes choice over menus of lotteries and provides

a representation that suggests uncertainty about the DM’s tastes (a relevant corrigendum is

Dekel, Lipman, Rustichini, and Sarver (2007)). Our proof of Theorem 1 relies on a sequence

of geometric arguments that establish the connection between our domain and theirs, as we

now explain.

According to Dekel, Lipman, and Rustichini’s representation,10 the value of a menu of

lotteries F is given by

V (F ) =
∫

u∈U
max
q∈F

(∑
z∈Zq (z)u (z)

)
dp (u) , (1)

where Z is a finite set of prizes, q is a lottery over Z, U is the set of normalized Bernoulli

functions u over Z, and p is a probability measure over U with support σ (p). The key

observation in our proof is that the set of acts on S with outcomes in [0, 1] is isomorphic to

the set of lotteries over |S|+1 pure outcomes, where each state s ∈ S is given the weight f(s)
|S|

and the additional state s|S|+1 is given the weight 1−
∑

s∈S
f(s)
|S| . Based on this observation,

the representation in (1) is translated in our setting to a representation of the form

V (F ) =
1

|S|
∫

u∈U
max
f∈F

(∑
s∈Sf (s)u (s) +

(
|S| −

∑
s∈Sf (s)

)
u
(
s|S|+1

))
dp (u) .

We would like to interpret each u ∈ σ (p) as a probability measure over S. First, to be

consistent with our notation, let π (s) = u (s). Using Axiom 6, we show that π (s) ≥ π
(
s|S|+1

)
for all s ∈ S and for all π ∈ σ (p), which means that we can normalize π

(
s|S|+1

)
= 0 for all

π ∈ σ (p). The representation in Theorem 1 is then obtained by renormalizing each π to be

a probability measure over S, simultaneously adjusting p to keep the relative weights across

states intact.

The parameter p is uniquely identified in the representation above, because p and π are

required to be probability measures. Such natural normalization does not exist in Dekel

et al. (2001, 2007) and, therefore, they can only jointly identify the parameters in their

representation. Unique identification underlies the behavioral comparison in Section 2.2.

10We consistently refer to the version of their representation that assumes Set Monotonicity.
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2.2 More preference for flexibility and the theorem of Blackwell

Blackwell’s (1951, 1953) theorem is a fundamental result in information theory. It establishes

an equivalence between (i) a statistical condition under which information structure p is

considered more informative than another information structure, q; and (ii) the idea that,

independently of the underlying decision problem, any expected utility maximizer would

prefer using p rather than q. As we pointed out above, the information structure in our

paper is not objectively given but is derived from choice over menus of acts. Our goal in

this section is to find the behavioral comparison (in terms of preferences over menus) which

corresponds to two derived information structures that can be compared in terms of their

informativeness. In particular, we use Theorem 1 to connect a notion of preference for

flexibility with the DM’s subjective learning. In what follows, when we discuss a particular

individual i, we denote by ≿i his preferences and index by superscript i any component of

his utility representation.

We first suggest a comparative notion of more preference for flexibility.

Definition 3 DM1 has more preference for flexibility than DM2 if for all f ∈ F and for

all G ∈ K (F),

G ≿2 {f} =⇒ G ≿1 {f}.

Expressed in words, DM1 has more preference for flexibility than DM2 if whenever DM2

prefers to retain an option to choose rather than to commit to a particular action, so does

DM1.11,12

The next claim shows that two DMs who are comparable in terms of their preference for

flexibility must agree on the ranking of singletons.

Claim 1 Suppose DM1 has more preference for flexibility than DM2. Then {f} ≿1 {g} if

and only if {f} ≿2 {g} .

Proof. See Appendix B.2

We now compare subjective information structures in analogy to the notion of better

information proposed by Blackwell in the context of objective information. Definition 4

11Definition 3 is analogous to the notion of “more aversion to commitment” as appears in Higashi, Hyogo,
and Takeoka (2009, Definition 4.4, p. 1031) in the context of preferences over menus of lotteries.

12Definition 3 does not imply greater willingness to pay to add options to any given menu. In fact, defining
more preference for flexibility this way results in an empty relation. To see this, suppose that ≿1 ̸=≿2 and,
for simplicity, that the supports of p1 and p2 are finite. Using Theorem 1, there is a posterior belief π, such
that p1 (π) > p2 (π). It is easy to construct a menu that generates payoff k − δ under belief π and payoff
k under any other belief. DM1 then would be willing to pay more than DM2 to add an act that yields
payoff k under π, hence DM2 would not have more preference for flexibility than DM1. But by a symmetric
argument, DM1 would also not have more preference for flexibility than DM2.
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below says that an information structure is better than another one if and only if both

structures induce the same prior probability distribution, and all posterior probabilities of

the latter are a convex combination of the posterior probabilities of the former.

For any p ∈ ∆(∆(S)), let σ(p) ⊂ ∆(S) denote the support of p.

Definition 4 DM1 expects to be better informed than DM2 if and only if DM1’s distribution

of posterior beliefs is a mean-preserving spread of DM2’s (in the space of probability distri-

butions). That is, there exists a nonnegative function k : σ (p1) × σ (p2) → R+, satisfying∫
σ(p1)

k (π, π′) dπ = 1 for all π′ ∈ σ (p2), such that

1. p1 (π) =
∫

σ(p2)

k (π, π′) dp2 (π′) for all π ∈ σ (p1); and

2. π′ (s) =
∫

σ(p1)

π (s) k (π, π′) dπ for all π′ ∈ σ (p2) and s ∈ S.

Note that conditions (1) and (2) imply that
∫

σ(p1)

π (s) dp1 (π) =
∫

σ(p2)

π (s) dp2 (π) for all

s ∈ S, that is, the prior is the same under both p1 and p2.

Theorem 2 If DM1 and DM2 have preferences that can be represented as in Theorem 1,

then DM1 has more preference for flexibility than DM2 if and only if DM1 expects to be

better informed than DM2.13

Proof. Blackwell (1953) establishes that DM1’s distribution of posterior beliefs is a mean-

preserving spread of DM2’s if and only if V 1 (G) ≥ V 2 (G) for any G ∈ K (F) (see Kihlstrom

(1984) or Gollier (2001) for an illustrative proof and discussion). At the same time, V 1 ({f}) =
V 2 ({f}) for any f ∈ F . Hence, V 2 (G) ≥ V 2 ({f}) implies V 1 (G) ≥ V 1 ({f}). Conversely,
suppose V 2 (G) > V 1 (G) for some G ∈ K (F) . Then continuity implies that there exists

f ∈ F with V 2 (G) > V 2 ({f}) = V 1 ({f}) > V 1 (G) , which means that DM1 does not have

more preference for flexibility than DM2.

