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Abstract

We axiomatize a new class of recursive dynamic models that capture subjective constraints
on the amount of information a decision maker can obtain, pay attention to, or absorb, via
a Markov Decision Process for Information Choice (mic). An mic is a subjective decision
process that specifies what type of information about the payoff-relevant state is feasible in
the current period, and how the choice of what to learn now affects what can be learned
in the future. The constraint imposed by the mic is identified from choice behavior up to a
recursive extension of Blackwell dominance. All the other parameters of the model, namely
the anticipated evolution of the payoff-relevant state, state dependent consumption utilities,
and the discount factor are also uniquely identified.

Key Words: Dynamic Preferences, Recursive Information Constraints, Recursive Black-
well Dominance, Rational Inattention, Subjective Markov Decision Process, Familiarity
Bias.
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1. Introduction

People acquire and react to information, and they often face constraints on the amount of
information they can obtain, pay attention to, or simply absorb. For example, consumers
cannot at all times be aware of relevant prices at all possible retailers (as is evident from
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the proliferation of online comparison shopping engines) and firms have limited human
resources they can expend on market analysis. While accounting for such information
constraints can significantly change theoretical predictions (see, for instance, Stigler (1961),
Persico (2000), and the literature on rational inattention pioneered by Sims (1998, 2003)),
an inherent difficulty in modeling them, as well as the actual choice of information, is that
they are often private and unobservable to outsiders.

In this paper, we provide a recursive dynamic model that incorporates intertempo-
ral information constraints and allows us to identify and quantify them from observable
choice behavior.1 Just as with intertemporal budget constraints, intertemporal information
constraints have the property that information choice in one period can affect the set of
feasible information choices in the future. However, these constraints need not be linear and
can accommodate many patterns, such as developing expertise in processing information.
Our framework unifies behavioral phenomena that arise in the presence of such constraints,
regardless of their nature. For example, it applies whether the constraints are cognitive,
so that individuals have limited ability to take into account available information (as is
common in the literature on rational inattention); or physical, where the constraint reflects
the cost of acquiring information.

We axiomatize the behavior of a Decision Maker (henceforth dm) whose choice of
information is constrained by a subjective Markov Decision Process (mdp), which specifies
how future constraints depend on unobservable current and past choices of information.
mdps are the fundamental building blocks for dynamic programming. We focus on learning
via partitions of the space S of payoff-relevant states, where the state changes over time.
Formally, an mdp for Information Choice (mic) is parametrized by an mdp state � , a function
� .�/ that determines the set of feasible partitions of S , and an operator � that governs the
transition of � in response to the choice of partition and the realization of s 2 S . Examples
of such mics are at the end of this section.

We show that from observing dm’s choice between appropriate infinite horizon deci-
sion problems, one can infer the entire set of parameters governing his preferences, namely
(i) state dependent utilities; (ii) (time varying) beliefs about the state s 2 S ; (iii) the dis-
count factor; and (iv) the mic up to a recursive extension of Blackwell dominance. Here,
identifying a subjective mdp from behavior is our main conceptual contribution.

The domain on which choice is observable is the space of Recursive Anscombe-
Aumann Choice Problems (racps) that consists of menus of acts on S , where each act
is a state-contingent lottery that yields current consumption and a continuation racp (a
new menu of acts for the next period).2 Our representation suggests the following timing

(1) Recent literature on rational inattention has demonstrated how to identify information constraints from
observed choice data in static settings (see De Oliveira et al. (2016) and Ellis (2016)). We discuss the
relation with these papers and others in Section 5.

(2) For example, our domain can accommodate the standard consumption-investment problem, wherein dm
simultaneously chooses what to consume and how to invest his residual wealth, thereby determining the
consumption-investment choices available in the next period, contingent on the evolution of the stock
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of events and decisions, as illustrated in Figure 1. dm enters a period facing an racp x,
and equipped with a prior belief �s over S and an mdp state � . He first chooses a partition
P 2 � .�/. For any realization of a cell I 2 P , dm updates his beliefs using Bayes’ rule
and chooses an act f from x. At the end of the period, the true state s0 is revealed and dm
receives the lottery f .s0/, which determines the current consumption c and an racp y for
the next period. At the same time, a new mdp state � 0 D � .�; P; s0/ and a new belief �s0
are determined for next period, where the latter is based on another subjectively perceived
Markov process that governs the transition of the state, starting from s0.

.x; ✓; s/

�� chooses
P 2 � .✓/

s0 2 S
Nature

�� learns
I 3 s0, I 2 P

�� chooses
f 2 x

f .s0/ .c; y/

✓ 0 D ⌧.✓; P; s0/
.y; ✓ 0; s0/

Figure 1: Timeline

dm’s objective is then to maximize the expected utility which consists of state-
dependent consumption utilities, .us/, and the discounted continuation value:

V.x; �; s/ D

max
P2� .�/

X
I2P

"
max
f 2x

X
s02I

�s.s
0 j I /

h
Ef .s

0/
�
us0 .c/C ıV

�
y; �

�
�; P; s0

�
; s0
��i#

�s.I /

Theorem 1 establishes that .us; �s/s2S and ı are essentially uniquely identified, and
that the remaining preference parameter, the mic, is identified up to the addition or deletion
of information choices that are dominated in terms of a recursive extension of Blackwell’s
comparison of informativeness.

Indeed, because the mic is unobservable, its behavioral content lies entirely in the
information choices it permits. Section 2.4 constructs a space of Recursive Information
Constraints (rics) and shows that it is canonical, in the sense that every constraint that an
mic generates corresponds to a unique ric. The proof of Theorem 1 relies on a notion of
duality — which we term strong alignment — between the space of rics and our domain
of racps.3

Theorem 2 provides an axiomatic foundation for our model. In the sequel, we shall call
a preference over dynamic choice problems self-generating if it has the same properties as

market.
(3) The proof intuition provided in Section 2.5 clarifies how particular types of rics rely on different

structural features of our domain to achieve alignment. These insights should be helpful when applying our
identification approach to other instances where agents face unobservable subjective decision processes,
such as in health or labor economics where agents control health or human capital stocks via often
unobservable actions.
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each of the preferences over continuation problems that together generate it. Self-Generation
is satisfied in any recursive model precisely because it embodies the dynamic programming
principle. While our value function depends on the mdp state � — and so is not stationary
— it is nonetheless recursive, meaning that preferences should satisfy the weaker notion of
Self-Generation. Because � is subjective, observed behavior cannot condition on it. This
necessitates, first, a statement of Self-Generation in terms of ex ante preferences and, second,
an investigation of other standard properties such as Independence and temporal separability,
that are central to virtually all existing axiomatic models of dynamic choice. In addition to
Self-Generation, our key (and novel) axioms formalize aspects of the standard properties
that can be maintained even when dynamic choice depends on simultaneous information
choice. That is, while our results establish subjective mics as versatile tools that provide
a unified view of many seemingly complicated preference patterns, the structure of our
main axioms resembles that of standard assumptions, thereby facilitating the comparison
between our model and others.

An example of a preference pattern that can be accommodated by our model and
is difficult to reconcile in the absence of dynamic information constraints is familiarity
bias, according to which individuals are reluctant to switch away from choice problems
they are familiar with. In Section 4.1 we formally explore how a subjective information
constraint can explain familiarity bias by allowing dm to develop expertise in discerning
specific events. As another example, Section 4.2 studies a simple search problem, where
in each period an unemployed worker draws a wage from an iid distribution and needs
to decide whether to accept the offer (and work forever at the accepted wage) or to keep
searching. Unlike the fixed reservation wage prediction of the standard model, our model
can accommodate a reservation wage that decreases over time, because the expected value
of continuing the search decreases if the information constraint tightens over time, perhaps
due to search-fatigue.

We now present some examples of mics.

Example 1.1. Each period dm receives an attention ‘income’ � � 0. Any stock of attention
not used in the current period can be carried over to the next one at a decay rate of ˇ. Let K
denote the attention stock in the beginning of a period. Learning the partition P costs c .P /,
for some cost function c (measured in units of ‘attention’ and not utils), which is increasing
in the fineness of the partition. For example, as is common in the rational inattention
literature, c .P / can be the entropy of P calculated using some probability distribution
over S . Formally, for attention stock K, any partition P 2 � .K/ D fP W c .P / � K C �g
can be chosen, whereupon the stock transitions to K 0 D � .K;P / D ˇ ŒK C � � c .P /� to
determine the continuation constraint. The case with ˇ D 0 is a typical constraint in the
literature on rational inattention.

Example 1.2 (Example 1.1 continued). The cost of learning a partition depends on past
choices. In particular, if partitionQ was chosen yesterday, then the cost of learning P today
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is c.P j Q/ D .1 � b/H�.P /C bH�.P j Q/, where, given a probability � over S , H�.P /

is the entropy of P and H�.P j Q/ is the relative entropy of P with respect to Q. Note
thatH�.P j P / D 0 and hence c.P; P / D .1� b/H�.P /. That is, while learning P initially
costsH� .P /, learning P again in the subsequent period costs only a fraction .1�b/ thereof.
The parameter b measures the degree to which dm can gain expertise. (Note that if � evolves
over time it becomes part of the mdp state space.)

Example 1.3 (Expertise). This mic also captures expertise. From a set of possible experi-
ments, each of which corresponds to a different partition of S , dm can set up at most k at a
rate of one new experiment per period. Once an experiment is set up, it can be carried out
every period.4 Formally, let Pexp � P be the space of all partitions of S that correspond
to a possible experiment. If dm has chosen partitions P1; : : : ; Pn in the past, his current
access to information is given by the partition P WD P1 ^ � � � ^ Pn (where P ^Q denotes
the coarsest refinement of P and Q). Then, using .P; n/ as an mdp state, the constraints on
information choice and the subsequent transitions are given by

� .P; n/ WD
(
fP ^Q W Q 2 Pexpg n < k

fP g n D k
and �

�
.P; n/;Q

� WD (.P ^Q;nC 1/ Q ¤ P
.P; n/ Q D P

where the initial mdp state is .fSg ; 0/.
Example 1.4. dm cannot acquire information in two consecutive periods. If he has learned
a non-trivial partition of S in the previous period, he cannot afford to learn anything (ie, he
can only learn the trivial partition of S) today.5

Example 1.5 (State dependence). The feasible set of partitions at any period solely depends
on the realization of the state in the previous period.

Example 1.6 (Resource exhaustion). dm is endowed with an initial attention stockK, which
he draws down every time he chooses to learn.6

The rest of the paper is organized as follows. In Section 2 we introduce the analytical
framework, state our utility representation and establish our identification result. Section 3
provides a behavioral foundation, namely the axioms and representation theorem. Section
4 gives examples of behavioral patterns that our model can address. Section 5 surveys

(4) For example, a growing startup may be able to gradually hire up to k experts with different specialized
understanding of relevant markets.

(5) For example, paying attention may cause fatigue, which diminishes the ability to pay further attention.
Therefore, periods in which individuals pay careful attention are usually followed by periods in which
they should rest. Similarly, acquiring information may consume time or physical resources and thus
crowd out the completion of other essential tasks; those tasks then have to be performed in consecutive
periods, when they, in turn, crowd out further acquisition of information.

(6) This type of mic is reminiscent of the ‘willpower depletion’ model of Ozdenoren, Salant, and Silverman
(2012) in which dm is initially endowed with a willpower stock and depletes his willpower whenever he
limits his rate of consumption.
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related decision-theoretic literature, while other related literature is discussed in the relevant
sections. Section 6 discusses some conceptual issues and concludes. Proofs can be found in
the Appendix; additional technical details are in the Supplementary Appendix.7

2. Representation with Subjective Information Constraints

2.1. Domain

Let S be a finite set of objective or observable states, and let C be a compact metric space,
representing consumption. For any compact metric space Y , we denote by �.Y / the space
of probability measures over Y , by F.Y / the set of acts that map each s 2 S to an element
of Y , and byK.Y / the space of closed and non-empty subsets of Y . The space of Recursive
Anscombe-Aumann Choice Problems (racps) is X 'K

�
F.�.C �X//�.8 On the space X ,

we let tx C .1 � t /y WD ftf C .1 � t /g W f 2 x; g 2 yg.
Intuitively, each x 2 X is a menu of acts on S , where each act yields a state-dependent

lottery over instantaneous consumption and continuation racps (ie, a new y 2 X) for the
next period. A consumption stream is a degenerate racp in that it does not involve choice at
any point in time. The space L of all consumption streams can be written recursively as
L ' F.�.C � L//: There is a natural embedding of L in X . We analyze a preference %,
which is a binary relation on X , and denote its restriction to L by % jL.

The spaceX of racps, which embodies the descriptive approach of Kreps and Porteus
(1978), subsumes some domains previously studied in the literature. For instance, if S is a
singleton, X reduces to the domain considered by Gul and Pesendorfer (2004). Furthermore,
if the horizon is also finite, it reduces to the domain in Kreps and Porteus (1978). The
subspace L of consumption streams is also a subspace of the domain in Krishna and
Sadowski (2014).9

2.2. mic-Representation

Given an racp, dm chooses a partition in every period. LetPbe the space of all partitions of
S . dm’s choice of partition is constrained by an mdp for Information Choice (mic). Formally,
an mic is a tuple MD .�; �0; �; �/, where � is a set of mdp states; �0 is the initial state;
� W � ! 2Pn∅ is a set of feasible partitions in a given mdp state � ; and � W P���S ! �

is a transition operator that determines the transition of the mdp state � , given a particular
choice of partition and the realization of an objective state. Let M be the space of mics.

(7) The Supplementary Appendix, Dillenberger, Krishna, and Sadowski (2016), is available online at
<http://people.duke.edu/~ps78/documents/ric-supp.pdf>.

(8) Formally, X is linearly homeomorphic to K
�
F.�.C �X//�. See Appendix A.2 for details.

(9) The domain in Krishna and Sadowski (2014) is Z ' F
�
K.�.C � Z//�, the space of State-Contigent

Infinite Horizon Consumption Problems.
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In addition, let .us/s2S be a collection of (real-valued) continuous functions on C
such that at least one us is non-trivial (ie, non-constant), and let ı 2 .0; 1/ be a discount
factor. Let ˘ be a fully connected transition operator10 for a Markov process on the space
S , where ˘.s; s0/ DW �s.s0/ is the probability of transitioning from state s to state s0. Let
s0 … S be an auxiliary state, and denote by �s0 the unique invariant measure of ˘ .

We consider the following utility representation of % on the space of racps.

Definition 2.1. A preference % on X has an mic-representation
�
.us/s2S ; ı;˘;M

�
if the

function V.�; �0; s0/ W X ! R represents %, where V W X �� � .S [ fs0g/! R satisfies

V.x; �; s/ D

max
P2� .�/

X
I2P

"
max
f 2x

X
s02I

Ef .s
0/
h
us0.c/C ıV .y; �.P; �; s0/; s0/

i
�s.s

0 j I /
#
�s.I /

[Val]

In the representation above, for each s0 2 S , f .s0/ 2 �.C �X/ is a probability measure
over C �X (with the Borel �-algebra), so that Ef .s0/ is the expectation with respect to this
probability measure.11

A dynamic information plan prescribes a choice of P 2 � .�/ for each tuple .x; �; s/.
Thus, an mic describes the set of feasible information plans available to dm. The next
proposition ensures the existence of the value function and an optimal dynamic information
plan.

Proposition 2.2. Each mic-representation
�
.us/s2S ; ı;˘;M

�
induces a unique function

V W X �� �S [ fs0g ! R that is continuous on X and satisfies [Val]. Moreover, an optimal
dynamic information plan exists.

A proof is in Appendix A.4.

2.3. Identification

The space of mics has a natural order. To see this, consider first two sets of partitions
fP1; : : : ; Pmg and fQ1; : : : ;Qng. If for everyQi there is a Pj that is finer than it, we say that
fP1; : : : ; Pmg setwise Blackwell dominates fQ1; : : : ;Qng. In this sense, the finest partition
setwise Blackwell dominates every other set of partitions. The same notion can be extended
to multiple periods and, in a natural way, to the space of all mics.

(10) The transition operator ˘ is fully connected if ˘.s; s0/ > 0 for all s; s0 2 S .
(11) One of the central properties of dynamic choice is dynamic consistency, which requires dm’s ex post

preferences to agree with his ex ante preferences over plans involving the contingency in question.
Because our primitive is ex ante choice between racps, we cannot investigate dynamic consistency
directly in terms of behavior. However, our representation [Val] describes behavior as the solution to a
dynamic programming problem with state variables .x; �; s/, so that implied behavior is dynamically
consistent contingent on those state variables. The novel aspect is that the mdp state � is controlled by
dm and is not observed by the analyst.
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Because mics have a recursive structure, so too does our definition of the recursive
Blackwell order, which is the largest order that satisfies the following: For all M, M� 2M,
M dominates M� if for all P � 2 � �

�
�
�
0

�
there is P 2 � .�0/ such that (i) P is finer

than P �, and (ii) .�; � .P; �0; s/ ; �; �/ dominates
�
��; ��

�
P �; �

�
0 ; s

�
; � �; ��

�
for all s 2 S .

Propositions A.4 and A.11 in the appendices imply that the recursive Blackwell order is a
well defined preorder (ie, is reflexive and transitive).

Theorem 1. Let
�
.us/; ı;˘;M

�
be an mic-representation of %. Then, the functions .us/s2S

are unique up to the addition of constants and a common scaling, ı and ˘ are unique, and
M is unique up to recursive Blackwell equivalence.12

A proof is in Appendix B. An immediate benefit of identifying all the parameters is
that it allows a meaningful comparison of people.

Consider, then, two decision makers with preferences % and %�, respectively. We
say that % has a greater affinity for dynamic choice than %� if for all x 2 X and ` 2 L,
x %� ` implies x % `.13 The comparison in the definition implies that % and %� have the
same ranking over consumption streams in L.14 A typical racp x may allow dm to wait
for information to arrive over multiple periods before making a choice. This option should
be more valuable the more information plans dm’s mic renders feasible. The uniqueness
established in Theorem 1 allows us to formalize this intuition.

Proposition 2.3. Let ..us/; ı;˘;M/ and
�
.u
�
s/; ı

�; ˘�;M�
�
be mic-representations of %

and %� respectively. The preference % has a greater affinity for dynamic choice than %�
if, and only if, ˘ D ˘�, ı D ı�, .us/s2S and .u�s/s2S are identical up to the addition of
constants and a common scaling, and M recursively Blackwell dominates M�.

A proof is in Appendix B. The Proposition connects a purely behavioral comparison
of mics to recursive Blackwell dominance, which is independent of preferences, and hence
of utilities and beliefs. This indicates a duality between our domain of choice and the
information constraints that can be generated by mics.

In the remainder of this section we discuss the main ideas behind Theorem 1 and its
proof, emphasizing aspects that might generalize beyond the context of our specific model.
Towards that end, Section 2.4 introduces the space of rics, which is the canonical space
of information constraints, and Section 2.5 formalizes the duality, which we call strong
alignment, between the space of rics and the domain X of racps.

(12) In other words, for any additional representation of % with parameters
�
.u
�
s /; ı

�; ˘�;M�
�
, it is the case

that ı� D ı, ˘� D ˘ , u�s D aus C bs , for some a > 0 and bs 2 R for each s 2 S , and M and M�

recursively Blackwell dominate each other.
(13) This definition is the analogue of notions of ‘greater preference for flexibility’ in the dynamic settings of

Higashi, Hyogo, and Takeoka (2009) and Krishna and Sadowski (2014).
(14) That is, ` % `0 if, and only if, ` %� `0 for all `; `0 2 L. This is Lemma 34 in Appendix F of Krishna and

Sadowski (2014), and uses the fact that both % and %� satisfy Independence on L.
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2.4. Recursive Information Constraints

The mics M and M0 are indistinguishable if they afford the same choices of partition in the
first period and, for any choice in the first period, the same choices in the second period,
and so on. Intuitively, indistinguishable mics differ only up to a relabeling of the mdp
states, and up to the addition of mdp states that can never be reached. This definition of
indistinguishability is formalized in Appendix A.6 and leads to a recursive characterization
described in Lemma A.8.

