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All references to definitions and results in this Supplement refer to Dillenberger,
Krishna, and Sadowski (2016, henceforth DKS) unless otherwise specified. This supplement
is organized as follows. Section 1 establishes the Abstract Static Representation that is the
starting point for our derivations in Appendix C of DKS. Section 2 reviews relevant notions
from convex analysis. Section 3 provides a preference independent notion of minimality on
the space of rics, which is referred to in Section 6 of DKS. Section 4 provides a metric
on the space of partitions as referred to in Appendix A.3 of DKS. Section 5 extends the
existence of the RAA representation, which is established in Krishna and Sadowski (2014)
for finite prize spaces, to our domain with a compact set of prizes, as discussed in Appendix
A.7 of DKS. Finally, Section 6 provides a detailed proof of the partitional representation
introduced in Appendix C.1 of DKS.

1. Abstract Static Representation

Let Y be a compact metric space. Then, �.Y / is the space of probability measures on Y .
For compact metric spaces Y1; : : : ; Yn, we will consider the product space Z WD �.Y1/ �

� � � ��.Yn/. We are interested in the space of closed subsets of Z, K.Z/ (endowed with
the Hausdorff metric), and also in the space of closed and convex subsets Kc.Z/. It is well
known that Kc.Z/ is a closed subset of K.Z/.

The convex hull of a set A (in the relevant ambient vector space) is denoted by chA.
If the ambient vector space has a topology, then cchA denotes the closed convex hull of A.

Recall that C.Yi/ is the space of all uniformly continuous functions on Yi and for
˛i 2 �.Yi/ and ui 2 C.Yi/, ui.˛i/ WD

R
Yi
ui.yi/ d˛i.yi/ DW h˛i ; uii; endowed with the

supremum norm, C.Yi/ is a Banach space. For each s 2 S , let Ls � �.Ys/ be a closed
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subset, and define L WD�s2S Ls. Fix `�s 2 Ls, and define UYs ;`�s WD fus 2 C.Ys/ W us.`
�
s/ D

0; kuk1 D 1g. Finally, define U WD
˚
.p1u1; : : : ; pnun/ W us 2 U

Ys ;`
�
s
; ps � 0;

P
s ps D 1

	
.

The space U will serve as our subjective state space below. It is useful to reconsider U as
U WD

˚
.p; u/ W p WD .p1; : : : ; pn/ 2 �.S/; u WD .u1; : : : ; un/ 2�s2S UYs ;`�s

	
.

Specifically, if we consider the domain X , then each Ys WD C �X , which then results
in a corresponding definition of U.

Theorem 1. Let % be a binary relation on X . Then, the following are equivalent:
(a) % satisfies Basic Properties (Axiom 1) and L-Independence (Axiom 2 (a)).
(b) There exists a metric space of continuous functions U (as defined above) and a minimal

set M of finite, normal, and positive charges1 on U that is weak* compact such that
[i] For all ` 2 L and s 2 S ,

R
U
psus.`s/ d�.p; u/ is independent of � 2M, and

[ii] The function V W X ! R given by

V.x/ WD max
�2M

"Z
U

max
˛2x

X
s

psus.˛s/ d�.p; u/
#

[�]

represents %.

The proof of Theorem 1 follows immediately from Propositions 1.10, 1.11, and 1.12
below.

1.1. Algebraic Representation

Recall that our domain is X ' K
�
F.�.C � X//

�
. We shall first show that under our

assumptions, every closed subset is indifferent to its closed convex hull.

Lemma 1.1. If % satisfies Axiom 1, then for each x 2K.Z/, x � cch.x/.

Proof. First consider x 2 X that is finite and follow Ergin and Sarver (2010a, Lemma
2). Notice that cch.x/ % x by Monotonicity (Axiom 1(d)). Let x0 WD x, and for each
k � 1, define xk WD 1

2
xk�1 C 1

2
xk�1. Then, by Aversion to Randomization (Axiom 1 (e)),

xk�1 % xk. In other words, by Order (Axiom 1(a)), x % xk for all k � 1. But notice
that d.xk; cch.x//! 0 as k !1. Therefore, by Continuity (Axiom 1(b)), it follows that
x % cch.x/, which proves that x � cch.x/ for all finite subsets of X .

Now consider the general case, where x 2 X is arbitrary. Then, there exists a sequence
of finite sets .xm/ such that (i) xm � x for all m, and (ii) d.xm; x/ ! 0 (in the Hausdorff
metric). But each xm � cch.xm/. It is also easy to see that d.cch.x/; cch.xm// ! 0 as
m!1. Continuity (Axiom 1(b)) now implies that x � cch.x/, which proves the claim.

In light of lemma 1.1, in what follows, we may restrict attention to the space Kc.X/.

(1) A charge is a finitely additive measure.
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Lemma 1.2. If % satisfies Continuity (Axiom 1(b)) and L-Independence (Axiom 2(a)),
then there exists a continuous and affine function � W L! R such that � represents % jL, ie,
for all `; `0 2 L, ` % `0 if, and only if, �.`/ � �.`0/.

Proof. Independence and Continuity hold on L, so by the Expected Utility Theorem, the
claim follows.

Corollary 1.3. If % satisfies Axiom 1, there exist `]; `] 2 L such that `] � `].

Proof. Consider `]; `] 2 L that exist by Lipschitz continuity (Axiom 1(c)). Set x D y D f`]g
and ˛ D 1

2
. Lipschitz continuity then implies `] � 1

2
`] C 1

2
`]. Similarly, let x D y D f`]g

and ˛ D 1
2
, so Lipschitz continuity implies 1

2
`] C 1

2
`] � `]. It follows immediately that

`] � `].