3 Partitional learning

We now study a more parsimonious model of learning, in which signals are deterministic,

that is, they correspond to events that partition the state space. This model describes in-

formation independently of the (induced) changes in beliefs. Section 3.1 investigates the

13The characterization of preference for flexibility via Blackwell’s comparison of information structures is
specific to our context, where this preference arises due to uncertainty about learning. Krishna and Sadowski
(2014) provide an analogous result in a context where preference for flexibility arises due to uncertain tastes.
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behavioral implications of this type of learning and identifies one axiom which is both neces-

sary and sufficient to restrict the information structure in a subjective-learning representation

to produce deterministic signals. A useful application of the model is the comparison of the

behavior of two DMs who learn differently without requiring them to hold the same prior

beliefs, as analyzed in Section 3.2.

3.1 Partitional-learning representation

Suppose the DM knows what information he will receive contingent on the (unknown) true

state of the world. In that case, he should also know what his ex post preferences among

acts will be, contingent on the true state. He should, therefore, be indifferent between the

ability to choose between f and g after learning the signal and committing, for every state, to

receive the payoff his certain choice would have generated in that state. This is the content

of Axiom 7 below.

For any event I ∈ 2S and acts f, g ∈ F , define a composite act fIg by

fIg(s) :=

{
f(s) if s ∈ I

g(s) otherwise.

Axiom 7 (Indifference to state contingent commitment) For all f, g ∈ F , there ex-

ists I ∈ 2S such that {fIg} ∼ {f, g}.

Axiom 7 requires that for any two acts f and g there is an event I, such that the DM is

indifferent between committing to the composite act fIg ex ante, and choosing one of the

two acts ex post.

We now introduce the notion of a partitional-learning representation.

Definition 5 The relation ≿ admits a partitional-learning representation, (µ,P), if

(i) µ is a probability measure on S; (ii) P is a partition of σ (µ), the support of µ; and (iii)

the function

V (F ) =
∑

I∈Pmax
f∈F

(∑
s∈If (s)µ (s)

)
represents ≿.

A partitional-learning representation has the following interpretation: contingent on the

true state of the world being s, the DM is sure to learn a specific event that includes s.

Upon learning an event, the DM calculates his posterior beliefs and chooses the available act

that maximizes the corresponding expected utility. The posterior is calculated by excluding

all states that are not in the realized event, and applying Bayes’ law with respect to the
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remaining states. To see this, note that a partitional-learning representation can be rewritten

as

V (F ) =
∑

I∈P max
f∈F

(∑
s∈If(s)µ(s|I)

)
µ(I),

where µ(·|I) is the Bayesian update of µ on event I.

It is not difficult to see that Axiom 7 is necessary for a partitional-learning representation

(µ,P). For any s ∈ σ (µ), let Is ∈ P be the unique element of the partition that includes

state s. Then {fIg} ∼ {f, g} for any two acts f, g ∈ F and event

I =
{
s ∈ S

∣∣∣∑
s′∈Is

(f (s′)− g (s′))µ (s′) ≥ 0
}
.

For example, let S = {s1, s2} and f = (1, 0) , and g = (0.5, 0.5).14 Let (µ,P) be a

partitional-learning representation with µ (s1) = 0.5 and P = {{s1} , {s2}}. Then V ({f, g}) =
V ({(1, 0.5)}) = 0.75, that is, {f {s1} g} ∼ {f, g}.

It is also easy to find a general representation as in Theorem 1 that violates Axiom 7.

Consider the same S, f , and g as above, and let σ (p) = {π = (0.9, 0.1) , π′ = (0.1, 0.9)} with

p (π′) = 0.5. Then V ({f, g}) = 0.5×0.9+0.5×0.5 = 0.7, whereas V ({f}) = V ({g}) = 0.5,

V ({f {s2} g}) = 0.25, and V ({f {s1} g}) = 0.75. This example demonstrates that Axiom

7 is easily testable; violations of the axiom can always be obtained in a finite number of

observed choice situations.

Our next result establishes that such a violation of Axiom 7 can always be produced

unless signals are deterministic. That is, adding Axiom 7 to the axioms in Theorem 1 is not

only necessary, but also sufficient for a partitional–learning representation.

Theorem 3 The relation ≿ satisfies Axioms 1–7 if and only if it has a partitional-learning

representation (µ,P). Furthermore, the pair (µ,P) is unique.

Proof. See Appendix B.3.

Theorem 3 states the conditions under which information can be uniquely identified

from choice behavior as a partition of the objective state space. This partition, which is

an endogenous component of the model, represents what the DM expects to know before a

choice from the menu has to be made. As we point out in the introduction, a partition of

the state space is a canonical formalization of information that describes signals as events in

the state space.

Axiom 7 is the behavioral criterion for determining whether the analyst can indeed confine

his attention to partitional learning. It implies that the objective state space S is large

14For notational convenience, we denote here an act by an ordered pair of state contingent payoffs, x =
(x1, x2), where xi is the payoff received in state i.
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enough, in the sense that the DM’s subjective uncertainty is measurable in S. That is, the

axiom implies that the state space captures all the DM expects to know about the decision

problem under consideration.

There are several advantages of the partitional-learning representation over the more

general subjective-learning representation. First, as we show in Section 3.2, the partitional-

learning representation facilitates comparing the behavior of individuals who learn differently,

independently of their potentially different prior beliefs. Second, the partitional-learning

representation can be used to forecast the DM’s ex-post behavior, or choice from menus.

Suppose the analyst is willing to assume that the DM’s choice from a menu is governed

by the partitional-learning representation of Theorem 3. At the same time, however, the

analyst may disagree with the DM’s prior over the objective state space, as elicited from the

DM’s choice over menus. In that case, while behavior conditional on receiving each signal

is fully determined by the DM’s prior (converted into a posterior using Bayes’ law), the

analyst can evaluate the likelihood of each signal based on his own prior when forecasting

the DM’s choice frequencies. In particular, if the analyst has a degenerate prior at some

state of the world (he knows the true state) then he can deduce the event the DM will learn,

and consequently can predict the DM’s choice from a menu with certainty. Such prediction

is impossible if the DM does not face deterministic signals.

A third advantage is that partitional-learning can be used to analyze the welfare effects

of a change in the informational environment. Suppose, for example, that a social planner

considers a policy that would require two individuals to share their information structure.

The value of such a policy is unambiguous if both individuals learn via partition, in which

case the refined information structure relevant for each of them is simply the ‘meet’ of the

two individual partitions. If, on the other hand, subjective signals are not deterministic,

then assessing the value of the policy entails knowing the correlation between the individual

signals; this information can not be elicited solely from an individual’s choice behavior.

Lastly, the dimensionality of the parameters that describe a partitional-learning represen-

tation is significantly lower than that of the parameters used in a more general subjective-

learning representation, leading to a more tractable functional form. In particular, the

measure µ in the specification of a partitional-learning representation is over the finite set

S, whereas the measure p that specifies a subjective-learning representation is on the multi-

dimensional vector space ∆(S).