It is convenient to consider canonical mics that are defined on an mdp state space ˝
which is compact and metrizable. We now describe the construction of ˝. Suppose dm can
choose from the set of partitions fP .1/1 ; : : : ; P

.1/
m g in the first period. Also suppose that upon

choosing the partition P .1/j in the first period, and after the realization of the state s.1/, a set
of partitions fP .2/1 ; : : : ; P

.2/

k
g is available in the second period. If this process proceeds to

infinity, with each history of choices and realized states determining the next set of feasible
partitions, we get an element ! of ˝.

The description above suggests a recursive way to think of ˝: Each ! 2 ˝ describes
the set of feasible partitions available for choice in the first period, and how a choice of
partition P and the realized state s determine a new !0s 2 ˝ in the next period. That
is, ! is a finite collection of pairs .P;!0/, where !0 D .!0s/s2S . In other words, ˝ is
isomorphic to K[.P�˝S/.15 We call ˝ the space of Recursive Information Constraints
(rics) so that each ! 2 ˝ is an ric. Conversely, every ric is also an mic. (Indeed, set
� �.!/ D fP W .P;!0/ 2 !g and ��.!; P; s/ D !0s to obtain the mic M! D .˝; !; � �; ��/
which is indistinguishable from !.)

Proposition 2.4. The spaceM of mics is isomorphic to ˝ in the following sense.
(a) Every M2M is indistinguishable from a unique !M 2 ˝.
(b) Every ! 2 ˝ induces an M! 2M that is indistinguishable from !.

A proof is in Appendix A.6. Viewing ˝ as the canonical state space for mics implies
that the recursive Blackwell order on ˝ is the unique recursive order so defined that is
continuous and satisfies our notion of dominance (see Section 2.3 for the definition of
dominance and also Proposition A.4 in the appendix).

When considering a representation with a canonical mic ! (that is, an ric), we often

(15) For metric spaces X and Y , we denote by K[.X � Y / the space of all non-empty closed subsets of X � Y
with the property that a subset contains distinct .x; y/ and .x0; y0/ only if x ¤ x0. A formal construction of
˝ is given in Appendix A.3. The metric on˝ can be intuitively described as follows: Consider !;!0 2 ˝
as mics. If they differ in the set of feasible partitions only after n periods, regardless of the choice and the
realized state in the first n periods, then the distance between ! and !0 is at most 1=2n. Thus, !;!0 2 ˝
are indistinguishable if, and only if, they are identical. The isomorphism between ˝ and K[.P�˝S / is
a homeomorphism.
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write [Val] as

V.x; !; s/ D

max
.P;!0/2!

X
I2P

"
max
f 2x

X
s02I

Ef .s
0/
h
us0.c/C ıV .y; !0s0; s0/

i
�s.s

0 j I /
#
�s.I /

[Val]

By Proposition 2.4, it is sufficient to establish the identification in Theorem 1 for rics,
which we describe next.

2.5. Strong Alignment between racps and rics

Notice that on the subdomain L, V is independent of ! and satisfies Independence. Indeed,
V is then completely characterized by the parameters ..us/; ı;˘/, meaning that % jL has a
Recursive Anscombe-Aumann (raa) representation on L, with these parameters. Krishna
and Sadowski (2014) show that an raa representation on L exists and is unique up to the
addition of constants and a common scaling of .us/.16 What remains then is to identify the
ric !.

To do so, we must show that for rics ! and !0 that do not recursively Blackwell
dominate each other, there is an racp x that separates them, ie, V.x; !; �/ > V.x; !0; �/. We
start by considering simple rics which have the form .P;!/, ie, which offer no information
choice in the first period. An racp x 2 X is strongly aligned with a simple ric .P;!/ if (i)
V.x; .P;!/; �/ � V.x; !0; �/ for all !0, and (ii) !0 does not recursively Blackwell dominate
.P;!/ implies x separates .P;!/ and !0.

The notion of strong alignment can be extended to general rics as follows. A finite set
F! � X of racps is uniformly strongly aligned with ! if (i) V.x; !; �/ � V.x; !0; �/ for all
x 2 F! and !0 2 ˝, and (ii) !0 does not recursively Blackwell dominate ! implies there
exists x 2 F! such that x separates ! and !0. Thus, to prove Theorem 1, it suffices to show
that each ! has a set F! of racps that is uniformly strongly aligned with it.

Consider some .P;!0/ 2 !. We will construct an racp x.P;!0/ that is strongly aligned
with it, so that .P;!0/ is an optimal information choice in the first period. The collection
F! WD fx.P;!0/ W .P;!0/ 2 !g is then uniformly strongly aligned with !. We now sketch
the construction of x.P;!0/.

For every s 2 S , let cCs and c�s denote, respectively, the best and worst consumption
outcomes under us, and let `� and `� denote the consumption streams that deliver, respec-
tively, cCs and c�s at every date in every state s.17 Clearly, `� is the best consumption stream

(16) More precisely, Krishna and Sadowski (2014) establish the uniqueness of an raa representation when
the consumption space C is finite. We establish in Proposition 5.5 of the Supplementary Appendix that
the existence and uniqueness of the raa representation also holds when C is a compact metric space.

(17) Recall that we only require that some us be non-trivial which allows for the possibility that cCs D c�s for
all but one s 2 S .
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while `� is the worst one, and for all x 2 X , V.`�; �; �/ � V.x; �; �/ � V.`�; �; �/. (This reflects
the fact that the value of information is purely instrumental.)

Let O! be the ric that delivers the coarsest partition in every period, offering no choice
at all. Every other ric recursively Blackwell dominates O!.18 Consider now an ric !1 that
only has non-trivial choice of partition in the first period, and provides the continuation ric
O! in the beginning of the second, regardless of first period choice of partition. Then, for
each .P; O!/ 2 !1, define the racp x1.P; O!/ as

x1.P; O!/ WD ff1;J W J 2 P g where f1;J .s/ WD
(
.cCs ; `�/ s 2 J
.c�s ; `�/ s … J[�]

Given x1.P; O!/, no choice of partition can give a higher utility than picking P , that is,
V.x1.P; O!/; .P; O!/; s/ D V.`�; .P; O!/; s/ � V.x0; !0; s/ for all x0 and !0. In particular,
V.x1.P; O!/; !1; s/ � V.x1.P; O!/; !0; s/ for all !0 2 ˝. Moreover, if !0 does not recur-
sively Blackwell dominate !1, then it must be that there exists .P; O!/ 2 !1 such that for no
.Q;!/ 2 !0 is Q finer than P . (This is the only possibility because, as noted above, every
ric recursively Blackwell dominates O!.) It is now straightforward to verify that x1.P; O!/
separates !1 and !0, and hence x1.P; O!/ is strongly aligned with .P; O!/. The collection of
menus F!1

WD fx1.P; O!/ W .P; O!/ 2 !1g is then uniformly strongly aligned with !1.19
Our proof builds on this idea to construct an F!2

that is uniformly strongly aligned
with the ric !2, which has non-trivial choice for only two periods, ie, the first period’s
choice of partition results in a one-period ric of the form considered above. Given this
extension, we can then proceed inductively to achieve strong alignment for any ric where a
non-trivial choice of partition is allowed for only finitely many periods. Finally, we observe
that any ! 2 ˝ can be approximated by a sequence of such rics. In the rest of this section,
we illustrate the construction of F!2

. Readers not interested in the precise details can skip
to Remark 2.5 at the end of this section, which summarizes aspects of our construction that
could be useful in other settings.

Consider the example displayed in Figure 2.

!2

P c
s

!c1

Qd
s O!

Qc s O!

Q!2
P b s

P a
s

Qb
s O!

!b1

Qa s O!
!a1

Figure 2: rics !2 and Q!2

(18) This follows immediately from Proposition A.4 in the Appendix.
(19) The construction of x1.P; O!/ is as in Theorem 1 of Laffont (1989, p59), which concerns a static setting.
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To construct the (two-period) rics !2 and Q!2, begin with the one-period rics !a1 WD
.Qa; O!/, !b1 WD .Qb; O!/, and !c1 WD f.Qc; O!/; .Qd ; O!/g, with O! as defined above. Then,
Q!2 WD f.P a;!a1/; .P b;!b1/g and !2 WD f.P c;!c1/g where !i1;s D !i1 for i 2 fa; b; cg.

Suppose now that the partitions are strictly ordered in terms of fineness as follows
(and are not ordered otherwise):

P a
P c

P b Qb Qd

Qa Qc

where P b �! P d , for instance, indicates that P b is strictly finer than P d . Notice that
neither !2 nor Q!2 recursively Blackwell dominates the other.

One might think that dm would always be better off with Q!2 as an ric instead of !2.
After all, given !2, the plan that says ‘Pick P c in the first period and Qc in the second’ is
weakly dominated (in the sense of being less valuable for every choice problem and strictly
less for some choice problem) by the plan ‘Pick P a in the first period andQa in the second’,
and the latter is feasible under Q!2. Similarly, the plan ‘Pick P c in the first period and Qd in
the second’ is dominated by ‘Pick P b in the first period and Qb in the second’.

Nevertheless, there are racps for which Q!2 is not as valuable to dm as !2 because,
under !2, choosing .P c;!c1/ in the first period allows dm to wait until the second period and
for intervening uncertainty to resolve, before making a choice of partition for the second
period. Define the two-period racp x2.P c;!c1/ as

x2.P
c;!c1/ WD ff2;J W J 2 P cg where

f2;J .s/ WD
(�
cCs ;Unif

�
.x1.Q

c; O!/; .x1.Qd ; O!///�� s 2 J
`�.s/ s … J

where Unif
�
.x1.Q

c; O!/; .x1.Qd ; O!//� is the equiprobable lottery over the racps x1.Qc; O!/
and x1.Qd ; O!/ defined in [�], and similarly define the two-period racps x2.P a;!a1/ and
x2.P

b;!b1/.
We claim that the (singleton) set of racps F!2

WD fx2.P c;!c1/g is (uniformly) strongly
aligned with !2. Clearly, V.x2.P c;!c1/; !2; �/ D V.`�; !0; �/ � V.x0; !0; �/ for all x0 and !0,
as the plan ‘Pick P c in the first period and then pick Qc or Qd in the second when facing
x1.Q

c; O!/ or x1.Qd ; O!/, respectively’ is at least as good as any other plan.
We now argue that x2.P c;!c1/ separates !2 and Q!2. To see this, consider the value of

x2.P
c;!c1/ for the two feasible plans under Q!2. Both ‘Pick P a followed by Qa’ and ‘Pick

P b followed by Qb’ determine the second period partition in period 1. With either of these
plans, dm will end up with a partition in the second period that is not (weakly) finer than
one of the partitionsQc orQd , but still receives, with probability 1

2
, an racp that is strongly

aligned with either Qc or Qd . Our earlier (static) argument shows that this entails a loss of
utility, relative to `�.
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Similarly, F Q!2
WD fx2.P a;!a1/; x2.P b;!b1/g is uniformly strongly aligned with Q!2. In

particular, x2.P a;!a1/ is strongly aligned with .P a;!a1/ and thus separates Q!2 and !2: P c
generates lower expected value than does P a. These arguments can be extended to arbitrary
rics. Because each ric ! affords only finitely many choices of partitions in the first period,
it follows immediately that there is a finite set F! of racps that is uniformly strongly aligned
with it.

The uniform strong alignment between ! 2 ˝ and the finite set of racps F! � X
amounts to a notion of duality betweenX and˝. The example illustrates two central features
of this duality. First, because rics may require dm to trade off coarser partitions at one date
with finer partitions at another date, it is essential that racps allow for sufficient variation in
acts at different dates. Second, because rics can accommodate information plans that allow
dm to delay the choice of partition until a later date, racps must feature temporal resolution
of uncertainty over choice problems (a notion first introduced by Kreps and Porteus (1978))
which may render the option to delay information choice valuable.

Remark 2.5. Our insights are potentially valuable for other environments where dm faces
dynamic choice problems, and has a collection of subjective (unobservable) dynamic plans
that an analyst would like to infer. Consider another environment where X represents the
space of dynamic choice problems, each ! represents the collection of plans available to
dm, and V.x; !/ (which may also depend on objective state variables) is a function that
evaluates the choice problems under the best plan from !. In such a setting, dominance of
plans is easy to define in terms of the value function. We can then define the ordering of
sets of plans just as we defined it for rics in Section 2.4. The following observations apply
in all such settings.
� The set ! can only be inferred up to the deletion or addition of dominated plans, though
there may not always be a preference independent notion of dominance, such as the
recursive Blackwell dominance in our environment.
� One can define the notion of strong alignment between a choice problem x and a set of
plans !. Clearly, identification of the set ! is possible if, and only if, there is a dynamic
choice problem x that is strongly aligned with it.
� If the space of plans allows for subjective choice at later dates, so that plans are truly
dynamic, then temporal resolution of uncertainty over choice problem is necessary for
identification. Put differently, if dm has the flexibility to make subjective choices after
the first period, then such plans have value, and can therefore be identified only if the
dynamic choice space itself consists of dynamic stochastic control problems.

3. Axioms

In this section we introduce our axioms on the preference % over X and state our represen-
tation theorem. The axioms broadly fall into three different categories: Axioms 1 and 3–5
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do not rely on the recursive structure of our domain; they simply restrict preferences on
K
�
F.�.C �X//�, ignoring the fact thatX is itself again the domain of our preferences (that

is, X 'K
�
F.�.C �X//�). Axiom 2 imposes assumptions on %jL, the restriction of % to

the set of consumption streams, L. The subdomain L is special because it includes no con-
sumption choice to be made in the future, which renders information choice inconsequential.
Only Axiom 6 exploits the recursive structure of X .

Section 3.1 contains standard assumptions collected in Axioms 1 and 2. Themotivation
for our more novel axioms is based on the type of learning process we envision, where
in each period, dm is constrained in his choice of partition, and takes into account that
this choice will also determine the state-dependent continuation constraint for next period.
Sections 3.2 to 3.5 discuss, in the following order, to what extent the standard properties of
temporal separability, Strategic Rationality, Independence, and Stationarity are satisfied
when the analyst is not able to condition observed behavior on information choice.20 Section
3.6 contains the representation result. Section 3.7 investigates the implications of further
strengthening our notions of Stationarity and Separability, and also shows that imposing
Independence implies that information is not determined by a choice process, but instead
exogenously arrives over time.

3.1. Standard Properties

Our first axiom collects basic properties of % that are common in the menu-choice literature.

Axiom 1 (Basic Properties).
(a) Order: % is non-trivial, complete, and transitive.
(b) Continuity: The sets fy W y % xg and fy W x % yg are closed for each x 2 X .
(c) Lipschitz Continuity: There exist `]; `] 2 L and N > 0 such that for all x; y 2 X and

t 2 .0; 1/ with t � Nd.x; y/, we have .1 � t /x C t`] � .1 � t /y C t`].
(d) Monotonicity: x [ y % x for all x; y 2 X .
(e) Aversion to Randomization: If x � y, then x % 1

2
x C 1

2
y for all x; y 2 X .

Items (a)–(d) are standard.21 Item (e) is familiar from Ergin and Sarver (2010) and
De Oliveira et al. (2016) and relaxes Independence in order to accomodate unobserved
information choice: Suppose dm is indifferent between the menus x and y on the basis
of two different information plans. Choosing from 1

2
x C 1

2
y amounts to choosing an act

from x and an act from y (before knowing which of the two will determine payoffs). In the
presence of an information constraint, dm may not be able to acquire (or process) both types
of information at the same time, and thus would prefer to learn whether x or y is relevant
before making his information choice.

(20) We remark that all our axioms except our notion of continuity can be falsified with finite data.
(21) For a discussion of (c) see Dekel et al. (2007) and for (d) see Kreps (1979).
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The next axiom captures the special role played by consumption streams, which leave
no consumption choice to be made in the future and therefore require no information (that
is, all information alternatives perform equally well). The axiom thus requires % to satisfy
additional standard assumptions when consumption streams are involved. In what follows,
for any c 2 C and ` 2 L, let .c; `/ be the constant act that yields consumption c and
continuation stream ` with probability one in every state s 2 S . By Continuity (Axiom
1(b)) and the compactness of L, there exist best and worst consumption streams. As in
Section 2.5, we denote these by `� and `�, respectively. For each I � S , f 2 F.�.C �X//,
.c; y/ 2 C �X , and " 2 Œ0; 1�, define f ˚";I y 2 F.�.C �X// by

�
f ˚.";I / y

�
.s/ WD

(
.1 � "/f .s/C ".c�s ; y/ if s 2 I
f .s/ otherwise

That is, for any state s 2 I , the act f ˚";I y perturbs the continuation lottery with y.22
Let `s WD `� ˚.1;s/ ` 2 L, so that we can define the induced binary relation %s on L

by ` %s Ò if `s %jL Òs.
Axiom 2 (Consumption Stream Properties).
(a) L-Independence: For all x; y 2 X , t 2 .0; 1�, and ` 2 L, x � y implies tx C .1 � t /` �

ty C .1 � t /`.
(b) L-History Independence: For all `; Ò 2 L, c 2 C; and s; s0; s00 2 S , .c; `s/ %s0 .c; Òs/

implies .c; `s/ %s00 .c; Òs/.
(c) L-Stationarity: For all `; Ò 2 L and c 2 C , ` %jL Ò if, and only if, .c; `/ %jL .c; Ò/.
(d) L-Indifference to Timing: 1

2
.c; `/C 1

2
.c; `0/ �jL .c; 12`C 1

2
`0/.

Axiom 2 (a) is closely related to the C-Independence axiom in Gilboa and Schmeidler
(1989), and is motivated in a similar fashion: Because consumption streams require no
information choice, mixing two menus with the same consumption stream should not alter
the ranking between these menus. For a discussion of properties (b) through (d) see Krishna
and Sadowski (2014).

3.2. Temporal Separability

Whether or not dm is likely to face a non-trivial decision in the future determines how
much information he would like to gather about the state at that time, which, in turn,
determines the expected opportunity cost of acquiring information prior to the realization of
the current state. However, this expected opportunity cost depends only on the distribution
over future decision problems that dm faces. That is, dm’s optimal learning will not change

(22) Because we are interested in the comparison of continuation problems, we hold the perturbation of the
consumption outcome fixed across different perturbations. Fixing the perturbation of consumption to be
c�s , which is the worst possible consumption outcome in each state, will be of convenience later.
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when substituting act f with g as long as they induce, on each state s, the same marginal
distributions over C and X . For any f 2 F.�.C �X//, we denote by f1.s/ and f2.s/ the
marginals of f .s/ on C and X , respectively.

Axiom 3 (State-Contingent Indifference to Correlation). For a finite menu x, if f 2 x
and g 2 F.�.C � X// are such that g1 .s/ D f1 .s/ and g2 .s/ D f2 .s/ for all s 2 S , then
Œ.x n ff g/ [ fgg� � x.23

3.3. Strategic Rationality

Suppose that, contingent on a sequence of actions and realizations, dm is offered a chance to
replace a certain continuation problemwith another. dm’s attitude towards such replacements
may depend on his previous information choices, which are subjective, unobserved, and
menu-dependent. That said, any strategy of choice from an racp gives rise to a consumption
stream. Therefore, any contiuation problem y should leave dm no worse off than receiving
the worst consumption stream, `�. In particular, because the best consumption stream, `�,
leaves dm strictly better off than `� in every state, optimal choice from a menu .1� t /xC t`�
should give rise to a consumption stream that is also strictly better than `�.