We now provide a proof sketch for the sufficiency part of Theorem 3.15 Note first that

any partitional-learning representation (µ,P) can be written as a subjective-learning repre-

15For notational simplicity, for f ∈ F and p ∈ ∆(S) we denote
∑

s∈S f(s)p(s) by f · p. We will sometime
use this notation also in the appendices.
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sentation, where the information structure p has the property that

σ (π) ∩ σ (π′) = ∅ for all distinct π, π′ ∈ σ (p).

In this case we say that p is partitional. First note that for π ̸= π′, we can find two acts

f, g ≫ 0 such that (i) f · π > g · π and f · π′ < g · π′, (ii) f(s) ̸= g(s) for any s ∈ S, and (iii)

V ({fIg}) ̸= V ({fI ′g}) for all I, I ′ ∈ 2σ(µ).

Now suppose that Axiom 7 holds but p is not partitional. Take any s∗ ∈ σ(π)∩σ(π′) ̸= ∅.
For sufficiently small ε > 0, define an act gε by reducing the payoffs of g in s∗ by ε (leaving

the other payoffs of g intact), such that f · π′ < gε · π′. Then gε is chosen from the menu

{f, gε} under posterior π′ while f is chosen under π, and so V ({f, g}) > V ({f, gε}) >

V ({f, g})− ε
∫
σ(p)

π (s) dp (π). By continuity of V , for ε > 0 small enough {fI ′gε} ≁ {f, gε}
for I ′ ̸= I. There are two cases to consider. First, if s∗ ∈ I, then fIgε = fIg and hence

{fIgε} ≻ {f, gε}. Second, if s∗ /∈ I, then

V (fIgε) = V ({fIg})− ε
∫

σ(p)

π (s) dp (π) = V ({f, g})− ε
∫

σ(p)

π (s) dp (π) < V ({f, gε}) .

Hence, there is no event I ′ ∈ 2S with {fI ′gε} ∼ {f, gε}, contradicting Axiom 7.

We conclude this section with a brief remark on the issue of eliciting the preference

parameters (µ,P) in a partitional-learning representation. We focus on the elicitation of P
since that of µ is standard. To determine whether states s, s′ ∈ σ (µ) are in the same cell

of P , ask the DM to compare {c {s, s′} 0} and {c{s}0, c{s′}0} for some c > 0. If the DM

is indifferent, which means that he is not averse to betting on either state s or s′, then it

must be that the two states are not in the same cell of P , that is, Is ∩ Is′ = ∅. And if

{c {s, s′} 0} ≻ {c{s}0, c{s′}0}, then the two states are in the same cell, that is, Is = Is′ .

Repeating this for any pair s, s′ ∈ σ (µ), one can elicit P in at most
(|S|

2

)
steps.

3.2 Valuing insurance acts and comparisons of partitions

In the context of partitional learning, a natural measure of the amount of information that

a DM expects to receive is the fineness of his partition, independently of any prior beliefs.

Definition 6 The partition P is finer than partition Q if for every I ∈ P there is I ′ ∈ Q
such that I ⊆ I ′.

Note that a mean-preserving spread of a partitional information structure is equivalent

to having a finer partition with the same µ. Therefore, the following result is an immediate

corollary of Theorem 2.
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Corollary 1 Suppose ≿1 and ≿2 admit partitional-learning representations (µ1,P1) and

(µ2,P2), respectively. Then DM1 has more preference for flexibility than DM2 (as in Defi-

nition 3), if and only if µ1 = µ2 and P1 is finer than P2.

Individuals who disagree on their prior beliefs are not comparable in terms of their

preference for flexibility. We now compare the behavior of individuals whose partitions are

ranked by fineness in terms of their desire for perfect insurance against the uncertainty

inherent in choosing from any given menu, where by perfect insurance we refer to the act

that yields the maximal payoff 1 in every state.

Definition 7 DM1 values perfect insurance less than DM2 if for all G ∈ K(F),

G ≿2 {1} =⇒ G ≿1 {1}.

Note that valuing perfect insurance less is a weaker notion than having more preference

for flexibility since it only compares menus to a particular singleton, {1}, rather than to all

singleton menus.

The act 1 provides perfect insurance since it dominates any other act in F (in fact, {1} is

a maximal element of ≿). Thus, G is never strictly preferred to {1}. Definition 7, therefore,

requires that if DM2 is indifferent between having G and committing to {1}, so is DM1.

Before stating the main result of this section, we have the following definition.

Definition 8 An event I ⊂ S is a null event for ≿ if {f} ∼ {g} for all f, g ∈ F such that

f(s) = g(s) for all s ∈ S \ I. We say that ≿1 has the same null events as ≿2, when I ⊂ S

is a null event for ≿1 if and only if it is a null event for ≿2

Claim 2 If ≿1 and ≿2 admit partitional-learning representations (µ1,P1) and (µ2,P2) re-

spectively, then ≿1 has the same null events as ≿2 if and only if σ(µ1) = σ(µ2).

Proof. If s̄ /∈ σ(µ1), V 1({f}) = V 1({g}) for all f, g such that f(s) = g(s) for all s ̸= s̄.

Since ≿1 has the same null events as ≿2, {s̄} is also a null-event for ≿2. Thus, s̄ /∈ σ(µ2).

Since the converse is also true, we have σ(µ1) = σ(µ2).

We are now ready to state the main theorem of this section.

Theorem 4 Suppose ≿1 and ≿2 admit partitional-learning representations (µ1,P1) and

(µ2,P2), respectively. Assume that ≿1 has the same null events as ≿2. Then, the following

two statements are equivalent:

1. DM1 values perfect insurance less than DM2.
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2. P1 is finer than P2.

Proof. See Appendix B.4.

Theorem 4 compares the behavior of two individuals who expect to learn differently,

without requiring that they share the same prior beliefs; instead, the only requirement is

that their prior beliefs have the same support. Put differently, in the context of partitional

learning, weakening the notion of more preference for flexibility to less value for perfect

insurance corresponds precisely to allowing prior beliefs to differ in all but their support.

For example, DM1 might consider himself a better experimenter than DM2, in the sense of

expecting a finer partition, even though DM2’s prior is sharper.

Remark 2 In Appendix B.4 we show that for a given menu G, one could substitute 1 in

Definition 7 with any act f such that f ≥ g for any g ∈ G without otherwise changing

Theorem 4. Such an act f provides perfect insurance against the uncertainty in choosing

from G, but does not necessarily provide perfect hedging against the realization of the state

of the world.

We conclude by connecting the comparisons in this section with the elicitation procedure

of the parameters (µ,P) outlined at the end of Section 3.1. For any c > 0, we say that DM1

is less averse to placing binary bets than DM2 if for all s, s′ ∈ S,

{c{s}0, c{s′}0} ≿2 {c{s, s′}0} =⇒ {c{s}0, c{s′}0} ≿1 {c{s, s′}0}.