Formally, let X� WD f.1 � t / x C t`� W x 2 X is finite, t 2 .0; 1/g. For a mapping e W
x ! .0; 1�, let

�
x ˚.e;s/ y

� WD ˚
f ˚.e.f /;s/ y W f 2 x

	
, which perturbs the continuation

lottery in state s for any act f in x by giving weight e.f / to
�
c�s ; y

�
. For x 2 X� we then

require x � �x ˚.e;s/ `�� and �x ˚.e;s/ y� % �x ˚.e;s/ `�� for all s 2 S and y 2 X . This is
part (a) of Axiom 4 below.

Part (b) investigates the conditions under which dm is actually indifferent to replacing
continuation lotteries with the worst consumption stream. Recall that the ric requires
dm to choose a partition of S in every period. Because partitions generate deterministic
signals (each state is identified with only one cell of the partition), dm’s choice of partition
determines which act he will choose from a given menu, contingent on the state. dm should
then be willing to commit to this choice. In other words, there should be a contingent
plan that specifies which act dm will choose for each state, such that he will be indifferent
between the original menu and one where he is penalized whenever his choice does not
coincide with that plan.

To formalize this state contingent notion of strategic rationality, we define the set
of contingent plans �x to be the collection of all functions � W S ! x. An Incentivized
Contingent Commitment to � 2 �x, is then the set

I.�/ D ˚f ˚.1;Ic/ `� W f 2 x and I D fs W f D � .s/g 	
(23) Axiom 3 is closely related to Axiom 5 in Krishna and Sadowski (2014), where other related notions

of separability are also mentioned. The important difference is that Axiom 3 requires indifference to
correlation in any racp x, rather than just singletons, because different information may be optimal for
different racps.
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which replaces the outcome of f with the worst outcome
�
c�s ; `�

�
in any state where f

should not be chosen according to �. Obviously x % I.�/ for all � 2 �x. However, if for no
s 2 S is it ever optimal to choose an act outside � .s/, then x � I.�/ should hold.

Axiom 4 (Indifference to Incentivized Contingent Commitment).
(a) If x 2 X� and e W x ! .0; 1�, then x � �x ˚.e;s/ `�� and �x ˚.e;s/ y� % �x ˚.e;s/ `�� for

all s 2 S and y 2 X .
(b) For all x 2 X , there is � 2 �x such that x � I.�/.24

3.4. Independence

We envision information constraints where the choice of partition and the actual realization
of the payoff-relevant state in the initial period fully determine the available information
choices in the subsequent period. We say that x and y are concordant if the same initial
information choice is optimal for both x and y. Note that if x and y are concordant, then
both should be concordant with the convex combination 1

2
x C 1

2
y. While Independence

may be violated when considering racps that lead to different optimal initial information
choices, % jX 0 should satisfy Independence if X 0 � X consists only of concordant racps.
We now introduce our behavioral notion of concordance (Definition 3.1 below).

We begin by making two observations. First, finiteness of S implies that if a partition
is uniquely optimal for x, then it will stay uniquely optimal for any racp in a small enough
neighborhood of x. Second, any one-period choice problem ´ 2K.L/ requires no choice
after the initial period, so that its value depends only on the partition under which it is
evaluated. In particular, for x1 .P / WD

˚
`� ˚.1;Ic/ `� W I 2 P

	 2K.L/, we have x1 .P / � `�
if, and only if, x1 .P / is evaluated under a partition that is finer than P . (See also Section
2.5.)

Given these two observations, consider two racps x and y with x � y, for which the
unique optimal choices of partition are Px and Py , respectively. There are two possibilities.
Either (i) Px D Py , in which case there is � 2 .0; 1/ small enough, such that .1 � �/ x C
�´ � .1 � �/ y C �´ for all ´ 2 K.L/ and in particular for any x1 .P /, P 2 P; or (ii)
Px ¤ Py , which means that one of them, say Py , is not finer than the other and we have
.1 � �/ x C �x1 .Px/ � .1 � �/ x C �`� � .1 � �/ y C �x1 .Px/ for any � 2 .0; 1/. We will
say that x and y are concordant in case (i) but not in (ii).25 To extend this notion to x and y
with x � y, note that no choice of act is required for any ` 2 L, and thus Px must also be
optimal for .1 � t /x C t`. Therefore, if y is concordant with .1 � t /x C t`, we will say that
it is also concordant with x.

(24) This is conceptually related to the Indifference to State Contingent Commitment Axiom introduced in
Dillenberger et al. (2014), which also relates partitional learning to a state contingent notion of strategic
rationality.

(25) If the optimal partition for x or y is not unique, then our notion of concordance suggests that for any
partition that is optimal for x there is at least as fine a partition that is optimal for y; and vice versa.
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Definition 3.1. For � 2 .0; 1/, racps x and y are �-concordant if x � y and .1 � �/ x C
�x1 .P / � .1 � �/ y C �x1 .P / for all P 2 P. Two racps x and y are concordant if
.1 � t / x C t` and y are �-concordant for some t 2 Œ0; 1/; ` 2 L, and � 2 .0; 1/.
Axiom 5 (Concordant Independence). If x and y are �-concordant, so are x and 1

2
x C 1

2
y.

Furthermore, if X 0 � X consists of concordant racps, then %jX 0 satisfies Independence.26

3.5. Stationarity

We shall call a preference over dynamic choice problems self-generating if it has the same
properties as each of the preferences over continuation problems that together generate
it. In other words, ex ante and continuation preferences should satisfy the same set of
axioms.27 Self-Generation is satisfied in any recursive model precisely because it embodies
the dynamic programming principle.

Because continuation preferences in our model are determined by the initial choice of
partition P and the realized state s, we will denote them by %.P;s/. Self-Generation – which
we state as an axiom after defining %.P;s/ as a binary relation that is induced by the ex ante
preference, % – then requires the following:

%.P;s/ satisfies Axioms 1–5 and Self-Generation.

It is important to note the self-referential character of Self-Generation, which is the
only axiom that relies on the recursive structure of X (apart from L-Stationarity (Axiom
2(c)), which relies on the recursive structure of L); it requires current preferences on X
and induced preferences over the next period’s continuation problems (again on X) to
satisfy the same axioms. This includes the Self-Generation Axiom itself, thereby connecting
preferences over next period’s continuation problems to preferences over continuation
problems two periods ahead, and so forth. This type of self-referential structure is built into
the standard Stationarity axiom as well, where next period’s preferences are required to
coincide with the current ones, and therefore those for two periods from now also coincide
with next period’s, and so forth. One could, alternatively, write the axiom in extensive form,
in which case it would simply require induced preferences in every period to satisfy Axioms
1–5.28

(26) If x; y; ´; .1 � t / x C t´; .1 � t / y C t´ 2 X 0, t 2 .0; 1/, and x � y, then .1 � t / x C t´ � .1 � t / y C t´.
(27) The bite of Self-Generation in a particular model (such as ours) will therefore depend on the axioms on

ex ante choice that it perpetuates.
(28) Yet another formulation is that % must belong to the recursively defined set 	�, where 	� WD f% on X W

(i) % satisfies Axioms 1–5, and (ii) %.P;s/ 2 	�g. Notice that the set 	� is the fixed point of an operator
just as the self-generating set of equilibrium payoffs in Abreu, Pearce, and Stacchetti (1990) is the fixed
point of an appropriate operator. Our representation theorem, Theorem 2, characterizes the largest such
set 	� via a well defined recursive value function, and establishes that it is non-empty.
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Clearly, %.P;s/ must be inferred from the initial ranking of racps, all of which give
rise to the same optimal choice of partition, P . To gain intuition for the construction below,
suppose P is the unique optimal choice for the racp x. Because there are only finitely many
partitions of S; we can perturb each act f 2 x by mixing it with different continuation
problems, making sure to maintain the optimality of P by verifying concordance for each
perturbation. Contingent on s 2 S , dm must anticipate choosing some act f 2 x. Hence, if
he prefers perturbing f .s/ by y rather than y 0 simulatenously for each f 2 x, we can infer
that y %.P;s/ y 0. Based on this intuition, we now define an induced binary relation %.x;s/
which coincides with %.P;s/.

Definition 3.2. If for y; y 0 2 X; s 2 S , and finite x there is " 2 .0; 1� such that x ˚.";s/ y,
x ˚.";s/ y 0, and x are pairwise concordant, then y %.x;s/ y 0 if

�
x ˚.";s/ y

�
%
�
x ˚.";s/ y 0

�
.29

We verify in Appendix C.4 that%.x;s/ is well defined. Further, for all x in a dense subset
of X , it is complete (on X). In that case %.x;s/D%.P;s/, where P is an optimal information
choice given x. Conversely, for every P and s there is a finite x 2 X , such that%.x;s/D%.P;s/
on X .

Axiom 6 (Self-Generation). If % is such that %.x;s/ (induced by % as in Definition 3.2) is
complete on X , then %.x;s/ satisfies Axioms 1–6.

Axiom 6 is weaker than Stationarity (eg, as in Gul and Pesendorfer (2004)), in the sense
that it only requires immediate and continuation preferences to be of the same type rather
than identical, but it is stronger in the sense that it restricts contingent ex post preferences,
rather than aggregated future preferences.

3.6. Representation Theorem

Theorem 2. Let % be a binary relation on X . Then, the following are equivalent:
(a) % satisfies Axioms 1–6.
(b) There exists an mic-representation of %.

The proof of Theorem 2 is quite involved. In Appendices C.1–C.3 we establish the
following representation of %:

V.x/ D max
P2Q

X
I2P

"
max
f 2x

X
s2I

Ef .s/
�
us.c/C vs.y; P /

�
�.s j I /

#
�.I /

where Q � P is a set of partitions of S; the measure � .s j I / is the probability of s
conditional on the event I � S , and utilities .vs/ over continuation problems depend only on
the partitionP . We say that V is implemented by ..us/ ;Q, .vs.�; P // ; �/. This representation
(29) Slightly abusing notation, we write x ˚.";s/ y to denote x ˚."1;s/ y, where 1.f / D 1 for all f 2 x.
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already has all the features we need to establish, except that it is static; it does not exploit the
recursive structure of X: Correspondingly, we do not rely on Axiom 6, but only on Axioms
1–5 to derive it.

Adapting the terminology of Abreu, Pearce, and Stacchetti (1990), we define the set
˚� of self-generating value functions, where each v 2 ˚� is implemented by some tuple
..us/ ;Q, .vs.�; P // ; �/ in a way that each vs.�; P / is itself in ˚� (see Appendix A.8). In
Appendix C.4, we rely on Self-Generation (Axiom 6) to show that the representation V
of % can be made self-generating.30 Clearly, a self-generating value function may not be
recursive.

The remainder of our construction in Appendix C.5 has two main components. First,
we construct an ric !0 from a self-generating representation, and argue that any other
self-generating representation of % would yield the same !0 up to recursive Blackwell
dominance. The intuition for this construction is precisely the one in our proof of Theorem
1, where we elicit !0 from % without having to elicit beliefs.

Second, we establish a recursive representation of %jL, which is the raa representation
in Krishna and Sadowski (2014), parametrized by ..us/ ; ı;˘/, and discussed in Appendix
A.7. Starting from agreement of the self-generating and raa representations on L, we then
show that we can pair the parameters ..us/ ; ı;˘/ with !0 to find the mic-representation,
..us/ ; ı;˘; !0/, which is recursive on all of X , and where !0 is a canonical mic. Intuitively,
the lack of recursivity in the self-generating representation, which conditions only on the
objective state s, is absorbed by the evolution of the subjective state ! in our representation,
so that the representation becomes recursive when conditioning on both s and !.

3.7. Invariant Per-Period Constraint and Fixed Arrival of Information

We now discuss two special cases of the mic-representation. In the first, dm faces the same
information constraint each period. This case is of interest due to its simplicity and its
frequent use in dynamic models of rational inattention, where there is a periodic time
invariant upper bound on information gain, measured by the expected reduction in entropy.
Recall that x 2 X is %-maximal if x % y for all y 2 X .

Axiom 7 (Stationary Maximal racp). x 2 X is %-maximal if, and only if, it is %.y;s/-
maximal for all y 2 X and s 2 S .

The axiom requires maximal racps to be stable in three ways: Stationarity, because
between % and %.y;s/ a period has passed; temporal separability, through the comparison of
%.y;s/ and %.y0;s/I and State Independence, through the comparison of %.y;s/ and %.y;s0/.

Definition 3.3. The mic MD .�; �; �; �/ is an invariant per-period constraint if � .�/ is
constant on � (or, equivalently, if � is a singleton).

(30) See also Footnote 28.
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In contrast to a general mic, an invariant per-period constraint is independent of past
information choice, and so does not accommodate any intertemporal trade-offs in processing
information.

Proposition 3.4. If % has mic-representation
�
.us/; ı;˘;M

�
, then it satisfies Axiom 7 if,

and only if, M is an invariant per-period constraint.

To see why this must be true, note that `� is both %-best and %.y;s/-best for all y 2 X
and s 2 S . It follows from the argument in Section 2.5 that the mic MD .�; �0; �; �/ is
indistinguishable from the mic .�; �.�0; P; s/; �; �/ for all P 2 � .�0/ and s 2 S . The other
direction is immediate.

In the second special case we consider, dm faces a trivial choice between information
plans, that is, he can not influence the arrival of information about the state of the world.31

Axiom 8 (Independence). If x � y, then tx C .1 � t /´ � ty C .1 � t /´ for all x; y; ´ 2 X
and t 2 .0; 1/.
Definition 3.5. The mic MD .�; �; �; �/ captures fixed arrival of information if � .�/ is a
singleton for all � 2 �.
Proposition 3.6. If % has mic-representation

�
.us/; ı;˘;M

�
, then it satisfies Axiom 8 if,

and only if, M captures fixed arrival of information.

To see why this must be true, suppose instead that P;P 0 2 � .�/ where P and P 0
are not ranked by fineness for some � . Then x1 .P / � x1 .P 0/ � `� � 1

2
x1 .P /C 1

2
x1 .P

0/,
contradicting Independence. This argument easily extends to mics that contain any two
information plans that are not ranked by recursive Blackwell dominance.

Remark 3.7. At the end of Section 2.5 we discussed aspects of our identification strategy
that might generalize to other situations where dm faces an unobserved decision process.
Similarly, some of our axioms should remain relevant in such a situation. We have already
noted that a version of Self-Generation (Axiom 6) must hold for any recursive value function.
In addition, our motivations for Axiom 3 (a notion of temporal separability) and Axiom
5 (which relaxes Independence) did not rely on the specifics of the mic, but only on the
presence of some unobserved decision process that interacts with observable choice. The
two special cases above suggest that Independence will be violated whenever dm faces
non-trivial unobserved choice, and full temporal separability, in the sense that preferences
over continuation problems are independent of the initial choice problem, cannot hold if the
subjective constraint is not time invariant.

(31) This parallels the representation in Krishna and Sadowski (2014), where dm faces a fixed stream of
information about his own taste, rather than the state of the world.
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4. Applications

We propose two applications that build on examples of mics outlined in the Introduction.

4.1. Expertise in learning and familiarity bias

Suppose dm has become familiar with a certain set of alternatives (consumption acts) and
has gained expertise in learning the specific information needed to optimally choose among
them. Such expertise may lead dm to be biased towards choosing between those alternatives,
as he may find it too attention-intensive to optimally choose between less familiar ones.
For example, investors who decide whether or not to enter new markets, or professionals
who debate a career change, may find it more difficult to make decisions in the face of new
and unfamiliar alternatives, relative to making more routine choices. This can lead to a
‘locked-in’ phenomenon that we term familiarity bias, according to which individuals are
reluctant to switch away from familiar choice problems, even in favor of options that are
deemed superior in the absence of familiarity.32

Let K1 � X collect all separable consumption problems, where .Ft/ 2K1 denotes
the racp for which dm expects to choose from Ft 2K.F.� .C /// in period t . For F;G 2
K.F.� .C ///, denote by FTG the problem .Ft/ 2K1 with

Ft WD
(
F t � T
G t > T

and let F1 be the problem .Ft/ 2K1 with Ft WD F for all t .

Definition 4.1. % is familiarity biased if
(a) FTG % F1 implies G1 % GTF for all F ,G 2K.F.� .C /// and T > 0.
(b) F1 � FTG and G1 � GTF for some F ,G 2K.F.� .C /// and T > 0.

That is, it cannot be that replacing F with G after first choosing from F; and replacing
G with F after first choosing from G are both beneficial, and for some F and G both are
detrimental.

To simplify the exposition, in the analysis below we allow dm to familiarize himself
with any racp x before having to choose from it. For ` 2 L and x 2 X , denote by `˘T �x 2 X
the racp that pays according to ` in every period until T � � 1 and then delivers x in every
state in period T �. For an arbitrary but fixed ` 2 L, define %T � on X by x %T � y if

(32) Our notion of familiarity bias resembles that of status-quo bias, as in Samuelson and Zeckhauser (1988),
according to which individuals often prefer to stick with their current or previous decision over switching
to a new alternative. In our context, the menu dm is familiar with serves as the baseline or reference point,
and switching away from it is costly. In other words, the bias is not towards the alternative ultimately
consumed, but towards the choice problem from which to select this alternative. Home bias in investment
choices, as in Massa and Simonov (2006), could be thought of as an instance of familiarity bias.
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` ˘T � x % ` ˘T � y. That is, %T � compares x and y after T � � 1 periods that require no
choice.

Consider % with the mic-representation ..us/ ; ı;˘;M/ :We now verify that for T �
large enough, %T � will be familiarity biased when the mic MD .�; �0; �; �/ relies on
expertise in the sense of the following two criteria. First, after learningP it is always possible
to learn P again. Second, there are P ¤ Q that are maximal among those accessible under
M,33 and for which it is impossible to learn P after Q or Q after P .

Definition 4.2. M relies on expertise if the following hold.
(a) P 2 � .� .P; �; s// for all � 2 � and s 2 S .
(b) There are P;Q that are maximal among those that are accessible under M for which

Q … � .� .P; �; s// and P … � .� .Q; �; s// for any � 2 � and s 2 S .
Proposition 4.3. If M relies on expertise, then for T � large enough %T � is familiarity
biased.

A proof is in Appendix D. Intuitively, for T � large enough dm can use the first T �
periods to gain the expertise to learn any partition accessible underM, thereby achieving the
highest possible per period payoff from any F once facing F1. Therefore, it is not possible
to have both FTG �T � F1 and GTF �T � G1. In particular, there are F and G for which
the uniquely optimal partitions among those accessible under M are P and Q from part (b)
of Definition 4.1, respectively, so that achieving the highest possible per-period payoff is not
possible when choosing from FTG for any T > 0; and analogously for GTF . If F and G
are such that they generate sufficiently similar value under the respective optimal partitions,
then switching from F to G (or from G to F ) after T large enough will be detrimental.

It is easy to verify that the mic from Example 1.3 relies on expertise, provided dm can
never learn the finest partition of S . In that case, it can be shown that T � D 0 in Proposition
4.3, that is, % itself is familiarity biased.34

4.2. Search for Wages and Optimal Stopping Rule

Consider the following standard search problem.35 An unemployed worker seeks to maxi-
mize E

P1
tD0 ıtat , where at D w if the worker is employed at wage w, at D 0 if the worker

is unemployed, and ı 2 .0; 1/. Each period, the unemployed worker draws a wage from
an iid distribution, where we denote by �s the probability that the wage drawn in the next

(33) We say that P is accessible under M if P 2 � .�/ for some � 2 � that is accessible from �0 in finite
time. We say that P is maximal among those that are accessible under M if no strictly finer partition is
accessible.