It is easy to verify that DM1 values perfect insurance less than DM2 if and only if

he is less averse to placing binary bets (Appendix B.4). Since c{s, s′}0 dominates both

c{s}0 and c{s′}0, the ranking {c{s}0, c{s′}0} ≿2 {c{s, s′}0} implies that {c{s}0, c{s′}0} ∼2

{c{s, s′}0} . As we previously mentioned, the latter indifference implies that DM2 anticipates

to be able to tell s and s′ apart. Thus, for any two states s and s′, if DM2 anticipates an

information arrival separating s and s′, so does DM1. This is obviously equivalent to the

requirement that P1 is finer than P2.

4 Subjective gradual resolution of uncertainty

In order to model a DM who expects to learn gradually over time, we now introduce the

domain of dated-menus, where the DM can choose not only among menus but also the

future time by which he will make his choice of an act from the menu. Formally, consider

the domain K (F) × [0, 1], where a typical element (F, t) represents a menu and a time by
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which an alternative from the menu must be chosen. As a concrete example, consider an

investor who should choose not only whether or not, but also when to invest, in anticipation

of uncertain future profits. Delaying the investment may be costly, but it may have an option

value; equipped with more information, the investor can decide to refrain from investing if

he learns that profits are likely to be too low. If we denote by ct the cost of investment at

time t and by xs the profits if state s realized, then the pair (It, t) corresponds to the date t

option (It) to either invest, which pays xs − ct in state s, or not to invest, which pays 0 in

every state.

Let ≿∗ be a preference relation over K (F)× [0, 1]. For each t ∈ [0, 1], define the induced

binary relation ≿∗
t by G ≿∗

t F ⇔ (G, t) ≿∗ (F, t). Clearly ≿∗
t is a preference relation (it

satisfies Axiom 1). We assume that each ≿∗
t also satisfies Axioms 2–6 and hence admits a

subjective-learning representation, that is,

Vt (F ) =
∫

∆(S)

max
f∈F

(∑
s∈Sf (s) π (s)

)
dpt (π)

represents ≿∗
t , and pt (·) is unique.

For each F ∈ K (F), define the induced binary relation ≿∗
F by t ≿∗

F t′ ⇔ (F, t) ≿∗ (F, t′).

Again, ≿∗
F satisfies Axiom 1. We impose on ≿∗

F the following additional axioms:

Axiom 8 (Preference for choosing late) For all t, t′ ∈ [0, 1] and F ∈ K (F),

t ≥ t′ ⇒ t ≿∗
F t′.

If the DM expects uncertainty to resolve over time, then waiting enables him to make a

more informed choice from the menu. The next axiom rules out intrinsic preference for the

timing of choice, independently of the instrumental value of information.

Axiom 9 (Singleton indifference to timing) For all t, t′ ∈ [0, 1] and f ∈ F ,

t ∼∗
{f} t′.

Since the singleton menu {f} does not leave the DM any flexibility to adjust his choice

to new information, the time component should play no role in its evaluation.

Definition 9 The collection of measures (pt)t∈[0,1] is a gradual-learning representation

if the function V ∗ given by

V ∗ (F, t) =
∫

∆(S)

max
f∈F

(∑
s∈Sf (s)π (s)

)
dpt (π)
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represents ≿∗, and pt is a mean preserving spread of pt′, whenever t ≥ t′.

Theorem 5 Let ≿∗ be a preference relation over F× [0, 1]. The following two statements

are equivalent:

(i) For each t ∈ [0, 1], the relation ≿∗
t satisfies Axioms 2–6, and for each F ∈ K (F), the

relation ≿∗
F satisfies Axiom 8 and Axiom 9.

(ii) The relation ≿∗ has a gradual-learning representation. Furthermore, the collection

(pt)t∈[0,1] is unique.

Proof. See Appendix B.5.

The key idea behind the proof of Theorem 5 is the observation that Axioms 8 and 9

imply that ≿∗
t has more preference for flexibility than ≿∗

t′ whenever t > t′. The result then

follows by applying Theorem 2.

A DM who expects to learn gradually over time may face an intertemporal trade-off (as in

the example in the beginning of this section). If he anticipates late resolution of uncertainty,

he would like to postpone his decision until the uncertainty is resolved. But waiting might

be costly, in the sense that the set of available options at that later time will be inferior to

the one available earlier. Theorem 5 suggests a way to resolve this intertemporal trade-off; it

pins down how the DM’s knowledge will be improved through time and how this improved

knowledge affects the values of different choice problems (menus).

Theorem 5 can be readily specialized to the case where for each t ∈ [0, 1], ≿∗
t satisfies

Axioms 2–7 and hence admits a partitional-learning representation (as in Section 3). In that

case, it captures a DM who has in mind a filtration.

Definition 10 The pair
(
µ, {Pt}t∈[0,1]

)
is a learning by filtration representation if (i)

µ is a probability measure on S; (ii) {Pt}t∈[0,1] is a filtration on σ (µ) indexed by t ∈ [0, 1];16

and

V ∗ (F, t) =
∑

I∈Pt
max
f∈F

(∑
s∈If (s)µ (s)

)
represents ≿∗.

Corollary 2 Let ≿∗ be a preference relation over F× [0, 1]. The following two statements

are equivalent:

(i) For each t ∈ [0, 1], the relation ≿∗
t satisfies Axioms 2–7, and for each F ∈ K (F), the

relation ≿∗
F satisfies Axiom 8 and Axiom 9.

(ii) The relation ≿ has a learning by filtration representation. Furthermore, the pair(
µ, {Pt}t∈[0,1]

)
is unique.

16Slightly abusing notation, we identify a filtration with a right-continuous and nondecreasing (with respect
to set inclusion) function from [0, 1] to 2σ(µ).
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Proof. It is sufficient to observe that under the additional Axiom 7, pt is a mean preserving

spread of pt′ if and only if Pt is finer than Pt′ and µt = µt′ .

Under the assumptions underlying the learning by filtration representation, an immediate

implication of Corollary 1 is that DM1 has more preference for flexibility than DM2 for all t,

if and only if µ1 = µ2 and he has a finer filtration, that is, the partition P1
t is finer than P2

t

for all t. Intuitively, DM1 has more preference for flexibility than DM2 for all t if and only

if he expects to learn earlier. Reconsider the investment example outlined in the beginning

of the section, where a menu (It, t) corresponds to the date t option to either invest, which

pays xs − ct in state s, or not to invest, which pays 0 in every state. In particular, the menu

(I0, 0) corresponds to the option of investing immediately, before any new information can

arrive. Suppose that (i) c0 = 0 and that t > t′ implies ct > ct′ ; (ii) both DMs would invest

given their initial knowledge, that is, they are indifferent between (I0, 0) and the act that

pays xs in state s; and (iii) the decision to invest can be delayed by some arbitrary but fixed

amount of time t. In this case, if DM1 learns earlier than DM2, then if DM1 does not value

the option to delay the decision, neither does DM2.

Appendices

A Anscombe and Aumann setting

Since our focus is on deriving the DM’s subjective information structure, we abstract in the

body of the paper from deriving the utility function by looking directly at utility acts. In

this appendix, we show that our analysis can be easily extended to the case where the range

of acts is the set of lotteries, known as the Anscombe and Aumann (1963) setting.

Let S be a finite state space, and X be a compact metric space. The set of all Borel

probability measures, called lotteries, on X is denoted by ∆(X), which is endowed with the

weak convergence topology. An Anscombe-Aumann act (AA-act) is a function f : S →
∆(X). Let F∗ be the set of all AA-acts. We consider preference ≿ over the set K(F∗) of

all menus of AA-acts. A mixture operation between two menus is defined by the mixture of

two AA-acts as usual.

Axioms 1, 2, 4, and 5 can be directly translated into the current setting. To reformulate

Axiom 6, for all f, g ∈ F∗, we say that f dominates g if {f(s)} ≿ {g(s)} for all s ∈ S. That

is, a dominant act f gives the DM a better lottery in terms of commitment ranking in every

state of the world. The following is an analogue of Axiom 6:

Axiom 10 (Domination*) If f dominates g and f ∈ F , then F ∼ F ∪ {g}.
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Since a dominated act always gives less utilities no matter what information arrives in

the future, it is never chosen over a dominant act. Therefore, the DM does not care about

adding a dominated act into a menu, as described in the axiom.

The appropriate version of Axiom 3 is

Axiom 11 (Nontriviality*) there exist lotteries ℓ, ℓ′ ∈ ∆(X) with {ℓ} ≻ {ℓ′}.

Now suppose that preference ≿ over K(F∗) satisfies Axioms 1, 2, 4, 5, 10, and 11. By

Axioms 1, 2, 11, and 4, there exists a non-constant mixture linear function u : ∆(X) → [0, 1]

representing the commitment preference over ∆(X). By using this utility function as a

measuring rod, for any f ∈ F∗, we can define the corresponding utility act u(f) : S → [0, 1]

by u(f)(s) := u(f(s)) for all s. Furthermore, for all F ∈ K(F∗), define the corresponding

menu in K(F) by Fu := {u(f) ∈ F | f ∈ F}. The induced preference over K(F) is defined

as Fu ≿ Gu if and only if F ≿ G.

The following proposition states that the Anscombe-Aumann setting can be reduced to

our setting of utility acts. A proof is omitted.

Proposition 1 If Preference ≿ over K(F∗) satisfies Axioms 1, 2, 4, 5, 10, and 11, then

the induced preference over K(F) satisfies Axioms 1–6.

In order to conduct interpersonal comparisons about information structures, it suffices

to assume that two individuals ≿i, i = 1, 2, have the same risk preference, that is, for all

ℓ, ℓ′ ∈ ∆(X), {ℓ} ≿1 {ℓ′} if and only if {ℓ} ≿2 {ℓ′}. Then, without loss of generality, we can
assume that their risk preferences are represented by the same expected utility function u

over ∆(X), and adopt the same interpersonal comparisons as in the previous sections.

B Proofs

B.1 Proof of Theorem 1

It is easily verified that any binary relation ≿ with a subjective-learning representation

satisfies the axioms. We proceed to show the sufficiency of the axioms.

We can identify F with the set of all k−dimensional vectors, where each entry is in [0, 1].

For reasons that will become clear below, we now introduce an artificial state, sk+1. Let

F ′ :=
{
f ′ ∈ [0, 1]k × [0, k]

∣∣∣∑k+1
i=1 f

′ (si) = k
}
.

Note that the k+ 1 component in f ′ equals k−
∑k

i=1f
′ (si). For f

′ ∈ F ′, denote by f ′k ∈ F
the vector that agrees with the first k components of f ′. Since F and F ′ are isomorphic,
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we can look at a preference relation on K (F ′), ≿∗, defined by: F ′ ≿∗ G′ ⇔ F ≿ G, where

F :=
{
f ∈ F

∣∣f = f ′k for some f ′ ∈ F ′} and analogously for G.

Claim 3 The relation ≿∗ satisfies the independence axiom.

Proof. Using the definition of ≿∗ and Axiom 4, we have, for all F ′, G′, and H ′ in K (F ′)

and for all α ∈ [0, 1],

F ′ ≿∗ G
′ ⇔ F ≿ G ⇔ αF + (1− α)H ≿ αG+ (1− α)H ⇔

(αF + (1− α)H)′ ≿∗ (αG+ (1− α)H)′ ⇔ αF ′ + (1− α)H ′ ≿∗ αG
′ + (1− α)H ′.

Let

F ′′ :=
{
f ′ ∈ [0, k]k+1

∣∣∣∑k+1
i=1 f

′ (si) = k
}
.

Let F k+1 :=
{(

k
k+1

, ..., k
k+1

)}
∈ K (F ′). Observe that for F ′′ ∈ F ′′ and ε < 1

k2
, εF ′′ +

(1− ε)F k+1 ∈ K (F ′). Define ≿∗∗ on K (F ′′) by F ′′ ≿∗∗ G′′ ⇔ εF ′′ + (1− ε)F k+1 ≿∗

εG′′ + (1− ε)F k+1 for all ε < 1
k2
.

Claim 4 The relation ≿∗∗ is the unique extension of ≿∗ to K (F ′′) that satisfies the inde-

pendence axiom.

Proof. Note that the (k + 1)-dimensional vector
(

k
k+1

, ..., k
k+1

)
∈ intF ′ ⊂ F ′′, hence F k+1 ⊂

intF ′ ⊂ F ′′. We now show that ≿∗∗ satisfies independence. For any F ′′, G′′, H ′′ ∈ K (F ′′)

and α ∈ [0, 1],

F ′′ ≿∗∗ G
′′ ⇔ εF ′′ + (1− ε)F k+1 ≿∗ εG

′′ + (1− ε)F k+1 ⇔

α
(
εF ′′ + (1− ε)F k+1

)
+ (1− α)

(
εH ′′ + (1− ε)F k+1

)
= ε (αF ′′ + (1− α)H ′′) + (1− ε)F k+1 ≿∗

α
(
εG′′ + (1− ε)F k+1

)
+ (1− α)

(
εH ′′ + (1− ε)F k+1

)
= ε (αG′′ + (1− α)H ′′) + (1− ε)F k+1 ⇔ αF ′′ + (1− α)H ′′ ≿∗∗ αG

′′ + (1− α)H ′′.