(34) The mic from Example 1.2 also relies on expertise if ˇ D 0 and the prior on S used in the calculation of
c.P j Q/ is constant, as would be the case for states that are distributed independently over time.

(35) See for example Ljunqvist and Sargent (2004, p 161).
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period is ws 2 W WD fw1; : : : ; wng. Once he accepts an offer, the worker works forever at
the accepted wage. There is no firing or quitting.

This optimal stopping problem can naturally be embedded in the domain of racps as
follows. The stopping problem is the menu x.w/ WD faccept; continueg, where ‘accept’ is
the act that pays a consumption stream of w forever (with corresponding lifetime value of
w=.1 � ı/) and ‘continue’ is the act with continue.w/ D .0; x/ for all s.

Let v.w/ be the value of being offered the wage w 2 W when there is no attention
constraint. The corresponding Bellman equation is

v .w/ D max
n w

1 � ı ; ı
Xn

sD1 �sv .ws/
o

It is easy to see that the optimal policy has the following stationary form: there is a reservation
wage w� such that the worker accepts an offer w if, and only if, w � w�.

Now suppose instead that the worker faces the following attention constraint based on
Example 1.6: at the beginning of each period he can either learn nothing or pay attention
and learn the wage precisely. The worker is endowed with an initial attention stockK, which
he draws down by K=k with k 2 N every time he chooses to learn the wage. That is, the
worker can learn the wage at the beginning of at most k periods. The worker’s choice will
now depend on the remaining attention stock, or, equivalently, the remaining number of
periods for which he can learn the wage.

Suppose first that the worker is left without any attention. He then can not learn the
current wage offer, and instead faces expected wage w WDPn

sD1 �sws. He also anticipates
facing w in each future period, and hence will accept immediately due to discounting. Again
due to discounting (and the fact that the expected wage does not change across periods) dm
will learn for the first k consecutive periods, and accept in period k C 1 if he did not accept
prior to that; hence vkC1 D w

1�ı .
In period k after observing w, the worker compares w

1�ı to ıvkC1 or w to ıw DW ck. We
thus have vk .w/ D 1

1�ı max fw; ckg. In period k � 1, the worker compares w to ck�1 where
ck�1 WD ı

Pn
sD1 �smax fws; ckg. Similarly, in period k � t , he compares w to ck�t where

ck�t WD ı
Pn
sD1 �smax fws; ck�tC1g. Importantly,

Pn
sD1 �smax fws; cg is strictly increasing

in c, and hence for ıw > 0 we have ck > 0 and ck�t > ck�tC1. That is, the cutoff ct is
decreasing in t until t D k C 1; at which time any wage realization is accepted.

It is a well documented pattern that reservation wages decrease over time.36 Our
model is consistent with this pattern and suggests that passing search time may reduce
the reservation wage because the expected value of continuing the search decreases as the
attention constraint tightens over time.

(36) Brown, Flinn, and Schotter (2011) discuss this evidence and also document and investigate declining
reservation wages in a laboratory experiment.
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5. Related Literature

Kreps (1979) studies choice between menus of prizes. He explains preference for flexibility
via uncertain tastes that are yet to be realized. Dekel, Lipman, and Rustichini (2001) show
that by considering menus of lotteries over prizes, those tastes can be regarded as vN-M
utility functions over prizes. Dillenberger et al. (2014) subsequently show that preference
for flexibility over menus of acts corresponds to uncertainty about future beliefs about the
objective state of the world. Ergin and Sarver (2010) and De Oliveira et al. (2016) weaken
Independence in these respective models in order to accommodate subjective uncertainty
that is not fixed, but a choice variable.37 The former studies costly contemplation about
future tastes, while the latter studies rational inattention to information about the state.

None of the models discussed so far are recursive or let dm react to information
arriving over multiple periods. Krishna and Sadowski (2014) provide a dynamic extension
of Dekel, Lipman, and Rustichini (2001) where the flow of information is taken as given
by dm. In particular, Krishna and Sadowski (2014) assume Independence, and so their
subjective state space is the space of vN-M utility functions in each period. Their recursive
domain consists of acts that yield a menu of lotteries over consumption and a new act for the
next period. When all menus are degenerate, their domain reduces to the set of consumption
streams L, as it does here. The key difference between the two domains lies in the timing
of events: Instead of acts over menus of lotteries, racps are menus of acts over lotteries,
which is appropriate for a dynamic extension of Dillenberger et al. (2014). Our model also
extends De Oliveira et al. (2016), in the sense that the arrival of information is not given,
but is determined by a constrained choice process, the ric (or equivalently the mic).38

As a consequence of dm controlling the mic, his preferences will be interdependent
across time, which significantly complicates our analysis, especially because we can no
longer appeal to the stationarity assumptions of Krishna and Sadowski (2014). To deal
with this complication, we observe that preferences over consumption streams, %jL, should
satisfy the standard axioms, including Stationarity, because future information plays no role
when there is no consumption choice in the future. We then use the ranking of consumption
streams to ‘calibrate’ preferences over all racps, similar to the approach in Gilboa and
Schmeidler (1989), where preferences over unambiguous acts (lotteries) are used to calibrate
ambiguity averse preferences over all acts.

Piermont, Takeoka, and Teper (2015) study a decision maker who learns about his
uncertain, but time invariant, consumption taste (only) through consumption, and so has
some control over the flow of information.

For static choice situations, the literature based on ex post choice partly parallels the

(37) The insight that weakening Independence is essential in order to allow unobserved actions can be traced
back at least to Markowitz (1959, Chapters 10 and 11); see also Gilboa and Schmeidler (1989) who
consider an Anscombe-Aumann style setting and allow for the choice of beliefs to vary with the act.

(38) To be sure, Dillenberger et al. (2014) and De Oliveira et al. (2016) permit more general information
structures than partitions, and the latter also allows for explicit costs of acquiring information.
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menu-choice approach. Ellis (2016) identifies a partitional information constraint from
ex post choice data. Caplin and Dean (2014) use random choice data to characterize a
representation of costly information acquisition with more general information structures.
They then proceed to consider stochastic choice data under the assumption that attention
entails entropy costs, as do Matějka and McKay (2014). To our knowledge there is no
counterpart to our recursive analysis in the random-choice literature.

6. Discussion

Descriptive Interpretation of Domain and Representation

Koopmans (1964) argues that it is implausible to assume that, when planning ahead, people
determine the optimal course of action for all future contingencies. Instead, the decision
making process is better described as piecemeal planning, whereby people choose at each
instance consumption for the current period together with a continuation problem for the
next period, without already planning their optimal choice from the latter. To do so, they
directly assign value to (continuation) choice problems. This is exactly the intuition behind
Bellman’s dynamic programming principle, where the value dm assigns to choice problems
is consistent with the value optimal (static) choice at each instance will generate over the
infinite horizon.

In our model, dm faces two decisions in each period, one for information and one
for consumption — with implications for the continuation ric and racp respectively —
but the same interpretation applies to the recursive structure of our representation; dm
determines a value for each pair of ric and racp instead of forming a plan for the choice
of information and consumption for all the future. That this interpretation does not rely on
cognitively complex forward looking behavior is perhaps of particular relevance when dm
faces a cognitive, rather than physical, information constraint. This discussion also suggests
that choice between menus is quite natural in a dynamic environment, where dm chooses a
(continuation) racp in each period. The ex ante choice between racps can then be viewed
as a ‘snapshot’ of the ongoing process of piecemeal planning.

Costly Information Acquisition

An alternative way to model limitations on information acquisition is via direct information
costs, measured in consumption ‘utils’ (see, for example, Ergin and Sarver (2010), Woodford
(2012), Caplin and Dean (2014), and De Oliveira et al. (2016)). We confine our attention to
information constraints — and leave the analysis of information costs to future research —
for a number of reasons.

First, in the ric-representation (or equivalently the mic-representation), the ric is
not measured in utils, and hence its elicitation from behavior is done independently of the
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elicitation of the collection of state-dependent utility functions (see Section 2.5). Second,
because a constraint corresponds to a cost function that can take only two values, 0 or1,
our model has significantly fewer degrees of freedom than the alternative formulation. Third,
rics can generate opportunity costs of information acquisition via tighter future constraints.
Our model allows us to focus entirely on the behavioral implications of this new type of
dynamic costs.39

Finally, information costs or constraints can at best be identified up to dominated
information strategies, that is, strategies that are never optimally chosen. A model with
costs raises the problem that an information strategy is undominated only if its instrumental
value in terms of utilities justifies its cost. This notion of dominance amounts to a joint
restriction on all the preference parameters. In contrast, the ric in our model can be identified
from preferences up to recursive Blackwell dominance, which ranks rics independently of
preferences.40

One approach to dealing with identification in the presence of costs would be to confine
attention to representations that are minimal, in the sense that they only include undominated
information strategies (see, for example, Ergin and Sarver (2010)). We could follow the
same approach here.41 Furthermore, for a minimal representation with information costs,
our proof strategy would need only minor adaptations to establish unique identification.42
However, most intuitive examples of information costs or constraints (including all those in
Section 1) will not give rise to a minimal representation, and because the space of possible
information strategies is infinite, it is impossible to verify the minimality of a representation
in finitely many steps.

Learning the Payoff-relevant State after each Period

As is apparent from Equation [Val], last period’s state of nature s 2 S is a state-variable in
our recursive model, that is, dm always learns the realized state of nature at the end of a
period. Only the acquisition of information at the beginning of each period is constrained.

Naturally, once dm becomes aware of the continuation problem he faces, he should

(39) In static settings, information constraints imply that the amount of information chosen is independent of
the scaling of the payoffs involved, which stands in sharp contrast to the stake-dependency under costly
information acquisition. Because mics can generate opportunity costs of information acquisition, choice
may be sensitive to the stakes in a given period, thereby reducing the gap between the two models.

(40) In a static setting, a usuful way to avoid the additional lack of identification that arises in the context of
information costs is to consider unbounded consumption utilities (see De Oliveira et al. (2016)). In our
dynamic setting, where the space of information strategies is infinite dimensional, unbounded utilities
introduce new complications; for example, even ensuring existence of a recursive value function would
require additional structural assumptions.

(41) Section 3 of the Supplementary Appendix provides a recursive notion of minimality for sets of rics that
is based on recursive Blackwell dominance, and is therefore independent of preferences.

(42) In particular, rather than mixing over continuation problems with uniform weights in the identification
proof, more general mixing must be considered. We omit formal arguments for brevity.
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take into account the information about the state of nature encoded in its realization or, more
generally, in the realization of the pair .c; y/ of consumption and continuation problem.43
But if dm learns only the information encoded in the act, then he should be willing to pay a
premium (eg in terms of current consumption) to avoid acts with state-independent payoffs,
leading to implausible violations of continuity. Moreover, if it is possible to place side bets
with arbitrarily small stakes, dm would always do so in order to fully reveal the state, so
that it is with minor loss to assume that the state becomes known for free. We, therefore,
simply assume dm always learns the state at the end of the period.44

Elicitation

In Section 2.5 we discuss how to construct for any .P; !0/ an racp x.P; !0/ that is strongly
aligned with it. This racp can be used to learn about an agent’s information constraint
(in practice). To illustrate, suppose we know that dm’s preference has ric-representation
..us/s2S ; ˘; ı; !0/ (or an equivalent mic-representation), but do not know the value of !0.
Suppose also that we are only interested in finding out whether for a particular racp y a
particular dynamic information plan (or one that weakly dominates it) is feasible for dm.45
To do so, we can consider ! that contains only said plan. Suppose the plan requires the
first period choice of .P;!0/, with subsequent choices in !0 and so on. Now consider the
menu x.P;!0/. If dm is indifferent between x.P;!0/ and `�, then it must be that the plan,
or something that weakly dominates it, is feasible under !0. In other words, for a particular
racp y it is possible to test whether !0 allows dm to follow a particular information plan
with just one binary choice question.46

(43) To justify this assumption, suppose dm plans to choose an act f 2 x which yields a continuation problem
y if, and only if, the realized state is s. When evaluating x, dm calculates the continuation value of y
using �s . Now suppose dm becomes aware that the realized continuation problem for next period is
actually y; but he does not take into account the information contained in this realization. In that case,
he will choose from y based on a probability distribution which is less accurate than �s , which seems
unreasonable.

(44) An alternative model could assume that dm learns neither state nor realized continuation problem at the
end of a period. This would require modelling choice under unawareness of the available alternatives.
Our assumption avoids the complications this would entail in order to focus our model on the novel
feature of recursive information constraints. This tension is less severe in environments where the set of
available actions remains unchanged, and at most their payoff consequences vary, as, for example, in
Steiner, Stewart, and Matějka (2015).

(45) For example, a policy maker might be interested to know whether an agent is able to follow the least
demanding information plan that would allow him to optimally make a particular sequence of decisions
given y.

(46) Because there are only finitely many partitions, there are only finitely many possible T -period information
plans. Hence, we can learn exactly which of those !0 admits, based on finitely many observations of the
type just discussed, and proceed to (monotonically) approximate !0 by increasing T: Elicitation of the
other parameters from % jL is discussed in Krishna and Sadowski (2014).
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mics in Strategic Situations

This paper provides a recursive dynamic model of choice under intertemporal information
constraints, which can naturally be used in dynamic applications of rational inattention as
well as in other studies of information acquisition over time.While we focus on understanding
mics in the context of single-person decision making, it will be interesting to think about
the strategic interaction of so-constrained agents. To suggest just one instance, consider a
monopolistic competition setting where each firm faces an mic as in Example 1.4; in each
period, it can either learn the true state of the economy or stay uninformed, but cannot learn
the state in two consecutive periods. Each firm thus needs to decide when to learn the state
and how to price their product conditional on being informed or uninformed. This setting
raises the question of whether or not we see coordination in the processing of information.
In particular, given the attention constraint specified above, will all firms decide to learn the
state and adjust their prices in the same period — thereby inducing a larger price volatility
in one period than in the other — or will we observe heterogeneous behavior with constant
volatility?47

Appendices

A. Preliminaries

A.1. Metrics on Probability Measures

Let .Y; dY / be a metric space and let �.Y / denote the space of probability measures defined on
the Borel sigma-algebra of Y . The following definitions may be found in Chapter 11 of Dudley
(2002). For a function ' 2 RY , the supremum norm is k'k1 WD supy j'.y/j, and the Lipschitz
seminorm is defined by k'kL WD supy¤y0 j'.y/ � '.y0/j =dY .y; y0/. This allows us to define the
bounded Lipschitz norm k'kBL WD k'kL C k'k1. Then, BL.Y / WD f' 2 RY W k'kBL <1g is the
space of real-valued, bounded, and Lipschitz functions on Y .

Define dD on �.Y / as dD.˛; ˇ/ WD 1
2
sup

˚ˇ̌R
' d˛ � R ' dˇˇ̌ W k'kBL � 1	. This is the Dudley

metric �.Y /. Theorem 11.3.3 in Dudley (2002) says that for separable Y , dD induces the topology
of weak convergence on �.Y /. We note that the factor 1

2
is not standard. We introduce it to ensure

that for all ˛; ˇ 2 �.Y /, dD.˛; ˇ/ � 1.

A.2. A Recursive Domain

Let X1 WD K
�
F.�.C //

�
. For acts f 1; g1 2 F.�.C //, define the metric d .1/ on F.�.C // by

d .1/.f 1; g1/ WD maxs dD.f 1.s/; g1.s//. For any f 1 2 F.�.C // and x1 2 X1, the distance of f 1

(47) We describe the problem as a firm’s decision of when to pay attention. For example, in Maćkowiak and
Wiederholdt (2009), firms also need to decide what to pay attention to. Some other works, such as Myatt
and Wallace (2012), study a related problem of information acquisition in coordination games.
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from x1 is d .1/.f 1; x1/ WD ming12x1
d .1/.f 1; g1/ (where the minimum is achieved because x1 is

compact). Notice that for all acts f 1 and g1, d .1/.f 1; g1/ � 1.
This allows us to define the Hausdorff metric d .1/H on X1 as

d
.1/
H .x1; y1/ WD max

�
max
f 12x1

d .1/.f 1; y1/; max
g12y1

d .1/.g1; x1/

�
and because the distance of an act from a set is bounded above by 1, it follows that for all x1; y1 2 X1,
d
.1/
H .x1; y1/ � 1. Intuitively,X1 consists of all one-period Anscombe-Aumann (AA) choice problems.

Now define recursively, for n > 1, Xn WD K
�
F.�.C � Xn�1//

�
. The metric on C � Xn�1

is the product metric; that is, dC�Xn�1

�
.c; xn�1/; .c0; x0n�1/

� D maxŒdC .c; c0/; d .n�1/.xn�1; x0n�1/�.
This induces the Dudley metric on �.C �Xn�1/.

For acts f n; gn 2 F.�.C � Xn�1//, define the distance between them as d .n/.f n; gn/ WD
maxs dD.f n.s/; gn.s//. As before, we may now define the Hausdorff metric d .n/H on Xn as

d
.n/
H .xn; yn/ WD max

�
max
f n2xn

d .n/.f n; yn/; max
gn2yn

d .n/.gn; xn/

�
which is also bounded above by 1. Here, Xn consists of all n-period AA choice problems. The agent
faces a menu of acts which pay off in lotteries over consumption and .n � 1/-period AA choice
problems that begin the next period.

Finally, endow�1nD1Xn with the product topology. The Tychonoffmetric induces this topology
and is given as follows: For x D .x1; x2; : : : /; y D .y1; y2; : : : / 2�1nD1Xn,

d.x; y/ WD
X
n

d
.n/
H .xn; yn/

2n

It is easy to see that for all x; y 2�1nD1Xn, d.x; y/ � 1. Moreover, and this is easy to verify (because
it holds for d .n/H for each n), d

�
1
2
x C 1

2
y; y

� D 1
2
d.x; y/.

The space of racps X is all members of�1nD1Xn that are consistent. Intuitively, x D
.x1; x2; : : : / is consistent if deleting the last period in the n-period problem xn results in the .n � 1/-
period problem xn�1.48 The space of racps,X , is our domain for choice, and it follows from standard
arguments that X is (linearly) homeomorphic toK

�
F.�.C �X//�. We denote this homeomorphism

by X ' K
�
F.�.C � X//�. In what follows, we shall abuse notation and use d as a metric both

on X as well as K
�
F.�.C �X//�. It will be clear from the context precisely which space we are

interested in, so there should be no cause for confusion.
There is a natural notion of inclusion in the space of racps: For x; y 2 X , y � x if yn � xn

for all n � 1.

A.3. Recursive Information Constraints

Recall that P is the space of all partitions of S , where a typical partition is P . The partition P is
finer than the partition Q if every cell in Q is the union of cells in P . For a partition P , define

(48) See also Gul and Pesendorfer (2004) for a more formal definition in a related setting.
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its entropy H.P / as H.P / WD �PJ2P �.J / log�.J /. Then, we can define a metric d on P as
d.P;Q/ WD 2H.P ^Q/ �H.P / �H.Q/, where P ^Q is the coarsest refinement of P and Q. In
Section 4 of the Supplementary Appendix, we show that d is indeed a metric. Thus, .P;d/ is a
metric space.