The first and third ⇔ is by the definition of ≿∗∗. The second ⇔ is by Claim 3.17 This
17The (=) sign in the third and in fifth lines are due to the fact that F k+1 is a singleton menu. For a

singleton menu {f} and α ∈ (0, 1) ,
α {f}+ (1− α) {f} = {f}

while, for example,

α {f, g}+ (1− α) {f, g} = {f, g, αf + (1− α) g, αg + (1− α) f} ,

is not generally equal to {f, g} .
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argument shows that a linear extension exists. To show uniqueness, let ≿̂ be any linear

extension over K (F ′′) of ≿. By independence, F ′′ ≿̂ G′′ ⇔ εF ′′ + (1− ε)F k+1 ≿̂ εG′′ +

(1− ε)F k+1. Since ≿̂ extends ≿∗, they must agree on K (F ′). Therefore,

εF ′′ + (1− ε)F k+1 ≿̂ εG′′ + (1− ε)F k+1 ⇔ εF ′′ + (1− ε)F k+1 ≿∗ εG
′′ + (1− ε)F k+1.

By combining the two equivalences above, we conclude that defining ≿̂ by F ′′ ≿̂ G′′ ⇔
εF ′′ + (1− ε)F k+1 ≿∗ εG

′′ + (1− ε)F k+1 is the only admissible extension of ≿∗.

The domain K (F ′′) with the Hausdorff metric is formally equivalent to that of Dekel,

Lipman, Rustichini, and Sarver (2007, henceforth DLRS) with k + 1 prizes. (The unit

simplex is obtained by rescaling all elements of F ′′ by 1/k, that is, by redefining F ′′ as{
f ′ ∈ [0, 1]k+1 :

∑k+1
i=1 f

′ (si) = 1
}
.) Applying Theorem 2 in DLRS,18 one obtains the follow-

ing representation of ≿∗∗:

V̂ (F ′′) =
∫

M(S)

max
f ′′∈F ′′

(∑
s∈S∪{sk+1}f

′′ (s) π̂ (s)
)
dp̂ (π̂) ,

where M (S) :=
{
π̂
∣∣∣∑s∈S∪{sk+1}π̂ (s) = 0 and

∑
s∈S∪{sk+1} (π̂ (s))2 = 1

}
. Given the nor-

malization of π̂ ∈ M (S), p̂ (·) is a unique probability measure. Note that V̂ also represents

≿∗ when restricted to its domain, K (F ′).

We aim for a representation of ≿ of the form

V (F ) =
∫

∆(S)

max
f∈F

(∑
s∈Sf (s) π (s)

)
dp (π) ,

where f (·) is a vector of utils and p (·) is a unique probability measure on ∆ (S), the space

of all probability measures on S.

We now explore the additional constraint imposed on V̂ by Axiom 6 and the definition

of ≿∗.

Claim 5 π̂ (sk+1) ≤ π̂ (s) for all s ∈ S, p̂−almost surely.

Proof. Suppose there exists some event E ⊂ M (S) with p̂ (E) > 0 and π̂ (sk+1) > π̂ (s) for

some s ∈ S and all π̂ ∈ E. Let f ′ = (0, 0, ..., 0, ε, 0, ..., k − ε) , where ε is received in state s

and k− ε is received in state sk+1. Let g
′ = (0, 0, ..0, 0, 0, ..., k). Then {f ′, g′} ≻∗ {f ′}. Take

F ′ = {f ′} (so that F ′ ∪ {g′} ≻∗ F
′). But note that Axiom 6 and the definition of ≿∗ imply

that F ′ ∼∗ F
′ ∪ {g′}, which is a contradiction.

18DLRS provide a supplemental appendix which shows that, for the purpose of the theorem, their stronger
continuity assumption can be relaxed to the weaker notion of vNM continuity used in the present paper.
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Given our construction of V̂ , there are two natural normalizations that allow us to replace

the measure p̂ on M (S) with a unique probability measure p on ∆ (S).

First, since sk+1 is an artificial state, the representation should satisfy π (sk+1) = 0,

p−almost surely. For all s ∈ S and for all π̂, define ξ (π̂ (s)) := π̂ (s) − π̂ (sk+1). Since∑k+1
i=1 f

′ (si) = k and ξ simply adds a constant to every π̂,

argmax
f ′′∈F ′′

(∑
s∈S∪{sk+1}f

′′ (s) ξ (π̂ (s))
)
= argmax

f ′′∈F ′′

(∑
s∈S∪{sk+1}f

′′ (s) π̂ (s)
)

for all π̂ ∈ σ (p̂). Furthermore, by Claim 5, ξ (π̂ (s)) ≥ 0 for all s ∈ S, p̂−almost surely.

Second, we would like to transform ξ ◦ π̂ into a probability measure π. Let

π (s) := ξ (π̂ (s)) /
(∑

s′∈Sξ (π̂ (s′))
)
.

(recall that ξ (π̂ (sk+1)) = 0). Since this transformation affects the relative weight given to

event E ⊂ M (S) in the representation, we need p to be a probability measure on E that

offsets this effect. The identification result in DLRS implies that this p is unique and can be

calculated via the Radon-Nikodym derivative

dp (π)

dp̂ (π̂)
=

∑
s∈Sξ (π̂ (s))∫

M(S)

(∑
s∈Sξ (π̂ (s))

)
dp̂ (π̂)

.

Therefore, ≿ is represented by

V (F ) =
∫

∆(S)

max
f∈F

(∑
s∈Sf (s) π (s)

)
dp (π) ,

and the measure p is unique.

B.2 Proof of Claim 1

Let G = {g} for some g ∈ F . Applying Definition 3 implies that if {f} ∼2 {g} then

{f} ∼1 {g}. That is, any indifference set of the restriction of ≿1 to singletons is a subset of

some indifference set of the restriction of ≿2 to singletons. The linearity (in probabilities)

of the restriction of V i (·) to singletons implies that these indifference sets are planes that

separate any n–dimensional unit simplex, for n ≤ (|S| − 1). Therefore, the indifference sets

of the restriction of ≿1 and ≿2 to singletons must coincide. Since the restrictions of ≿1 and

of ≿2 to singletons share the same indifference sets and since both relations are monotone,

they must agree on all upper and lower contour sets. In particular, {f} ≿2 {g} if and only

26



if {f} ≿1 {g}.

B.3 Proof of Theorem 3

The necessity of the Indifference to state contingent commitment axiom is obvious. We show

its sufficiency. By Theorem 1, ≿ admits a subjective learning representation

V (F ) =
∫

∆(S)

max
f∈F

(∑
s∈Sf (s) π (s)

)
dp (π) .

We show that if ≿ satisfies Axiom 7, then p is partitional. By seeking a contradiction,

suppose that there exist π, π′ ∈ σ(p) such that π ̸= π′ and σ(π) ∩ σ(π′) ̸= ∅. Take any

s∗ ∈ σ(π) ∩ σ(π′).