Let ˝1 WD K.P/, and define recursively for n > 1, ˝n WD K[

�
P�˝Sn�1

�
(see Section 2.4

for a definition of K[). Then, we can set ˝ 0 WD�1nD1˝n. A typical member of ˝n is !n, while
!n D .!n;s/s2S denotes a typical member of ˝Sn .

Let  1 W P�˝S1 ! P be given by  1.P;!1/ D P , and define 	1 W ˝2 ! ˝1 as 	1.!2/ WD
f 1.P;!1/ W .P;!1/ 2 !2g. Now define recursively, for n > 1,  n W P� ˝Sn ! P� ˝Sn�1 as
 n.P;!n/ WD

�
P; .	n�1.!n;s//s

�
, and 	n W ˝nC1 ! ˝n by 	n.!nC1/ WD f n.P;!n/ W .P;!n/ 2

!nC1g.
An ! 2 ˝ 0 is consistent if !n�1 D 	n�1.!n/ for all n > 1. A Recursive Information Constraint

is a consistent element in ˝. The set of Recursive Information Constraints (rics) is

˝ WD ˚! 2 ˝ 0 W ! is consistent
	

that is, the set of rics is the space of all consistent elements of ˝ 0.
Notice that ˝1 is a compact metric space when endowed with the Hausdorff metric. Then,

inductively, P�˝Sn�1 with the product metric is a compact metric space, so that endowing ˝n with
the Hausdorff metric in turn makes it a compact metric space. Thus, ˝ endowed with the product
metric is a compact metric space. (Moreover, ˝ is isomorphic to the Cantor set, ie, it is separable
and completely disconnected.)

Therefore, for !;!0 2 ˝, where ! WD .!n/
1
nD1 and !0 WD .!0n/1nD1, ! ¤ !0 if, and only if,

there is a smallest N � 1 such that for all n < N , !n D !0n, but !N ¤ !0N .
Theorem 3. The set ˝ is homeomorphic to K[

�
P�˝S�.

We write the homeomorphism as ˝ ' K[

�
P�˝S�. The theorem is not proved, though it

can be in a straightforward way, by adapting the arguments in Mariotti, Meier, and Piccione (2005).

A.4. Representation

We now prove Proposition 2.2 for the case of canonical mics, ie, rics. The extension to the case of
general mics is straightforward. In what follows, letC.X �˝� .S [fs0g// be the space of continuous
functions over X �˝ � .S [ fs0g/ endowed with the supremum norm.

Proposition A.1. There is a unique value function V 2 C.X �˝ � .S [ fs0g// satisfying [Val] that
represents dm’s preference over racps. Moreover, there is an optimal dynamic information plan.

Proof. Define the operator T W C.X �˝ � .S [ fs0g//! C.X �˝ � .S [ fs0g// as follows:

T W.x; !; s0/ D max
.P;!0/2!

X
I2P

�
max
f 2x

X
s2S

Ef .s/
h
us.c/C ıW.y; !0s; s/

i
�s0.s j I /

�
�s0.I /

Recall that x is compact. It follows from the Theorem of the Maximum (using standard arguments)
that T is well defined. It is also easy to see that T is monotone (ie, W � W 0 implies T W � T W 0)
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and satisfies discounting (ie, T .W C a/ � T W C ıa), so T is a contraction mapping with modulus
ı 2 .0; 1/. Therefore, for each dm who is characterized by

�
.us/s2S ; ˘; ı; !/, there exists a unique

V 2 C.X �˝ � .S [ fs0g// that satisfies the functional equation [Val].
The optimal dynamic information plan is merely the mapping .x; !; s0/ 7! .P;!0/ 2 !.

Because the set of such .P;!0/ is finite, it follows that there is a conserving plan.49 But given that C
is bounded and because of discounting, this implies that the conserving plan is actually optimal —
see Orkin (1974) or Proposition A6.8 of Kreps (2012).

A.5. Recursive Blackwell Order

Let O! 2 ˝ denote the ric that delivers the coarsest partition in each period in every state. Define
Ő
0 WDK[

�
P� f O!g�, and inductively define ŐnC1 WDK[

�
P� Őn

�
for all n � 0. Notice that for all

n � 0, Őn � ŐnC1. We now define an order &0 on Ő0 as follows: !0 &0 !00 if for all .P 0; O!/ 2 !00,
there exists .P; O!/ 2 !0 such that P is finer than P 0. This allows us to define inductively, for all
n � 1, an order &n on Őn. For all !n; !0n 2 Őn, !n &n !0n if for all .P 0;!0n�1/ 2 !0n, there exists
.P;!n�1/ 2 !n such that (i) P is finer than P 0, and (ii) !n�1;s &n�1 !n�1;s for all s 2 S .

It is easy to see that &n is reflexive and transitive for all n. There is a natural sense in which
!n extends !n�1, as we show next.

Lemma A.2. For all n � 0, &nC1 extends &n, ie, &nC1 j Ő
n
D &n.

Proof. As observed above, Őn � ŐnC1 for all n. First consider the case of n D 0 and recall that by
construction O! 2 Ő0. Let !0 &0 !00. Then, for .P 0; O!/ 2 !00, there exists .P; O!/ 2 !0 such that P is
finer than P 0. Moreover, because &0 is reflexive, O! &0 O!. But this implies !0 &1 !00. Conversely, let
!0 &1 !00. Then, for all .P 0; O!/ 2 !00, there exists .P; O!/ 2 !0 such that (i) P is finer than P 0, and
(ii) O! &0 O! for all s 2 S . But this implies !0 &0 !00, which proves that &nC1 j Őn D &n when n D 0.

As our inductive hypothesis, we suppose that &n j Ő
n�1
D&n�1. Let !n &n !0n. Then, for all

.P 0; Q!0n�1/ 2 !0n, there exists .P; Q!n�1/ 2 !n such that (i) P is finer than P 0, and (ii) Q!n�1;s &n�1
Q!0n�1;s for all s 2 S . But by the induction hypothesis, this is equivalent to Q!n�1;s &n Q!0n�1;s for all
s 2 S , which implies that !n &nC1 !0n.

Conversely, let !n &nC1 !0n. Then, for all .P 0; Q!0n�1/ 2 !0n, there exists .P; Q!n�1/ 2 !n such
that (i) P is finer than P 0, and (ii) Q!n�1;s &n Q!0n�1;s for all s 2 S . However, the induction hypothesis
implies Q!n�1;s &n�1 Q!0n�1;s for all s 2 S , proving that !n &n !0n and therefore&nC1 j Őn D&n.

Let Ő WDSn�0 Őn. Let & be a partial order defined on Ő as follows: ! & !0 if there is n � 1
such that !;!0 2 Őn and ! &n !0.

By definition of Ő , there is some n such that !;!0 2 Őn, and by Lemma A.2, the precise
choice of this n is irrelevant. This implies & is well defined. We now show that & has a recursive
definition as well.

Proposition A.3. For any !;!0 2 Ő , the following are equivalent.

(49) A plan (respectively, an action) at some date and state is conserving if it achieves the supremum in
Bellman’s equation. See, for instance, Kreps (2012).
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(a) ! & !0.
(b) for all .P 0; Q!0/ 2 !0, there exists .P; Q!/ 2 ! such that (i) P is finer than P 0, and (ii) Q!s & Q!0s for

all s 2 S .
Therefore, & is the unique partial order on Ő defined as ! & !0 if (b) holds.

Proof. (a) implies (b). Suppose ! & !0. Then, by definition, there exists n such that !;!0 2 Őn and
! &n !0. This implies that for all .P 0; Q!0n�1/ 2 !0n, there exists .P; Q!n�1/ 2 !n such that (i) P is
finer than P 0, and (ii) Q!n�1;s &n�1 Q!0n�1;s for all s 2 S . But the latter property implies Q!s & Q!0s for
all s 2 S , which establishes (b). The proof that (b) implies (a) is similar and is therefore omitted.

The uniqueness of & on Ő follows immediately from the uniqueness of &n for all n � 0.

We can now prove the existence of a recursive order on ˝. (Notice that cl. Ő / D ˝.) In
particular, for all !;!0 2 ˝, we say that ! recursively Blackwell dominates !0 if for all .P 0; Q!0/ 2 !0,
there exists .P; Q!/ 2 ! such that (i) P is finer than P 0, and (ii) Q!s recursively Blackwell dominates
Q!0s for all s 2 S . The following proposition characterizes a natural recursive Blackwell order.

Proposition A.4. The order & on Ő has a unique continuous extension to ˝, also denoted by &.
Moreover, on ˝, & is the unique non-trivial and continuous recursive Blackwell order.

Proof. Because ˝ D cl. Ő /, we simply extend & to ˝ by re-defining it to be cl.&/. It is easy to see
that & so defined is continuous and non-trivial. That & is a unique recursive Blackwell order follows
immediately from the facts that Ő is dense in ˝, the continuity of &, and Proposition A.3.

Let projn W ˝ ! Ő
n be the natural map associating with each !, the ‘truncated and concate-

nated’ version !n which offers the same choices of partition as ! for n stages, but then offers O!, ie,
the coarsest partition forever. It is easy to see that given ! 2 ˝, the sequence .!n/ is Cauchy, and
converges to !. The next corollary gives us an easy way to establish dominance.

Corollary A.5. For !;!0 2 ˝, ! & !0 if, and only if, for all n 2 N, !n & !0n.

Proof. The ‘only if’ part is straightforward. The ‘if’ part follows from the continuity of &.

Notice that if m � n, then !n D projn ! D projn !m. This observation implies the following
corollary.

Corollary A.6. For all !;!0 2 ˝ and m � 1, !m & !0m implies !n & !0n for all 1 � n � m.

Proof. Notice that !m; !0m 2 ˝. Therefore, by Corollary A.5, it follows that for all n � 1, projn !m &
projn !0m. For n � m, projn !m D !m, but for n � m, projn !m D !n, which implies that for all
n � m, !n & !0n.

A.6. Isomorphisms of mics

Proof of Proposition 2.4. Wefirst show that (a) implies (b). Towards this end, letMD .�; �0;P; �; �/
be a mic. Recall the definition of the space˝n from Appendix A.3 and define the maps˚n W � ! ˝n

as follows. Let
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� ˚1.�/ WD � .�/,
� ˚2.�/ WD

˚�
P; .˚1.�.P; �; s///s2S

� W P 2 � .�/	,
� :::
� ˚nC1.�/ WD

˚�
P; .˚n.�.P; �; s///s2S

� W P 2 � .�/	,
It is easy to see that for each � 2 �, ˚n.�/ 2 ˝n, ie, ˚n is well defined.

Now, given �0, set ˚n.�0/ DW !n 2 ˝n. It is easy to see that the sequence

.!1; !2; : : : ; !n; : : : / 2�
n2N

˝n

is consistent in the sense described in Appendix A.3. Therefore, there exists ! 2 ˝ such that
! D .!1; !2; : : : ; !n; : : : /, ie, the mic M corresponds to an ric !.

To see that (b) implies (a), let ! 2 ˝. A partition P is supported by ! if there exists !0 2
˝S such that .P;!0/ 2 !. Now set � D ˝, �0 D !, � �.�/ D fP W P is supported by �g, and
��.P; !; s/ D !0s where !0 2 ˝s is the unique collection of rics such that .P;!0/ 2 !. This results
in the mic M! D .�; � �; ��; �0 D !/ that is uniquely determined by !.

Thus, ˝ is the space of canonical mics in that every mic can be embedded in ˝. Let MD
.�; �; �; �0/ and M0 D .�0; � 0; � 0; � 00/ be two mics in M. Define the function D W M �M ! R as
follows:

D
�
M.�0/;M

0.� 00/
� WD

max
�
dH

�
� .�0/; �

0.� 00/
� ^ 1; 1

2
max

P2� .�0/;s2S
D
�
M.�.�0; P; s//;M

0.� 0.� 00; P; s//
��[A.1]

whereM.�/ denotes the mic Mwith initial state � . The function D captures the discrepancy between
the micsMandM0. In what follows, let B.M�M/ denote the space of real-valued bounded functions
defined on M �M with the supremum norm.

Lemma A.7. There is a unique function D 2 B.M �M/ that satisfies equation [A.1].

Proof. Consider the operator T W B.M �M/! B.M �M/ defined as

TD0
�
M.�0/;M

0.� 00/
� WD

max
�
dH

�
� .�0/; �

0.� 00/
� ^ 1; 1

2
max

P2� .�0/;s2S
D0
�
M.�.�0; P; s//;M

0.� 0.� 00; P; s//
��

for all D0 2 B.M �M/. It is easy to see that T is monotone in the sense that D1 � D2 implies
T D1 � T D2. It also satisfies discounting, ie, T .DC a/ � T DC 1

2
a for all a � 0. This implies that T

has a unique fixed point in B.M �M/, and this fixed point D satisfies [A.1].

We can now define an isomorphism between mics. Two micsMandM0 are indistinguishable if
D
�
M.�0/;M

0.� 00/
� D 0. Intuitively, indistinguishable mics have the same set of choices of partitions

after any history of choice, and so offer the same set of plans. We now have an easy, recursive
characterization of indistinguishability.
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Lemma A.8. Let M;M0 2 M. Then, M is indistinguishable from M0 if, and only if, (i) � .�0/ D
� 0.� 00/, and (ii) for allP 2 � .�0/\� 0.� 00/ and s 2 S , the mic .�; �; �; �.�0; P; s// is indistinguishable
from the mic

�
�0; � 0; � 0; � 0.� 00; P; s/

�
.

The proof follows immediately from the definition of the discrepancy D and so is omitted. We
now regard ˝ as the canonical space of mics and each ! as a canonical mic. In other words, every !
is the canonical mic .˝; � �; ��; !/.

Corollary A.9. Let !;!0 2 ˝. Then, ! ¤ !0 implies D.!; !0/ > 0.

Proof. It is easy to see that if D.!; !0/ D 0, then !n D !0n for all n � 1, which implies ! D !0, as
required.

Corollary A.10. Let !;!0 2 ˝ be such that projn.!/ 6& projn.!0/ for some n � 1, but for all
m < n, projm.!/ & projm.!0/. Then, there exists finite sequences .Pk/n�11 and .sk/n�11 which induce
rics !i

.n�k/ WD ��.!i.n�kC1/; Pk; sk/ 2 Őn�k where Pk 2 � �.!in�kC1/, such that � �.!11/ does not
setwise-Blackwell dominate � �.!21/.

Proof. If not, we would have !1n & !2n, a contradiction.

Let D be a recursive order on M defined as follows: For mics MD .�; �; �; �0/ and M0 D
.�0; � 0; � 0; � 00/,

MDM0 if for every P 0 2 � 0.� 00/, there exists P 2 � .�0/ such that (i) P is finer
than P 0, and (ii) .�; �; �; �.�0; P; s// D .�0; � 0; � 0; � 0.� 00; P 0; s// for all s 2 S .

[z]

It is easy to see that such a recursive order exists. Indeed, for any mic M, let !M denote the
canonical mic that is indistinguishable from it. (By Corollary A.9 there is a unique such !M.) The
recursive Blackwell order is induced on M as follows: M recursively Blackwell dominates M0 if
(and only if) !M & !M0 . The recursive Blackwell order on M clearly satisfies the condition [z]. We
now demonstrate that it is the largest order that satisfies [z].

Proposition A.11. LetD be a recursive order onM that satisfies [z]. IfMDM0, thenM recursively
Blackwell dominates M0.

Proof. We will prove the contrapositive. If M does not recursively Blackwell dominate M0, then
!M 6& !M0 . Corollaries A.5 and A.6 imply that there is a smallest n such that !M;n 6& !M0;n but
that for all m < n, !M;m & !M0;m (where !M;n D projn !M as defined in Appendix A.5). From
Corollary A.10 it follows that there exists a finite sequence of partitions .Pk/ and states .sk/ such
that � �

�
��.n/.�0; .Pk/; .sk//

�
does not setwise Blackwell dominate � �

�
��.n/.� 00; .Pk/; .sk//

�
, where

��.n/.�0; .Pk/; .sk// represents the n-stage transition following the sequence of choices .Pk/ and
states .sk/. Now recall that M is indistinguishable from !M, and so is M0 from !M0 . This implies
�
�
� .n/.�0; .Pk/; .sk//

�
does not setwise Blackwell dominate � 0

�
�
0.n/.� 00; .Pk/; .sk//

�
. Thus, it must

necessarily be that M 6DM0.
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A.7. Consumption Streams and the raa Representation

The space L is defined as L ' F.�.C � L// and is a closed subspace of X (with the natural
embedding).

Let us 2 C.C / for all s 2 S , ı 2 .0; 1/,˘ represent the transition operator for a fully connected
Markov process on S , and �0 be the unique invariant distribution of ˘ . A preference on L has
a Recursive Anscombe-Aumann (raa) representation ..us/s2S ; ˘; ı/ if W0.�/ WD

P
sW.�; s/�0.s/

represents it, where W.�; s/ is defined recursively as
W.`I s/ D

X
s02S

˘.s; s0/
�
us0.`1.s

0//C ıW.`2.s0/I s0/
�

and where us non-trivial for some s 2 S . Then, W0 can also be written as
W0.`/ D

X
s02S

�0.s/
�
us.`1.s//C ıW.`2.s/I s/

�
because �0 is the unique invariant distribution of˘ and therefore satisfies �0.s/ D

P
s �0.s

0/˘.s0; s/.
The preference on L has a standard raa representation ..us/s2S ; ˘; ı/ if we also have us.c�s / D 0
for all s 2 S for some fixed c�s 2 C .

We show in Section 5 of the Supplementary Appendix that % jL has an raa representation
as described above. We cannot directly appeal to Corollary 5 from Krishna and Sadowski (2014)
because they only consider finitely many prizes. Nonetheless, judicious and repeated applications of
Corollary 5 of KS allows us to reach the same conclusion for a compact set of prizes.

It is clear that L is compact, so the continuity of % implies that there exist %-maximal and
-minimal elements ofL. These we call `� and `�. Moreover, given that% jL has an raa representation
as described above, for each s 2 S , we let cCs WD argmaxc2C us.c/ and c�s WD argminc2C us.c/.
Because each us is continuous, such cCs and c�s must exist. Now, define f C 2 F.�.C // to be the act
such that f C.s/ WD cCs — the Dirac measure concentrated at cCs — for all s 2 S , and similarly, define
f �.s/ WD c�s for all s 2 S . Then, `� is the (unique) consumption stream that delivers f C at each date
and `� is the (unique) consumption stream that delivers f � at each date. Observe that the best and
worst consumption streams are deterministic, and that for all ˛1 2 �.C/, us.c�s / � us.˛1/ � us.cCs /.
An immediate consequence of this is that for any c 2 C , ` 2 L and s 2 S , .c; `�/ %s .c; `/ %s .c; `�/.
Lipschitz Continuity (Axiom 1(c)) implies that `� � `� (see Corollary 1.3 in the Supplementary
Appendix), so .c; `�/ �s .c; `�/.

A.8. Self-Generating Representations and Dynamic Plans

Recall that C.X/ is the space of all real-valued continuous functions on X . Let `� 2 L be the
consumption stream that delivers c�s in state s at every date.

Suppose
�
.us/;Q; .vs.�; P //; �

�
is a tuple where

� us 2 C.C / for all s 2 S ,
� Q � P.S/,
� vs.�; P / 2 BL.X/ for all s 2 S and P 2 Q,50

(50) The space BL.X/ consists of all bounded Lipschitz functions on X ; see Appendix A.2.
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� � 2 �.S/,
� us.c�s / D vs.`�; P / D 0 for all s 2 S and P 2 Q,
� vs.�; P / is independent of P on L, and
� vs.�; P / is non-trivial on L, and hence on X , for all s 2 S and P 2 Q,
and v 2 RX is such that

v.x/ D max
P2Q

X
E2P

�.E/max
f 2x

X
s2S

�.s j E/ �us.f1.s//C vs.f2.s/; P /�
In that case, we say that the tuple

�
.us/;Q; .vs.�; P //; �

�
is a separable and partitional implementation

of v, or in short, an implementation of v. (By definition, the implementation takes value 0 on `�.s/
for all s 2 S and is linear on L. In what follows, we will not explicitly state these properties.)

More generally, for any subset ˚ � C.X/, define the operator A W 2C.X/ ! 2C.X/ as follows:

A˚ WD
n
v 2 C.X/ W 9 �.us/;Q; .vs.�; P //; �� that implements v

and vs.�; P / 2 ˚ for all s 2 S and P 2 Q
o

Proposition A.12. The operator A is well defined and has a largest fixed point ˚� ¤ f0g. Moreover,
˚� is a cone.

Proof. It is easy to see that for all nonempty ˚ � C.X/, A˚ is nonempty. (Simply take any Q, any
0 ¤ vs.�; P /0 2 ˚ for all P 2 Q, and any us, so that A˚ ¤ ∅.) The operator A is monotone in
the sense that ˚ � ˚ 0 implies A˚ � A˚ 0. Thus, it is a monotone mapping from the lattice 2C.X/
to itself, where 2C.X/ is partially ordered by inclusion. The lattice 2C.X/ is complete because any
collection of subsets of 2C.X/ has an obvious least upper bound: the union of this collection of
subsets. Similarly, a greatest lower bound is the intersection of this collection of subsets (which may
be empty). Therefore, by Tarski’s fixed point theorem, A has a largest fixed point ˚� 2 2C.X/.

To see that˚� ¤ f0g, ie,˚� does not contain only the trivial function 0, fixQ D ˚ ffsg W s 2 Sg 	
so that it contains only the finest partition of S . For the value function V in [Val], take any
us 2 C.C / n f0g with us.c�s / D 0 for all s 2 S , a discount factor ı 2 .0; 1/, and � as the uni-
form distribution over S . Then V is implemented by

�
.us/;Q; ıV /; �

�
, while ıV is implemented by�

.ıus/;Q; ı
2V /; �

�
, and so on. Therefore, the set ˚V WD fınV W n � 0g is clearly a fixed point of A.

Because ˚V � ˚�, it must be that ˚� is nonempty.
Finally, to see that ˚� is a cone, let v 2 ˚� and suppose

�
.us/;Q; .vs.�; P //; �

�
implements

v. Then, for all � � 0, �.�us/;Q; .�vs.�; P //; �� implements �v, ie, �˚� is also a fixed point of A.
Because ˚� is the largest fixed point, it must be a cone.

Notice that each v 2 ˚� is implemented by a tuple
�
.us/;Q; .vs.�; P //; �

�
with the property

that each vs.�; P / 2 ˚�. Adapting the terminology of Abreu, Pearce, and Stacchetti (1990), the set˚�
consists of self-generating preference functionals that have a separable and partitional implementation.
(Notice that unlike Abreu, Pearce, and Stacchetti (1990), our self-generating set lives in an infinite
dimensional space. Also, unlike Abreu, Pearce, and Stacchetti (1990), the non-emptiness of ˚�
follows relatively easily, as noted in the proof of Proposition A.12.) In what follows, if% is represented
by V 2 ˚�, we shall say that V is a self-generating representation of %.

Given a V 2 ˚� that is a self-generating representation of %, we would like to extract the
underlying (subjective) informational constraints. We show next that this is possible.
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Proposition A.13. There is a unique map '� W ˚� ! ˝ that satisfies for some implementation�
.us/;Q; .vs.�; P //; �

�
of v, that

'�.v/ WD
n�
P; '�.vs.�; P //

� W P 2 Q
o

and is independent of the implementation chosen.

Proof. Let v.1/ 2 ˚1, and suppose
�
.us/;Q; .vs.�; P //; �

�
implements v.1/. In this implementation,

Q is unique. (The argument follows from our identification argument below in Appendix B. It is
easy to see that .us/, .vs.�; P //, and � will typically not be unique.) Then, define '1 W ˚1 ! ˝1 as

'1.v
.1// WD Q; where

�
.us/;Q; .vs.�; P //; �

�
implements v.1/

Proceeding iteratively, we define 'n W ˚n ! ˝n as

'n.v
.n// WD

n�
P; 'n�1.v.n�1/s .�; P /� W 9 �.us/;Q; .v.n�1/s .�; P //; �� that

implements v.n/ and P 2 Q
o

Notice that the same argument that established the uniqueness of '1 also applies here, to provide the
uniqueness of 'n.

Now, suppose v 2 ˚�. This implies v has a partitional and separable implementation�
.us/;Q; .vs.�; P //; �

�
, where each vs.�; P / also has a partitional and separable implementation,

and so on, ad infinitum. Then, we may define, for all n � 1, !.n/ WD 'n.v/. Now consider the infinite
sequence

!0 WD
�
!.1/; !.2/; : : : ; !.n/; : : :

� 2 ˝
In particular, this allows us to define the map '� W ˚� ! ˝ as '�.v/ D �'1.v/; '2.v/; : : : �, which
extracts the underlying ric from any function v 2 ˚�, independent of the other components of the
implementation, as claimed.

To recapitulate, we can now extract an ric from a self-generating representation. In other
words, the identification of the ric !0 doesn’t depend on the recursivity of the value function. This
stands in contrast to the identification of the other preference parameters, which relies on recursivity.
For a self-generating representation, we can find a (not necessarily unique) probability measure �
over S1. The formal details are straightforward and hence omitted.

A dynamic plan consists of two parts: the first entails picking a partition for the present period
(and the corresponding continuation constraint), and the second entails picking an act from x, whilst
requiring that the choice of act, as a function of the state, be measurable with respect to the chosen
partition. The first part is a dynamic information plan while the second is a dynamic consumption
plan.

An n-period history is an (ordered) tuple

hn D
�
.x.0/; !.0/; : : : ; .P .n�1/; f .n�1/; s.n�1/; x.n�1/; !.n�1//

�
Let Hn denote the collection of all n-period histories.
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Formally, a dynamic information plan is a sequence �i D .� .1/i ; �
.2/
i ; : : : / of mappings where

�
.n/
i W Hn ! P�˝S . Similarly, a dynamic consumption plan is a sequence �c D .� .1/c ; �

.2/
c ; : : : / of

mappings where � .n/c W Hn ! F.�.C �X//. A dynamic plan � is just a pair � D .�i ; �c/.
A dynamic plan � D .�i ; �c/ with initial states x.0/ WD x and !.0/ WD !0 is feasible if (i)

�
.n/
i .hn/ 2 !.n�1/, (ii) � .n/c .hn/ 2 x.n�1/, and (iii) given the information plan � .n/i .hn/ D .P;!0/ 2
!.n�1/, � .n�1/c .hn/ is P -measurable, ie, for all I 2 P and for all s; s0 2 I , � .n/c .hn/.s/ D � .n/c .h/.s0/.

Each dynamic plan along with initial states .x; !0; �0/ induces a probability measure over�
X�˝�S�1 or, put differently, anX�˝�S valued process. Let .x.n/; !.n/; s.n// be theX�˝�S-
valued stochastic process of racps, rics, and objective states induced by a dynamic plan, where
x.n/ 2 X is the racp beginning at period n C 1, !.n/ 2 ˝ is the ric beginning at period n C 1,
and s.n/ 2 S is the state in period n. A dynamic plan is stationary if � .n/.hn/ only depends on
.x.n�1/; !.n�1/; s.n�1//.51

For a fixed V 2 ˚�, let v.n/.�; !.n/; s.n/; �/ denote the value function that corresponds to the n-
th period implementation of V when following the dynamic information plan � , where !.n/ D 'n.V /
as in Proposition A.13 and s.n/ is the state in period n.

While we have shown that each v 2 ˚� can be written as the sum of some instantaneous utility
and some continuation utility function that also lies in ˚�, we nonetheless need to verify that the
value that V obtains for any menu is indeed the infinite sum of consumption utilities. We verify this
next.

Proposition A.14. Let V 2 ˚�, and suppose v.n/.�; !.n/; s.n/; �/ is defined as above. Then, for any
feasible dynamic plan � D .�c ; �i /, we have

lim
n!1




E�;� v.n/.�; !.n/; s.n/; �/


1 D 0[A.2]

Proof. Consider V 2 ˚� with Lipschitz rank �. Recall that for any x 2 X , `� ˘n x 2 X denotes the
racp that delivers `� in every period until period n � 1 and then, in period n, in every state, delivers
x. Recall further that X is an infinite product space, and by the definition of the product metric (see
AppendixA.2), it follows that for any " > 0, there exists anN > 0 such that for all x; y 2 X and n � N ,
d.`� ˘n x; `� ˘n y/ < "=�. Lipschitz continuity of V then implies

ˇ̌
V.`� ˘n x/ � V.`� ˘n y/

ˇ̌
< ".

For a given n, V.`� ˘n x/ D 0C E�;� Œv.n/.x; !.n/; s.n/; �/�, which impliesˇ̌̌
E�;� v.n/.x; !.n/; s.n// � E�;� v.n/.y; !.n/; s.n/; �/

ˇ̌̌
< "

for all n � N . Recall that


E�;� v.n/.�; !.n/; s.n/; �/


1 D sup
x

ˇ̌̌
E�;� v.n/.x; !.n/; s.n/; �/

ˇ̌̌
Moreover, we have

sup
x

ˇ̌̌
E�;� v.n/.x; !.n/; s.n/; �/

ˇ̌̌
D sup

x

ˇ̌̌
E�;�

�
v.n/.x; !.n/; s.n/; �/ � v.n/.`�; !.n/; s.n/; �/�ˇ̌̌ < "

which completes the proof.

(51) Of course, the choice of plan doesn’t affect the evolution of the objective states .s.n//.
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Adapting the terminology of Dubins and Savage (1976), we shall say that a function V 2 ˚�
is equalizing if [A.2] holds. (To be precise, if [A.2] holds, then every dynamic plan is equalizing in
sense of Dubins and Savage (1976).)

Given an initial .x; !/ 2 X �˝, each � induces a probability measure over�nHn, the space
of all histories. It also induces a unique consumption stream `�.x;!/ that delivers consumption
�c.hn/.s

0/ after history hn in state s0 in period n. We show next that for any self-generating preference
functional V 2 ˚�, the utility from following the plan � given the racp x is the same as the utility
from the consumption stream `�.x;!/. (Of course, given the consumption stream `�.x;!;s/, there are
no consumption choices to be made.) Moreover, there is an optimal plan such that following this
plan induces a consumption stream that produces the same utility as the racp x.

Let ˙ denote the collection of all dynamic plans and let Lx;! WD f`�.x;!/ W � 2 ˙g be the
collection of all consumption streams so induced by the racp x and the ric !. In what follows,
V.x; �/ is the expected utility from following the dynamic plan � given the racp x.

Lemma A.15. Let V 2 ˚� be such that '�.V / D !. Then, for all x 2 X , V.x; �/ D V.`�.x;!// and
V.x/ D max�2˙ V.x; �/ D max`2Lx;!

V.`/.

These are analogues of standard statements in dynamic programming, as the following proof
demonstrates.

Proof. For V 2 ˚� and for any plan � 0, an agent with the utility function V is indifferent between
following � 0 and the consumption stream `� 0.x;!/. This is essentially an adaptation of Theorem 9.2
in Stokey, Lucas, and Prescott (1989) where their equation 7 — which is also known as a no-Ponzi
game condition, see Blanchard and Fischer (1989, p 49) — is replaced by the fact that V is equalizing
(condition [A.2] in Proposition A.14).52

To see that there is an optimal plan, notice that x is a compact set of acts, and because there are
only finitely many partitions of S , it is possible to find a conserving action at each date after every
history. This then gives us a conserving plan (see Footnote 49). We can now adapt Theorem 9.2 in
Stokey, Lucas, and Prescott (1989) where, as above, their equation 7 is replaced by [A.2], to show
that � is indeed an optimal plan. Loosely put, we have just shown that because the plan is conserving
and because V is equalizing, the plan must be optimal. This corresponds to the characterization of
optimal plans in Theorem 2 of Karatzas and Sudderth (2010).

B. Identification and other Proofs from Section 2.3

Recall that x is strongly aligned with ! if (i) V.x; !; �0/ � V.x; !0; �0/ for all !0 2 ˝, and (ii) !0
does not recursively Blackwell dominate ! implies V.x; !; �0/ > V.x; !0; �0/. We say that P is
supported by ! if there exists !0 2 ˝S such that .P;!0/ 2 !.

(52) Note that Stokey, Lucas, and Prescott (1989) directly work with the optimal plan, but the essential idea
is the same — continuation utilities arbitrarily far in the future must contribute arbitrarily little.
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Lemma B.1. Let .P;!0/ 2 !. Then, there exists an racp x.P;!0/ recursively defined as

x.P;!0/ D ffJ W J 2 P g with fJ WD
(�
cCs ;Unif

�fx.Q; Q!/ W .Q; Q!/ 2 !0sg�� if s 2 J
`�.s/ if s … J

[F]

where Unif.�/ is the uniform lottery over a finite set.

Proof. For a partition P with generic cell J , define the act

f1;J WD
(
`�.s/ if s 2 J
`�.s/ if s … J

and for each P that is supported by !, define x1.P / WD ff1;J W J 2 P g.
Now, proceed inductively, and for n � 2, suppose we have the menu xn�1.P;!0/ for each

.P;!0/ 2 !, and define, for each cell J 2 P , the act

fn;J WD
(�
cCs ;Unifn�1

�fxn�1.Q; Q!/ W .Q; Q!/ 2 !0sg�� if s 2 J
`�.s/ if s … J

Then, given .P;!0/ 2 !, we have the menu xn.P;!0/ WD
˚
fn;J W J 2 P

	
.

It is easy to see that for a fixed .P;!0/ 2 !, the sequence of racps
�
xn.P;!

0/
�
is a Cauchy

sequence. BecauseX is complete, this sequence must converge to some x.P;!0/ 2 X . Moreover, this
means that the sequence of sets

�fxn.Q; Q!/ W .Q; Q!/ 2 !0sg� also converges to �fx.Q; Q!/ W .Q; Q!/ 2 !0sg�.
This allows us to denote the uniform lottery over this finite set of points in X by Unif.!0s/.

Thus, x.P;!0/ consists of the acts ffJ W J 2 P g where for each J 2 P

fJ WD
(�
cCs ;Unif

�fx.Q; Q!/ W .Q; Q!/ 2 !0sg�� if s 2 J
`�.s/ if s … J

as claimed.

It is straightforward to verify that

V.`�; !; �0/ D V
�
x.P;!0/; !; �0

� � V �x.P;!0/; Q!; �0�
for all Q! 2 ˝. Indeed, V

�
x.P;!0/; !; �0

� D V �x.P;!0/; .P;!0/; �0�.
Lemma B.2. Let P;Q 2 P and suppose Q is not finer than P . Then, for any ! 2 ˝s, the menu
x.P;!/ defined in [F] is such that for all !0 2 ˝s , V �x; .P;!/; �0� > V �x; .Q;!0/; �0�.
Proof. Fix .P;!/ 2 ˝ and consider the menu x.P;!/ defined in [F]. As noted above, for all
!0, we have V

�
x.P;!/; .P;!/; �0

� D V
�
x.P;!0/; .P;!0/; �0

�
. Moreover, it must be that for all

.Q;!0/ (even for Q D P ), we have V
�
x.P;!/; .P;!/; �0

� � V �x.P;!0/; .Q;!0/; �0� and in the
case whereQ is not finer than P andQ ¤ P , V

�
x.P;!0/; .P;!0/; �0

�
> V

�
x.P;!0/; .Q;!0/; �0

�
by

construction of the menu x.P;!0/. (This is straightforward to verify and is a version of Blackwell’s
theorem on comparison of experiments; see Blackwell (1953) or Theorem 1 on p59 of Laffont
(1989).)
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Lemma B.3. Suppose !0 does not recursively Blackwell dominate !. Then, for some .P; Q!/ 2 !,
x.P; Q!/ defined in [F] is such thatV

�
x.P; Q!/; !; �0

� D V �x.P; Q!/; .P; Q!/; �0� > V �x.P; Q!/; !0; �0�.
Proof. Suppose !0 does not recursively Blackwell dominate !. Then, there exists a smallest n � 1
such that for all m < n, projm.!0/ recursively Blackwell dominates projm.!/, while projn.!0/ does
not recursively Blackwell dominate projn.!/.

From Corollary A.10 it follows that there exist finite sequences of partitions .Pk/ and .P 0k/,
and states .sk/ such that � �

�
��.n/.!0; .P 0

k
/; .sk//

�
does not setwise Blackwell dominate the set

� �
�
��.n/.!; .Pk/; .sk//

�
, where ��.n/.�0; .Pk/; .sk// represents the n-stage transition following the

sequence of choices .Pk/ and states .sk/, !in�k D ��.!in�kC1; Pk; sk/ where Pk 2 � �.!in�kC1/, and
� �.!11/.

Let .P1; Q!/ 2 ! be the unique first period choice under ! that makes the sequence .Pk/
feasible. Then x.P1; Q!/ defined in [F] is aligned with .P1; Q!/. That is, after n stages of choice and a
certain path of states we can appeal to Lemma B.2, which completes the proof.

Proof of Theorem 1. It follows from a straightforward extension of the arguments in Krishna and
Sadowski (2014) (to the case of a compact prize space) that the collection

�
.us/;˘; ı

�
is unique in

the sense of the Theorem. Now, define F! WD fx.P; Q!/ W .P; Q!/ 2 !g. It follows immediately from
Lemma B.3 that F! is uniformly strongly aligned with !.

This allows us to characterize the recursive Blackwell order in terms of the instrumental value
of information.

Corollary B.4. Let !;!0 2 ˝. Then, the following are equivalent.
(a) ! recursively Blackwell dominates !0.
(b) For any

�
.us/;˘; ı

�
that induces ! 7! V.�; !; �/, we have V.x; !; �/ � V.x; !0; �/ for all x 2 X .

Proof. That (a) implies (b) is easy to see. That (b) implies (a) is merely the contrapositive to Lemma
B.3.

We are now in a position to prove Proposition 2.3.

Proof of Proposition 2.3. We first show the ‘only if’ part. OnL, we have ` %� `0 implies ` % `0. This
implies, by Lemma 34 of Krishna and Sadowski (2014), that %� jL D% jL. This, and the uniqueness
of the raa representation (Proposition 5.5) together imply that

�
.us/; ı;˘

� D �.u�s /; ı�; ˘�
�
after a

suitable (and behaviorally irrelevant) normalization of the state-dependent utilities. Thus, part (b) of
Corollary B.4 holds, which establishes the claim.

The ‘if’ parth follows immediately from Corollary B.4.

C. Existence

As always, C.C � X/ is the space of all uniformly continuous functions on C � X and for ˛ 2
�.C � X/ and u 2 C.C � X/, u.˛/ WD R

C�X u.c; x/ d˛.c; x/ DW h˛; ui. For each s 2 S , fix
`�.s/ 2 �.C � X/, and define Us;`�.s/ WD fus 2 C.C � X/ W us.`�.s// D 0; kusk1 D 1g. Finally,
define U WD ˚

.p1u1; : : : ; pnun/ W us 2 Us;`�.s/; pi � 0;
P
i pi D 1

	
. The space U will serve as our
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subjective state space below. It is useful to reconsider U as U WD ˚
.p; u/ W p WD .p1; : : : ; pn/ 2

�.S/; u WD .u1; : : : ; un/ 2�s2S Us;`�.s/

	
.