Claim 6 If ≿ satisfies Axiom 7, then, for all f, g ∈ F such that∑
s∈S

f(s)π(s) >
∑
s∈S

g(s)π(s) and
∑
s∈S

f(s)π′(s) <
∑
s∈S

g(s)π′(s),

there exists I ∈ 2S with s∗ ∈ I and {fIg} ∼ {f, g}.

Proof. Take f, g satisfying the assumption. For all sufficiently large m, define fm ∈ F
by fm(s∗) := f(s∗) + 1

m
and fm(s) := f(s) for all s ̸= s∗.19 For each m, Axiom 7 ensures

the existence of Im ∈ 2S with {fmImg} ∼ {fm, g}. By assumption, fm is chosen from

{fm, g} at π, and hence, the representation implies V ({fm, g}) ̸= V ({f, g}). Moreover,

V ({fm, g}) → V ({f, g}) as m → ∞. Since 2S is finite,
{
V ({fIg})

∣∣I ∈ 2S
}

is also a

finite set. Since V ({fm, g}) is a monotone convergent sequence, for all sufficiently large

m, V ({fm, g}) /∈
{
V ({fIg})

∣∣I ∈ 2S
}
. This implies that, for all sufficiently large m, there

is no I ∈ 2S such that {fIg} ∼ {fm, g}. Furthermore, {fmImg} ∼ {fm, g} implies that

s∗ ∈ Im for all such m. Since {fmImg} is a sequence in a compact set F , it has a subsequence

{hℓ} converging to some h̄ ∈ F . By construction, h̄(s∗) = f(s∗). Moreover, since hℓ(s) ∈
{f ℓ(s), g(s)} = {f(s), g(s)} for all s ̸= s∗, we have h̄(s) ∈ {f(s), g(s)}. Thus, there exists

I ∈ 2S such that s∗ ∈ I and h̄ = fIg. Finally, since {hℓ} ∼ {f ℓ, g}, we have {fIg} ∼ {f, g}
as desired.

Claim 7 If π ̸= π′, there exist f, g ∈ F such that∑
s∈S

f(s)π(s) >
∑
s∈S

g(s)π(s) and
∑
s∈S

f(s)π′(s) <
∑
s∈S

g(s)π′(s).

19If f(s∗) = 1, let fm(s∗) := f(s∗)− 1
m .
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Proof. If π ̸= π′, by the separation hyperplane theorem, there exist k ∈ RS with k ̸= 0 and

c ∈ R such that k ·π > c > k ·π′. Let k̄ := k− (c, · · · , c) ∈ RS. Then, k̄ ·π > 0 > k̄ ·π′. Take

an α ∈ (0, 1) sufficiently small satisfying ∥αk̄∥ ≤ 1 and let k̃ := αk̄. Define f := max[k̃, 0]

and g := max[−k̃, 0]. By construction, f, g ∈ F and k̃ = f − g. Since k̃ · π > 0 > k̃ · π′, we

have f · π > g · π and f · π′ < g · π′, as desired.

Claim 8 If π ̸= π′, there exist f, g ∈ F with∑
s∈S

f(s)π(s) >
∑
s∈S

g(s)π(s) and
∑
s∈S

f(s)π′(s) <
∑
s∈S

g(s)π′(s)

such that for all I ∈ 2S with {fIg} ∼ {f, g}, we have s∗ /∈ I.

Proof. By Claim 7, there exist f, g ∈ F such that both
∑

f(s)π(s) >
∑

g(s)π(s) and∑
f(s)π′(s) <

∑
g(s)π′(s). For all sufficiently largem, define gm ∈ F by gm(s∗) := g(s∗)+ 1

m

and gm(s) := g(s) for all s ̸= s∗.20 By assumption, gm is chosen from {f, gm} at π′,

and hence, the representation implies V ({f, gm}) ̸= V ({f, g}). Moreover, V ({f, gm}) →
V ({f, g}) monotonically as m → ∞. Since 2S is finite,

{
V ({fIg})

∣∣I ∈ 2S
}
is also a finite

set. Moreover, since V ({f, gm}) is a monotone convergent sequence, for all sufficiently large

m, V ({f, gm}) /∈
{
V ({fIg})

∣∣I ∈ 2S
}
. But, this implies that s∗ /∈ Im if {fImgm} ∼ {f, gm}.

Therefore, the claim is true for the pair of acts f and gm.

Since π ̸= π′, there exist f, g ∈ F satisfying the statement of Claim 8. However, if

≿ satisfies Axiom 7, this statement immediately contradicts Claim 6. Therefore, we must

conclude that σ(π) ∩ σ(π′) = ∅ for all distinct π, π′ ∈ σ(p).

B.4 Proof of Theorem 4

We prove a result which is more general than Theorem 4, and that also verifies the two

other claims in Section 3.2. The equivalence between (3) and (4) in Theorem 6 below proves

Theorem 4 in the main text; the equivalence between (1) and (4) proves a claim made in

Remark 2; the equivalence between (2) and (3) proves a claim that is mentioned at the end

of Section 3.2.

Theorem 6 If ≿1 and ≿2 admit partitional-learning representations (µ1,P1) and (µ2,P2)

respectively. Assume that ≿1 has the same null events as ≿2. Then the following are equiv-

alent:

20If g(s∗) = 1, let gm(s∗) := g(s∗)− 1
m .
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(1) For all f ∈ F and for all G ∈ K(F) such that f ≥ g for any g ∈ G,

G ≿2 {f} =⇒ G ≿1 {f}.

(2) For all c > 0 and all s, s′ ∈ S,

{c{s}0, c{s′}0} ≿2 {c{s, s′}0} =⇒ {c{s}0, c{s′}0} ≿1 {c{s, s′}0}.

(3) For all G ∈ K(F),

G ≿2 {1} =⇒ G ≿1 {1}.

(4) P1 is finer than P2.

Proof of Theorem 6

By definition, (1) ⇒ (2) and (1) ⇒ (3).

(2) ⇒ (4): Observe that if f ≥ g, then f · π ≥ g · π for all π ∈ ∆(S). From the

representation, we know that for all f and for all G such that f ≥ g for all g ∈ G,

V i({f}) =
∫
∆(S)

f · π dp(π) ≥
∫
∆(S)

max
g∈G

g · π dp(π) = V i(G),

that is, committing to a dominant act is always weakly preferred to having a dominated menu.

Therefore, {c{s}0, c{s′}0} ≿i {c{s, s′}0} is equivalent to {c{s, s′}0} ∼i {c{s}0, c{s′}0}.

Claim 9 {c{s, s′}0} ∼i {c{s}0, c{s′}0} if and only if there exist distinct I, I ′ ∈ P i such that

s ∈ I and s′ ∈ I ′.