Throughout this section we assume that % is a binary relation on X and has a static represen-
tation V W X ! R as follows:

V.x/ WD max
�2M

"Z
U
max
f 2x

X
s

psus.f .s// d�.p; u/
#

[�]

where the set M � ban.U/ is weak* compact53 and
R
Umax˛2x

P
i piui .˛i / d�.p; u/ is independent

of � for all ` 2 L. Theorem 1 of Section 1 in the Supplementary Appendix shows that % satisfies
Basic Properties (Axiom 1) and Axiom 2 (a)) if, and only if, it has a representation of the form [�].

For each � 2M, let V.x; �/ WD RUmaxf 2x
P
s psus.f .s// d�.p; u/ be the utility from choos-

ing the measure �. Let � W X ⇒ M be the mapping selecting the maximizing � for each x;
that is, � .x/ WD argmax�2M V.x; �/. It is easy to see that V.x; �/ is continuous in �, so it fol-
lows that � is a correspondence that is closed valued. Notice that by definition, V is (i) convex,
(ii) Lipschitz continuous, and (iii) L-affine in the sense that for all x 2 X , ` 2 L and t 2 Œ0; 1�,
V
�
.1 � t /x C t`� D .1 � t /V .x/C tV .`/. We shall use these properties in the sequel.

Each of the following subsections will introduce a new axiom which will, in turn, impose
further restrictions on the set M, eventually leading us to the desired representation theorem.

C.1. Partitional Representation

In this section, we consider the representation in [�] of % and impose Indifference to Incentivized
Contingent Commitment (henceforth IICC, Axiom 4).

The main consequence of assuming IICC (Axiom 4) is that instead of considering arbitrary
finitely additive measures � 2M over U in the representation [�], we can replace each � by a pair
.P; u/ along with a prior belief �0 over S , where P is a partition of S and u 2 C.C �X/.

Proposition C.1. Consider a preference relation % on X , and suppose V W X ! R represents % and
has the form in [�]. Then, the following are equivalent:
(a) % satisfies IICC (Axiom 4).
(b) The function V has the form

V.x/ D max
.P;u/2Mp

"X
J2P

�
max
f 2x

X
s2J

�0.s j J / us.f .s//
�
�0.J /

#
[C.1]

where Mp is a collection of pairs .P; u/ where P is a partition and u D .us/s2S is a collection
of state dependent (vN-M) utility functions on C � X with the property that for all s 2 S ,
us.˛/ D u0s.˛/ for all .P; u/; .P 0; u0/ 2Mp and ˛ 2 �.C � L/.

Notice that each partition P along with a prior �0 is equivalent to a posterior belief over S ,
while u corresponds to a Dirac measure over U, both of which are countably additive. Thus, an

(53) Here, ban.U/ is the space of bounded additive (or finitely additive) measures (ie, charges) on U that are
also normal (ie, inner and outer regular).
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essential part of the proof of Proposition C.1 is to show that IICC (Axiom 4) allows us to replace each
� 2M by a countably additive measure without affecting the representation. The proof is lengthy
precisely due to the complications that arise from dealing with � 2M in [�] that are finitely additive.
If we knew beforehand that each � was countably additive, the proof would simply formalize the
intuition behind IICC (Axiom 4) and be considerably shorter. The complete proof can be found in
Section 6 of the Supplementary Appendix.

C.2. Separable Representation

We now investigate the implication of imposing State-Contingent Indifference to Correlation (hence-
forth SCIC, Axiom 3). Suppose V W X ! R represents % and takes the form [C.1]. For each .P; u/,
define

V.x; .P; u// WD
X
J2P

�
max
f 2x

X
s2J

�0.s j J / us.f .s//
�
�0.J /

to be the expected utility when the pair .P; u/ is chosen from Mp.
For each ˛ 2 �.C �X/, define the equivalence class Œ ˛ � WD f˛0 2 �.C �X/ W ˛1 D ˛01; ˛2 D

˛02g of lotteries with identical marginals over C and X . Consider now the collection

M0p WD
�
.P; u0/ W .P; u/ 2Mp; u

0
s.˛/ D min

˛02Œ ˛ �
us.˛

0/; and ˛ 2 �.C �X/
�

and observe that u0s W �.C �X/! R is continuous and linear54 so that u0s 2 C.C �X/. Moreover,
for all .P; u0/; . OP ; Ou0/ 2 Mp, u0sjC�L D Ou0sjC�L. This implies that V.`; .P; u0// is independent of
.P; u0/ 2M0p.

Now define V 0 W X ! R as

V 0.x/ WD max
.P;u0/2M0p

V.x; .P; u0//[C.2]

Observe that V 0 is monotone, ie, x � x0 implies V 0.x/ � V 0.x0/. This follows immediately from the
form of V 0 in [C.2]. We claim that V 0 also represents %.

Lemma C.2. Let V and V 0 be defined as in [C.1] and [C.2] respectively. Then, for all x 2 X ,
V.x/ D V 0.x/.
Proof. Because V is Lipschitz, it suffices to show that V.x/ D V 0.x/ for all finite x. Notice first that
for all x 2 X , V 0.x/ � V.x/. To see this, fix x and let .P; u0/ be a maximizing pair for V 0. That is,
V 0.x/ D V.x; .P; u0//. But V.x; .P; u0// � V.x; .P; u// � V.x/, where the first inequality follows
from the definition of u0s , which entails that for each ˛ 2 �.C �X/, u0s.˛/ � us.˛/.

We shall now show that for all finite x 2 X , V.x/ � V 0.x/. Note first that for each x and for
any .P; u/ that is optimal for x with P D fJ1; : : : ; Jmg, for i D 1; : : : ; m we can define the acts

fi WD argmax
f 2x

X
s

�0.s j Ji / us.f .s//

(54) It is easy to see that for all ˛0 2 Œ ˛ � and ˇ0 2 Œ ˇ �, .1
2
˛0 C 1

2
ˇ0/i D 1

2
˛i C 1

2
ˇi for i D 1; 2. This, the

continuity of u0s.�IP /, and the fact that us.˛0IP / is linear in ˛0, immediately imply that u0s.�IP / is linear.
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Then, we see that V.x/ D V �ff1; : : : ; fmg�, ie, ff1; : : : ; fmg is the generator set of x.
Now define the act Ofi so that for each s 2 S ,

Ofi .s/ D argmin
˛2Œ fi .s/ �

us.˛/

With this definition, we make the following observations.
(a) V.ff1; : : : ; fmg/ D V.f Of1; : : : ; Ofmg/ by repeated application of SCIC (Axiom 3).
(b) V.f Of1; : : : ; Ofmg; .P; u// D V.f Of1; : : : ; Ofmg; .P; u0// for all pairs .P; u/ and .P; u0/. This follows

from the definitions of u0s and Ofi , which imply that in any state s, us. Ofi .s// D u0s. Ofi .s//.
(c) V.f Of1; : : : ; Ofmg/ D V.f Of1; : : : ; Ofmg; . OP ; Ou//where . OP ; Ou/ is amaximizing pair inM0p for f Of1; : : : ; Ofmg

under V .
(d) V.ff1; : : : ; fmg; . OP ; Ou0// D V.f Of1; : : : ; Ofmg; . OP ; Ou0//. This follows from the definitions of Ou0 and

Ofi , which imply that in any state s, Ou0s.fi .s// D Ou0s. Ofi .s//.
We can now use these equalities to form the following chain.

V.x/ D V.ff1; : : : ; fmg/ definition of ff1; : : : ; fmg
D V.f Of1; : : : ; Ofmg/ established in (a) above
D V.f Of1; : : : ; Ofmg; . OP ; Ou0// established in (c) above
D V.f Of1; : : : ; Ofmg; . OP ; Ou0// established in (b) above
D V.ff1; : : : ; fmg; . OP ; Ou0// established (d) above
� V 0.ff1; : : : ; fmg/ definition of V 0

� V 0.x/ monotonicity of V 0

which completes the proof.

We can now state the main result of this section.

Proposition C.3. Let V be as in [C.1] and suppose V represents%. Then, the following are equivalent.
(a) % satisfies SCIC (Axiom 3).
(b) There exist functions us 2 C.C / and a set M00p consisting of pairs of .P; .vs// where P is a

partition and vs 2 C.X/ for each s such that .P; .vs//; .P 0; .v0s// 2M00p implies vsjL D v0sjL for
all s 2 S , and V can be written as

V.x/ D max
.P;.vs//2M00p

X
J2P

�0.J /max
f 2x

X
s

�0.s j J /
�
us.f1.s//C vs.f2.s//

�
[C.3]

Proof. It is easy to see that (b) implies (a). We now show that (a) implies (b).
Lemma C.2 implies we can replace V in [C.1] by V 0 in [C.2]. Moreover, from the definition of

V in [C.1], us.˛/ D u0s.˛/ for all .P; u/; .P 0; u0/ 2M0p and for all ˛ 2 �.C � L/.
For any ˛ 2 �.C � X/ with marginals ˛1 and ˛2, let ˛1 ˝ ˛2 2 �.C/ � �.X/ denote the

product lottery with the same marginals. Recall that `� 2 L is such that us.`�.s// D 0 for all s. Given
.P; u/, now define
� us.˛1/ WD us

�
˛1 ˝ `�2.s/

�
(and notice us.˛/ D u0s.˛/ for all .P; u/; .P 0; u0/ 2 Mp and for all

˛ 2 �.C � L/ because ˛1 ˝ `�2.s/ 2 �.C � L/); and

45



� vs.˛2/ WD us
�
`
�
1.s/˝ ˛2

�
.

With these definitions, us 2 C.C / while vs.�/ 2 C.X/. Notice that the lotteries 12
�
˛1˝ ˛2

�C 1
2
`�.s/

and 1
2

�
˛1 ˝ `�2.s/

�C 1
2

�
`
�
1.s/˝ ˛2

�
have identical marginals, which implies that for every .P; u/,

us

�
1
2

�
˛1 ˝ ˛2

�C 1
2
`�.s/

�
D us

�
1
2

�
˛1 ˝ `�2.s/

�C 1
2

�
`
�
1.s/˝ ˛2

��
This means we can write

1
2
us
�
˛1 ˝ ˛2

�C 1
2
us
�
`�.s/

� D us

�
1
2

�
˛1 ˝ ˛2

�C 1
2
`�.s/

�
D us

�
1
2

�
˛1 ˝ `�2.s/

�C 1
2

�
`
�
1.s/˝ ˛2

��
D 1

2
us
�
˛1 ˝ `�2.s/

�C 1
2
us
�
`
�
1.s/˝ ˛2

� D 1
2
us.˛1/C 1

2
vs.˛2/

where the second equality holds because us.�/ is constant on the equivalence class of lotteries with
identical marginals. The first and third equalities from the linearity of us.�/, while the last equality
follows from the definitions of us and vs.�/.

But we have already stipulated that us
�
`�.s/

� D 0, which implies that for all s, we have

us
�
˛1 ˝ ˛2

� D us.˛1/C vs.˛2/
Substituting in [C.2] and invoking Lemma C.2 gives us [C.3], as desired.

As always, for each .P; .vs// 2M00p, define V.x; .P; .vs// as

V.x; .P; .vs// D
X
J2P

�0.J /max
f 2x

X
s

�0.s j J /
�
us.f1.s//C vs.f2.s//

�

C.3. Representation with Deterministic Continuation Utilities

Thus far, we have seen that % has a representation as in [C.3]. We now impose Concordant Indepen-
dence (Axiom 5) and show that % then has a representation of the form

V.x/ D max
P2M]

p

X
J2P

"
max
f 2x

X
s

�0.s j J /
�
us.f1.s//C vs.f2.s/; P /

�
�0.J /

#
[C.4]

where M]
p is a finite collection of partitions P of S , us 2 C.C /, and vs.�; P / 2 C.X/ for each s 2 S

and P 2M
]
p, with the property that for all P;P 0 2M

]
p, s 2 S , vs.�; P /jL D vs.�; P 0/jL.

For a fixed P in the representation in [C.3], let X 0P and OXP be defined as follows:

X 0P WD
˚
x W V.x/ D V �x; .P; .vs//� for some .P; .vs// 2M00p and

V.x/ > V
�
x; .Q; .v0s//

�
for all .Q; .v0s// 2M00p such that P ¤ Q	

OXP WD
˚
x W V.x/ D V �x; .P; .vs//� for some .P; .vs// 2M00p and

V.x/ � V �x; .Q; .v0s//� for all .Q; .v0s// 2M00p such that P ¤ Q	
Recall that x1.P / WD x.P; O!/ as in [�] in Section 2.5. That is, for any partition P , x1.P / 2 X

is a one-period problem where the choice of P is optimal.
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Lemma C.4. Let x 2 X 0P . Then, for all � 2 .0; 1/, .1 � �/x C �x1.P / 2 X 0P . Moreover, V
�
.1 �

�/x C �x1.P /
� D V �.1 � �/x C �`�� > V �.1 � �/x C �x1.Q/� if P is not finer than Q.

Proof. We begin by establishing three claims.
(i) In the representation [C.3], vs.`�/ > vs.`�/ for all s 2 S .
(ii) V.x1.Q// � V.`�/ for all Q 2 P.
(iii) V

�
x1.Q/; .P; .vs//

� D V.`�/ if, and only if, P is finer than Q.
To see (i), observe that by the raa representation of Appendix A.7,

�
`� ˚.1;Sns/ `�

� ��
`� ˚.1;Sns/ `�

� D `� for all s 2 S . Becausewe have vs.`/ D v0s.`/ for all ` 2 L and .P; .vs//; .P 0; .v0s// 2
M00p in [C.3], vs.`�/ > vs.`�/ follows for all s 2 S .

Given claim (i), and because us.cCs / � us.c�s / for all s, claim (ii) follows by evaluating V in
[C.3] at x1.Q/.

To establish claim (iii), consider first P finer than Q; then

V .x1 .Q/ ; .P; .vs/// D
X
J2P

�0 .J / max
f 2x1.Q/

X
s

�0 .s jJ / Œus .f1 .s//C vs .f2 .s//�

D
X
J2P

�0 .J /
X
s

�0 .s jJ /
�
us.c

C
s /C vs.`�/

�
D V �`�; .P; .vs//� D V.`�/

Now suppose instead that P is not finer than Q: Then there must be J 2 P with s 2 J such that"
argmax
f 2x1.Q/

 X
s0

�0
�
s0 jJ � �us0 �f1 �s0��C vs0 �f2 �s0���!# .s/ D `� .s/

Then, by claim (i) and because us.cCs / � us.c
�
s / for all s by construction, we find that V.`�/ >

V
�
x1.Q/; .P; .vs//

�
.

With the claims in hand, observe that V ..1 � �/ x C �x1.P // � V ..1 � �/ x C �x1.P /; .P 0; �//
for all .P 0; �/ 2M00p. Let .vs/ be such that .P; .vs// 2M00p and V .x/ D V .x; .P; .vs///. Then

V ..1 � �/ x C �x1.P /; .P; .vs/// D .1 � �/ V .x/C �V .x1.P /; .P; .vs///
D .1 � �/ V .x/C �V �`�� D V �.1 � �/ x C �`��

by claims (ii) and (iii). Moreover, for any other .Q; .v0s// 2M00p,

V..1 � �/x C �x1.P /; .Q; .v0s/// D .1 � �/V.x; .Q; .v0s///C �V.x1.P /; .Q; .v0s///
< .1 � �/V.x/C �V.`�/

where the strict inequality is because V.x; .Q; .v0s/// < V.x/ D V.x; .P; �// (recall that x 2 X 0P ) and
V.x1.P /; .Q; .v

0
s/// � V.`�/ (claim (ii) above). This implies .1� �/xC �x1.P / 2 X 0P . Moreover, it

now follows immediately that V ..1 � �/ x C �x1.P // D V ..1 � �/ x C �`�/.
Finally, suppose P is not finer than Q. Consider the menu .1 � �/x C �x1.Q/ and suppose

.P 0; �/ 2M00p is optimal for this menu. Notice that if P 0 ¤ P , then V.x; .P 0; �// < V.x; .P; �// D V.x/
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by virtue of x 2 X 0P , and that if P D P 0, then V.x1.Q/; .P; �// < V.`�/ by case (iii) because P is
not finer than Q. Thus,

V
�
.1 � �/x C �x1.Q/

� D V �.1 � �/x C �x1.Q/; .P 0; �/�
D .1 � �/V.x; .P 0; �//C �V.x1.Q/; .P 0; �//
< .1 � �/V.x; .P; �//C �V.`�/ D V �.1 � �/x C �`��

which completes the proof.

Lemma C.5. X 0P is convex and consists of concordant racps.

Proof. Because V is L-affine, any .P; .vs// that is optimal for x is also optimal for .1� t /x C t` for
all t 2 Œ0; 1� and ` 2 L, and vice versa. Thus, x 2 X 0P if, and only if, .1 � t /x C t` 2 X 0P .

Let x; y 2 X 0P be such that x % y. It follows from IICC (Axiom 4) that x % y % `�.
By Continuity of % (Axiom 1 (b)), there exists a t 2 Œ0; 1� such that .1 � t /x C t`� � y and
.1 � t /x C t`� 2 X 0P (as we observed above). Thus, it is without loss of generality to consider
x; y 2 X 0P such that x � y.

By Lemma C.4, .P; . Qvs// 2M00p remains optimal for both .1 � �/x C �x1.P / and .1 � �/y C
�x1.P /, for all � 2 .0; 1/. It follows that x and y are �-concordant (Definition 3.1), and by Concordant
Independence (Axiom 5), so are x and 1

2
x C 1

2
y. It follows that x, y, and 1

2
x C 1

2
y are concordant.

Now suppose .Q; .v0s// 2 M00p is optimal for 1
2
x C 1

2
y. Then, V.x; .Q; .v0s/// � V.x/ and

V.y; .Q; .v0s/// � V.y/. Because x, y, and 1
2
xC 1

2
y are �-concordant, V.x/ D V.y/ D V.1

2
xC 1

2
y/,

ie, .Q; .v0s// is optimal at x and y. But x; y 2 X 0P , which implies thatQ D P . That is, 1
2
xC 1

2
y 2 X 0P .

Standard arguments now imply that every ´ 2 Œx; y� is concordant with x and y and the
argument above establishes that Q D P for any maximizer .Q; .v0s// at ´, ie, X 0P is convex.

Lemma C.6. For each x 2 X , there exists .P; .vs// 2M00p such that x 2 cl.X 0P /.

Proof. Let x 2 OXP1
\ � � � \ OXPn

and suppose n � 2 (because if n D 1, then x 2 X 0P � cl.X 0P /).
Without loss of generality, suppose that none of P2; : : : ; Pn are finer than P1. In analogy to the
arguments in the proof of Lemma C.4, we find that V..1��/xC�x1.P1/; .P1; .v1s /// D V..1��/xC
�`�/ > V..1 � �/x C �x1.P1/; .Pi ; .vis/// for some v1s with .P; .v1s // 2M00p and all .Pi ; .vis// 2M00p
for i D 2; : : : ; n. That is, .1 � �/x C �x1.P1/ 2 X 0P1

for all � 2 .0; 1/, which implies x 2 cl.X 0P1
/ as

claimed.

Lemma C.7. Let x 2 X 0P and let Yx denote the set of racps that (i) are concordant with x, and (ii)
have a unique optimal partition. Then, Yx D X 0P .
Proof. By hypothesis, P is uniquely optimal for x. Let Q ¤ P be optimal for y 2 Yx . Because V is
L-affine, we may assume without loss of generality, that x � y. (This is made clear in the proof of
Lemma C.5.) If P is not finer than Q, by Lemma C.4, .1 � �/y C �x1.Q/ � .1 � �/x C �x1.Q/,
which contradicts our assumption that x and y are concordant. Conversely, if Q is not finer than P ,
then an analogous argument establishes that .1 � �/x C �x1.P / � .1 � �/y C �x1.P /, which also
contradicts our assumption that x and y are concordant. Therefore, P must be the unique optimal
partition for any y 2 Yx . Thus, Yx � X 0P . That X 0P � Yx is an immediate consequence of Lemma
C.5.
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Notice that replacing M00p with its weak* closure (in the event that it is not weak* compact) in
[C.3] does not affect the representation. Therefore, we shall now assume that M00p is weak*-compact.

Lemma C.8. Let x 2 cl.X 0P /. Then, there exists .vs/ such that .P; .vs// 2 M00p is optimal for all
y 2 cl.X 0P /.

Proof. By Lemma C.7, Yx � X 0P which, by Lemma C.5, is convex. By Concordant Independence,
% jX 0P satisfies Independence. That is, V jX 0P is linear. It follows from Lemma 2.5 in the Supplementary
Appendix that there exists .vs/ such that .P; .vs// is optimal for all x 2 X 0P . Continuity now implies
that .P; .vs// is optimal for all x 2 cl.X 0P /.

It follows that we can replace the set M00p by a finite collection f.P1; .v1s //; : : : ; .Pn; .vns //g D
M
]
p as in [C.4]. Thus, we have shown that (a) implies (b) in the following proposition. That (b)

implies (a) is clear.

Corollary C.9. Let V be as in [C.3] and suppose V represents %. Then, the following are equivalent.
(a) % satisfies Concordant Independence (Axiom 5).
(b) V can be written as in [C.4].

As always, for any partition P 2M
]
p, we define

V.x; P / D
X
J2P

max
f 2x

hX
s

�0.s j J /
�
us.f1.s//C vs.f2.s/; P /

�
�0.J /

i

C.4. Self-Generating Representation

Recall that a representation V W X ! R of % is a self-generating representation if V 2 ˚� (see
section A.8 for the definition of˚�). Starting from the representation in [C.4], we show in this section
that imposing Self-Generation (Axiom 6) on % implies it has a self-generating representation.

Proposition C.10. Let % be a binary relation on X . Then, the following are equivalent.
(a) % satisfies Axioms 1–6.
(b) % has a self-generating representation, that is, there exists a function V 2 ˚� that represents %.

The proof is in Appendix C.4.2. We first show that %.x;s/ from Definition 3.2 is well defined.
We begin with a preliminary lemma.

Lemma C.11. Let x D ff1; : : : ; fmg, and x0 D ff 01; f 02; : : : ; f 0mg. Suppose d.fi ; f 0i / < ". Then,
d.x; x0/ < ".

Proof. Recall that d.fi ; x0/ WD minj d.fi ; f 0j / < ". Therefore, maxfi2x d.fi ; x0/ < ". A similar
calculation yields maxf 0

j
2x0 d.f 0j ; x0/ < ", which implies that d.x; x0/ < " from the definition of the

Hausdorff metric.

Notice that M]
p in [C.4] is finite and can be taken to be minimal (in the sense that if N]p is

another set that represents V as in [C.4], then M
]
p � N

]
p) without affecting the representation.
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Lemma C.12. Let % have a representation as in [C.4]. For all P 2 M
]
p, there exists a finite x 2

X 0P \X�, where X 0P is defined in Section C.3.

Proof. The finiteness and minimality of M]
p in [C.4] implies that for any P 2M

]
p, there exists an

open set O � X 0P . Because the space X� is dense in X , there exists x 2 O \X�.

Lemma C.13. Let % have a representation as in [C.4]. For all P 2M
]
p, vs.y; P / � vs.`�; P /.

Proof. Suppose instead that vs .y; P / < vs .`�; P /. Consider x 2 X 0P \X� which exists by Lemma
C.12. Then, for " > 0 small enough such that P remains optimal,

�
x ˚";s `�

� � �x ˚";s y�. To see
this, suppose f ˚";s y is chosen optimally from the menu x ˚";s y. Then, vs .y; P / < vs .`�; P /
implies

.1 � "/Œus.f1.s//C vs.f2.s/; P /�C "
�
us.c

�
s /C vs.y; P /

�
< .1 � "/ Œus.f1.s//C vs.f2.s/; P /�C "

�
us.c

�
s /C vs.`�; P /

�
This implies V.x ˚";s `�/ > V.x ˚";s y/. But this contradicts part (a) of IICC (Axiom 4), which
requires that Œx ˚.";s/ y� % Œx ˚.";s/ `�� for all y 2 X .

Lemma C.14. Let % have a representation as in [C.4]. Fix P 2 M
]
p. For any finite x 2 X 0P and

s 2 S , %.x;s/ is independent of the choice of " 2 .0; 1/ for which Definition 3.2 applies. In particular,
%.x;s/ is represented by vs .�; P / on any X . Finally, if x0 is finite, has a unique optimal partition, and
is concordant with x, then %.x;s/D%.x0;s/.
Proof. Let x 2 X 0P be finite, so that V .x/ D V .x; P /. Fix s 2 S . Because V in [C.4] is continuous,
there is " > 0 such that P is the unique optimal partition for all x0 2 B .xI "/, and hence all x0; x00 2
B .xI "/ are concordant with each other (see Lemma C.7). By Lemma C.11, Œx˚.";s/y�, Œx˚.";s/y0� 2
B .xI "/. Then, �x ˚.";s/ y� % �x ˚.";s/ y0� if, and only if, V

�
x ˚.";s/ y

� � V �x ˚.";s/ y0�. Suppose
f ˚";s y is optimally chosen from x ˚";s y in the state s. Then, it must be that

.1 � "/Œus.f1.s//C vs.f2.s/; P /�C "
�
us.c

�
s /C vs.y; P /

�
� .1 � "/ Œus.f1.s//C vs.f2.s/; P /�C "

�
us.c

�
s /C vs.y0; P /

�
which implies vs .y; P / � vs .y0; P /. Conversely, vs.y; P / � vs.y0; P / implies that if f ˚";s y0 is
optimally chosen from x ˚";s y0 in state s, then the inequality displayed above holds, which implies�
x ˚.";s/ y

�
%
�
x ˚.";s/ y0

�
. But this is independent of our choice of " > 0 as long as it maintains

concordance.
Finally, if x and x0 are concordant and x0 has a unique optimal partition, then by Lemma C.7

x0 2 X 0P . It follows that %.x0;s/ is also represented by vs .�; P /, and hence %.x;s/D%.x0;s/, which
completes the proof.

Lemma C.15. The binary relation %.P;s/ on X which is represented by vs .�; P / satisfies Axioms
1–6.

Proof. By Lemma C.14, %.P;s/D%.x;s/ for some x 2 X 0P . By Self-Generation (Axiom 6), %.x;s/
satisfies Axioms 1–6 on X .

Before we prove Proposition C.10, an interlude.
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C.4.1. Some Properties of Consumption Streams
We now relate preferences on L to those on X .

Let QX1 WD K
�
F.�.C � f`�g//

�
be the space of one-period problems that always give `� at

the beginning the second period. Inductively define QXnC1 WDK
�
F.�.C � QXn//

�
for all n � 1, and

note that for all such n, QXn � X . Finally, let QX WDSn
QXn.

Lemma C.16. The set QX � X is dense in X .

Proof. Recall thatX is the space of all consistent sequences in�1nD1Xn, whereX1 WDK
�
F.�.C //

�
andXnC1 WDK

�
F.�.C�Xn//

�
. Clearly, every x 2 X is a sequence of the form x D .x1; x2; : : : ; xn; : : : /,

and the metric on X is the product metric.
For any x D .x1; x2; : : : / 2 X and n � 1 set Qxn 2 QXn to be xn concatenated with `�. It follows

from the product metric on X — see Appendix A.2 — that for any " > 0, there exists n � 1 such
that d.x; Qxn/ < ", as claimed.

Lemma C.17. Let % satisfy Axioms 1–5. Then, for any s 2 S and P 2M
]
p, `� %.P;s/ ` %.P;s/ `�

for all ` 2 L.
Proof. The preference % has a separable and partitional representation as in [C.4]. Therefore, %s
on L is represented by us.�/ C vs.�;Q/ for all Q. Moreover, % jL has an raa representation. As
observed in Section A.7, %s on L is separable and has the property that for all c 2 C , ` 2 L and
s 2 S , .c; `�/ %s .c; `/ %s .c; `�/. This implies that for all ` 2 L, vs.`�;Q/ � vs.`;Q/ � vs.`�;Q/
for all partitions Q 2M

]
p in the representation [C.4]. But vs.�; P / represents %.P;s/ which implies

that `� %.P;s/ ` %.P;s/ `� for all ` 2 L, s 2 S .
Proposition C.18. Let % satisfy Axioms 1–6. Then, for all x 2 X , `� % x.

Proof. By the continuity of % and by Lemma C.16, it suffices to show that for all Qx 2 QX , `� % Qx.
Suppose Qx 2 QXn. We first consider the case n D 1. It follows immediately from the representa-

tion in [C.4] that V. Qx1/ � V.`�/ for all Qx1 2 QX1. Notice that the representation in [C.4] is equivalent
to % satisfying Axioms 1–5. But % satisfies Axiom 6, so that %.P;s/ also satisfies Axioms 1–6 for
any P 2M

]
p, which implies that there exists `�

.P;s/
such that vs.`�P;s/ � vs. Qx1; P / for all Qx1 2 QX1.

By Lemma C.17, we may take `�P;s D `�, so that vs.`�; P / � vs. Qx1; P / for all Qx1 2 QX1.
Now consider the induction hypothesis: If % satisfies Axioms 1 – 6, then for all Qxn 2 QXn,

`� % Qxn. Suppose the induction hypothesis is true for some n � 1. We shall now show that it is also
true for nC 1.

Because%.P;s/ also satisfies Axioms 1–6 onX , wemust also have vs.`�; P / � vs. Qxn; P / for all
Qxn 2 QXn (where we have appealed to Lemma C.17 to establish that `� is the vs.�; P /-best consumption
stream). In particular, this implies that for any lottery ˛2 2 �. QXn/, vs.`�; P / � vs.˛2; P /.

Now consider any QxnC1 2 QXnC1. We have, for any choice of P ,

V. QxnC1; P / D max
f 2QxnC1

X
J2P

�0.s j J /
�
us.f1.s//C vs.f2; P /

�
�
X
J2P

�0.s j J /
�
us.c

C
s /C vs.`�; P /

�
D V.`�; P / D V.`�/
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where we have used the facts that f1.s/ 2 �.C/ and f2.s/ 2 �. QXn/, and that us.cCs / and vs.`�IP /
respectively dominate all such lotteries, as established above. Thus, for all QxnC1 2 QXnC1, `� % QxnC1,
which completes the proof.

C.4.2. Proof of Proposition C.10
Proof. To see that (b) implies (a), suppose % has the representation [C.4]. By Proposition C.9 %
satisfies Axioms 1–5. All that remains to establish is that % also satisfies Axiom 6.

Given a representation as in [C.4] that is also self-generating, let x 2 X be finite and P 2M
]
p

be an optimal partition for x. Observe first that if x 2 X 0P , then by Lemma C.14 %.x;s/ is represented
by vs.�; P /. Because the representation is self-generating, %.x;s/ must satisfy Axioms 1–5 on X .

In general, P may not be uniquely optimal for x. By definition, %.x;s/ is complete on X only if
for all y; y0 2 X there is " 2 .0; 1� such that Œx ˚.";s/ y�, Œx ˚.";s/ y0�, and x are pairwise concordant.

As in the proof of Lemma C.7 we assume, without loss of generality, that Œx ˚.";s/ y� �
Œx˚.";s/ y0�. To build intuition, suppose the only optimal partitions for x are P;Q 2M

]
p with P ¤ Q.

Suppose, further, that P is optimal for x˚.";s/ y andQ is not, whileQ is optimal for x˚.";s/ y0 and
P is not. Again without loss of generality, suppose that Q is not finer than P . In that case

Œ.1 � t / x ˚.";s/ y C tx1 .P /� � Œ.1 � t / x ˚.";s/ y0 C tx1.P /�

violating concordance of x ˚.";s/ y and x ˚.";s/ y0. Hence, it must be that either P or Q is optimal
for both. The same argument applies if more than two partitions are optimal in x. Thus, if %.x;s/
is complete on X , then there is P in M

]
p such that for every y 2 X there is " > 0 with P optimal

for x ˚.";s/ y. Therefore, %.x;s/ is represented on X by vs.�; P / for some P 2 M
]
p. Because the

representation is self generating, %.x;s/ must satisfy Axioms 1–5 on X . Because V 2 ˚�, the
same argument applies to preferences induced by %.x;s/, and so on, ad infinitum, which establishes
Self-Generation (Axiom 6).

To see that (a) implies (b), note that Lemma C.15 has two implications. First, %.P;s/ has
a separable and partitional representation v0s.�; P / as in [C.4]. Because vs.�; P / also represents
%.P;s/ it follows that vs.�; P / and v0s.�; P / are identical up to a monotone transformation. But, by
L-Indifference to Timing (Axiom 2(d)), it must be that vs.�; P / and v0s.�; P / are unique up to a
positive affine transformation on L. Let us re-normalize v0s.�; P / so that vs.�; P / D v0s.�; P / on L.

Second, because %.P;s/ satisfies Axioms 1–6, it satisfies the hypotheses of Proposition C.18.
Together with Lemma C.17 and IICC (Axiom 4), this implies that `� %.P;s/ y %.P;s/ `� for all
y 2 X . Because vs.�; P / and v0s.�; P / both represent %.P;s/, they must agree on X because they agree
on L. It follows that vs.�; P / also has a representation as in [C.4], that is, it can be written as

vs.x; P / D max
P 02M]

p.P /

X
J2Q

�0.J /max
f 2x

X
s

�0.s j J /
�
u0s.f1.s//C v0s.f2.s/IP 0/

�
Then, because %.x;s/ satisfies Axioms 1–6, it follows from the reasoning above that each v0s.�; P 0/
in the above representation of vs.�; P / also has a representation as in [C.4], and so on, ad infinitum,
which demonstrates that V 2 ˚�.
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C.5. Recursive Representation

We now establish a recursive representation for %, thereby proving Theorem 2.
Recall from Appendix A.7 that % jL has a standard raa representation

�
.us/; ı;˘

�
. That is,

there exist functions V �L .�; s/ W L ! R such that V �L .`; �0/ WD
P
s �0.s/V

�
L .`; s/ represents % jL,

and
V �L .`; s/ WD

X
s0

˘.s; s0/
�
us0.`1.s

0//C ıV �L .`2.s0/; s0/
�

where us
�
c
�
s

� D 0 for all s 2 S . This implies V �L .`
�; s/ D 0 for all s, so that V �L .`

�; �0/ D 0. The
function V �L (recall that V �L also denotes the linear extension of V �L to �.L/) is uniquely determined
by the tuple

�
.us/s2S ; ı;˘

�
.

By Proposition C.10 % has a self-generating representation V 2 ˚� that satisfies V.`�/ D
0. Now, V jL and V �L .�; �0/ both represent % jL on L. Because % jL is continuous and satisfies
Independence on L, it follows from the Mixture Space Theorem — see Herstein and Milnor (1953)
— that V jL and V �L .�; �0/ are identical up to a positive affine transformation. Given that V.`�/ D
V �L .`

�; �0/ D 0, the Mixture Space Theorem implies V jL and V �L .�; �0/ only differ by a scaling.
Therefore, rescale the collection .us/s2S by a common factor so as to ensure V jL D V �L .�; �0/ on L.

Fix !0 and observe that by Proposition A.1, the tuple
�
.us/s2S ; ˘; ı; !0

�
induces a unique

value function that satisfies [Val]. Notice also that this value function agrees with V �L .�; �0/ on L.
We denote this value function, defined on X �˝ � S , by V �.�; !0; �0/.

The next result proves Theorem 2.

Proposition C.19. Let V be a self-generating representation of % such that '�.V / D !0, and
suppose V.�/ D V �.�; !0; �0/ on L. Then, V.�/ D V �.�; !0; �0/ on X .55

Proof. In this proof, we frequently refer to objects defined in Appendix A.8. For any x, let �.x; !0/
denote the optimal plan for the utility V and let ��.x; !0/ denote the optimal plan for V �. By Lemma
A.15, there exist `�.x;!0/; `��.x;!0/ 2 Lx;!0

such that

V.x/ D V.`�.x;!0// � V.`��.x;!0// D V �.`��.x;!0// D V �.x; !0; �0/
Reversing the roles of V and V �, we obtain once again from Lemma A.15 that

V �.x; !0; �0/ D V �.`��.x;!0// � V �.`�.x;!0// D V.`�.x;!0// D V.x/
In both displays, the second equality obtains because V and V � agree on L. Combining the two
inequalities yields the desired result.

Suppose V represents % and V 2 ˚�. Then, there exists an implementation of V , given by�
.us/;Q; .v

.1/
s .�; P //; ��. For ease of exposition, we shall say that the collection .v.1/s .�; P // imple-

ments V . Then, for all n � 1, there exists .v.n/s / 2 ˚� that implements v.n�1/s and so on. Notice that
each v.n/s depends on all the past choices of partitions. However, our recursive representation V � is
only indexed by the current state of the ric, and so is entirely forward looking.

(55) It follows immediately from Proposition C.19 that in considering dynamic plans, we may restrict attention
to stationary plans. This is because we have a recursive formulation with discounting where all our
payoffs are bounded, which obviates the need for non-stationary plans — see, for instance, Proposition
4.4 of Bertsekas and Shreve (2000) or Theorem 1 of Orkin (1974).
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D. Proof of Proposition 4.3

Let V .F; P / be the consumption value F generates under partition P . LetPM be the set of partitions
accessible under M. Since S is finite, so is PM. Therefore, there is OT <1 by which any P 2 PM

can be reached via some information plan. By part (a) of Definition 4.2, for any such P there
is an information plan that features learning P every period after OT . For H 2 K.F.� .C /// let
PH 2 argmaxP2PM

V .H;P /. Consider now T � > OT ; for ` ˘T � F1, it must then be optimal to
follow an information plan that features learning PF in each period after T �. If FTG �T � F1,
then there must be an information plan under which G generates a strictly higher value in some
periods than does F under PF . Hence, V .G;PG/ > V .F; PF /, and therefore G1 %T � GTF . This
establishes part (a) of Definition 4.1.

For partition P let F P WD ffJ W J 2 P g 2K.F.� .C /// where fJ .s/ D cCs if s 2 J and is
c�s otherwise. Consider P and Q from part (b) of Definition 4.2. Without loss of generality, there
exists ˛ 2 .0; 1� such that V

�
F P ; P

� D V
�
F
Q
˛ ;Q

�
, where FQ˛ WD ˛FQ C .1 � ˛/ f∅. Because

the singleton f∅ requires no choice, there is no risk of confusion in assuming that V.F P ; P / D
V.FQ;Q/.

Because P is maximal in PM, only an information plan that features P in every period after
T � is optimal for ` ˘T � F P1. Similarly, only an information plan that features Q in every period
after T � is optimal for ` ˘T � FQ1 . Further, because Q … � .� .P; �; s// for any � 2 � and s 2 S ,
F P1 �T � F PT FQ. Analogously, because P … � .� .Q; �; s//,

�
FQ

�
1 �T � F

Q
T F

P . This establishes
part (b) of Definition 4.1.
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