Proof. From the representation, V i({c{s, s′}0}) = (µi(s) + µi(s′))c. If there exist distinct

I, I ′ ∈ P i such that s ∈ I and s′ ∈ I ′, then

V i({c{s}0, c{s′}0}) =cµi(s|I)µi(I) + cµi(s′|I ′)µi(I ′)

+
∑

I′′ ̸=I,I′

max
f∈{c{s}0,c{s′}0}

f(s)µi(s|I ′′)µi(I ′′)

=cµi(s|I)µi(I) + cµi(s′|I ′)µi(I ′)

=c(µi(s) + µi(s′)).
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Otherwise, there exists an unique I ∈ P i with {s, s′} ⊂ I, in which case

V i({c{s}0, c{s′}0}) =max[cµi(s|I), cµi(s′|I)]µi(I)

+
∑
I′ ̸=I

max
f∈{c{s}0,c{s′}0}

f(s)µi(s|I ′)µi(I ′)

=cmax[µi(s), µi(s′)]

<c(µi(s) + µi(s′)).

Thus, V i({c{s, s′}0}) = V i({c{s}0, c{s′}0}) if and only if there exist distinct I, I ′ ∈ P i such

that s ∈ I and s′ ∈ I ′.

Take any I ∈ P2. If I = σ(µ2), P2 = {I}. Thus, P1 is finer than P2. Assume I ̸= σ(µ2).

Take any s ∈ I and s′ /∈ I. There exists I ′ ∈ P2 such that s′ ∈ I ′ and I∩I ′ = ∅. By Claim 9,

{c{s, s′}0} ∼2 {c{s}0, c{s′}0}. Therefore, by assumption (2), {c{s, s′}0} ∼1 {c{s}0, c{s′}0}.
Again by Claim 9, there exist distinct Ī , Ī ′ ∈ P1 such that s ∈ Ī and s′ ∈ Ī ′. Since this is

true for all s ∈ I and s′ /∈ I, we must have s ∈ Ī ⊂ I. Therefore, I can be expressed as the

union of some events in P1. This implies that P1 is finer than P2.

(4) ⇒ (1): Since we know that for all f and for all G such that f ≥ g for all g ∈ G,

{f} ≿i G, it is enough to show that for such a pair of f and G, {f} ∼2 G implies {f} ∼1 G.

Claim 10 For any f and G such that f ≥ g for all g ∈ G, {f} ∼i G if and only if for all

I ∈ P i, there exists g ∈ G such that gI0 = fI0.

Proof. Since f ≥ g for all g ∈ G,
∑

s∈I f(s)µ(s|I) ≥
∑

s∈I g(s)µ(s|I) for all I ∈ P i. Suppose

first that for some I ∈ P i, fI0 ̸= gI0 for all g ∈ G. Then
∑

s∈I f(s)µ(s|I) >
∑

s∈I g(s)µ(s|I)
for all g ∈ G. Thus, we have V i({f}) > V i(G), establishing the “only if” part of the

claim. To establish the “if” part, assume that, for all I ∈ P i, there exists g ∈ G such that

gI0 = fI0. Then we have
∑

s∈I f(s)µ(s|I) =
∑

s∈I g(s)µ(s|I) for all I ∈ P i, which implies

V i({f}) = V i(G).

For any f and G such that f ≥ g for all g ∈ G, assume {f} ∼2 G. By Claim 10, for all

I ∈ P2, there exists g ∈ G such that gI0 = fI0. Since P1 is finer than P2, for all Ī ∈ P1,

there exists some I ∈ P2 with Ī ⊂ I. Thus, gĪ0 = f Ī0 for some g ∈ G. Again by Claim 10,

{f} ∼1 G, as desired.

Finally, we show that (3) ⇒ (4): By Claim 10, G ≿i {1} if and only if for every I ∈ P i

there exists g ∈ G with g (s) = 1 for every s ∈ I. Let G := {1I0 |I ∈ P2} . By construction,

G ≿2 {1}. However, if there exists Ī ∈ P1 such that for no I ∈ P2 we have Ī ⊆ I, then

Claim 10 implies {1} ≻1 G, which contradicts (3).
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B.5 Proof of Theorem 5

We start with the following claim that guarantees the existence of a utility representation

for ≿∗.

Claim 11 There exists U : K (F)× [0, 1] → R that represents ≿∗ .

Proof. It is enough to show that there exists a countable ≿∗−dense subset of K (F)× [0, 1].

Note that a countable ≿∗
t−dense subset is given by {{c} |c ∈ Q ∩ [0, 1]}. We claim that

for some t̂ ∈ [0, 1], Ψ := {{c} |c ∈ Q ∩ [0, 1]} ×
{
t̂
}

is a countable ≿∗−dense subset in

K (F)× [0, 1]. First, Ψ is obviously countable. Now we need to show that if (F, t) ≻∗

(G, t′) then we can find
(
{c} , t̂

)
∈ Ψ such that (F, t) ≻∗ (

{c} , t̂
)
≻∗ (G, t′). By Axiom

6, {1} ≿∗
t F ≿∗

t {0} , and since ≿∗
t on {c} is strictly monotone, there exists {cF} ∼∗

t F .

Using Axiom 9, (F, t) ∼∗ ({cF} , t) ∼∗ (
{cF} , t̂

)
≻∗ (

{cG} , t̂
)
∼∗ ({cG} , t′) ∼∗ (G, t′),

which means that cF > cG and that there is c ∈ Q ∩ [0, 1] with cF > c > cG, such that

(F, t) ≻∗ ({c} , t̂) ≻∗ (G, t′).

Let U represent ≿∗. For each t, denote by Ut the restriction of U to (·, t). Since both Ut

and Vt represents ≿∗
t , there exists a strictly monotone function Γt, such that Vt = Γt ◦ Ut.

But since Vt ({c}) = Vt′ ({c}) for all {c}, for any t′ we also have Vt′ = Γt ◦ Ut′ , hence Γt

is independent of t. Without loss of generality, we can take Γ to be the identity function,

which means that the function V ∗ satisfying V ∗ (F, t) = Vt (F ) represents ≿∗. By Axiom 9,

V ∗ ({f} , t) = V ∗ ({f} , t′) for all t, t′ ∈ [0, 1], and by Axiom 8, V ∗ (F, t) ≥ V ∗ (F, t′) for all

F ∈ K (F) and t ≥ t′.

Claim 12 If t ≥ t′ then ≿∗
t has more preference for flexibility than ≿∗

t′.

Proof. If V ∗ ({f} , t) ≥ V ∗ (F, t) then V ∗ ({f} , t′) = V ∗ ({f} , t) ≥ V ∗ (F, t′).

Finally, by Theorem 2, ≿∗
t has more preference for flexibility than ≿∗

t′ if and only if pt is

a mean preserving spread of pt′ . This concludes the proof of Theorem 5.
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