Lemma 1.4. Given the function � W L! R from lemma 1.2 above, there exists V W X ! R

such that
(a) x % y if, and only if, V.x/ � V.y/ for all x; y 2 X ,
(b) for all ` 2 L, V.`/ D �.`/, and
(c) V is continuous.

Proof. By Corollary 1.3, `� � `�. First, consider the case where x 2 X is such that
`� % x % `�. By Continuity (Axiom 1(b)), there exists a 2 Œ0; 1� such that x � a`�C.1�a/`�.
Define V.x/ WD �

�
a`� C .1 � a/`�

�
D a�.`�/C .1 � a/�.`�/. It is easy to see that for all

` 2 L, V.`/ D �.`/.
Next, consider the case where x � `�. By Continuity, for any ` 2 L, there exists

a 2 Œ0; 1� such that ax C .1 � a/`� � `. Now, set V.x/ D ŒV .`/ � .1 � a/V .`�/�=a.
To see that V.x/ is independent of the choice of `, suppose `0 2 L and a0 2 Œ0; 1� are

such that ` % `0 and a0xC .1�a0/`� � `0, so that V.x/ D ŒV .`0/� .1�a0/V .`�/�=a0. Because
axC .1� a/`� � `, for all b 2 Œ0; 1�, b

�
axC .1� a/`�

�
C .1� b/`� � b`C .1� b/`�. Now,

choose b such that b`C .1 � b/`� � `0. Then, b
�
ax C .1 � a/`�

�
C .1 � b/`� � `

0, which
implies ba D a0. Using the fact that V.`0/ D bV.`/C .1 � b/V .`�/, we see that

V.x/ D
V.`0/ � .1 � a0/V .`�/

a0

D

�
bV.`/C .1 � b/V .`�/

�
� .1 � ba/V .`�/

ba

D
V.`/ � .1 � a/V .`�/

a

which is independent of the choice of b, or equivalently, the choice of `0.
We can deal with case where `� � x in a similar fashion. The continuity of V follows

immediately from the continuity of % and from the continuity of �, which completes the
proof.
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Lemma 1.5. If tx C .1 � t /` � ty C .1 � t /` then x � y.

Proof. Suppose not. Then, by L-Independence, there are x; y; `; and t such that x � y

and tx C .1 � t /` � ty C .1 � t /`. By Lipschitz Continuity (Axiom 1(c)), and because
d .x; x/ D 0, we have t 0xC.1�t 0/`] � t 0xC.1�t 0/`] for all t 0 > 0. Observe that by Negative
Transitivity of the strict relation �, it must be that for all t 0, either t 0x C .1 � t 0/`] � x or
x � t 0x C .1 � t 0/`] holds, and the same for y. There are three cases to consider.

Case 1: For all " > 0 there is .1 � t 0/ < " with x � t 0x C .1 � t 0/`]. Then, since
x � y, L-Indepedence implies that ty C .1 � t /` � t

�
t 0x C .1 � t 0/`]

�
C .1 � t /` for all

such .1 � t 0/ > 0: At the same time, by continuity, we can pick
�
1 � t

�
> 0 small enough,

such that by replacing x with tx C .1 � t /`], t
�
tx C .1 � t /`]

�
C .1 � t /` � ty C .1 � t /`

still holds. Taking " � .1 � t / establishes a contradiction.
Case 2: For all " > 0 there is .1 � t 0/ < " with t 0y C .1 � t 0/`] � y. This case is

analogous to case 1.
Case 3: There is " > 0 such that for all .1 � t 0/ < ", both t 0x C .1 � t 0/`] % x and

y % t 0yC .1� t 0/`]. We claim that this case can never occur. To see this, first observe that by
continuity, if t 0xC.1�t 0/`] % x for all .1�t 0/ < " then `] % x; and if y % t 0yC.1�t 0/`] % x
for all .1 � t 0/ < " then y % `]. But then we have y % `] � `] % x, which contradicts the
premise that x � y.

Corollary 1.6. It follows immediately from L-Independence and Lemma 1.5 that txC .1�
t /` � ty C .1 � t /` if, and only if, x � y.

Lemma 1.7. ` � `0 if, and only if, tx C .1 � t /` � tx C .1 � t /`0.

Proof. If x � `�, by continuity there are ˛ 2 .0; 1/ and ` 2 L with ˛x C .1 � ˛/`� � `.
Applying Corollary 1.6 repeatedly yields that ` � `0 if, and only if, t 0 Œ˛x C .1 � ˛/`��C.1�
t 0/` � t 0`C.1�t 0/` � t 0`C.1�t 0/`0 � t 0 Œ˛x C .1 � ˛/`��C.1�t

0/`0 for all t 0 2 .0; 1/. Again
by Corollary 1.6, and for t 0 D t

˛Ct.1�˛/
, this is equivalent to tx C .1 � t /` � tx C .1 � t /`0.

The case where `� � x is similar and hence omitted.

Lemma 1.8. The function V defined in the proof of Lemma 1.4 has the following properties:
(a) V is monotone, ie, V.x [ y/ � V.x/ for all x; y 2 X ;
(b) V is L-affine, ie, for all x 2 X , ` 2 L and a 2 Œ0; 1�, V

�
ax C .1 � a/`

�
D aV.x/C .1 �

a/V .`/;
(c) V is midpoint convex, ie, V

�
1
2
x1 C

1
2
x2
�
�

1
2
V.x1/C

1
2
V.x2/;

(d) V is convex.

Proof. To ease notational burden, we shall assume only in this part of the proof, and without
loss of generality, that V.`�/ D 1 while V.`�/ D 0. We prove the claims in turn.
(a) V represents %, so it is clear that it is monotone.
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(b) Let x 2 X and ` 2 L. Consider first the case where `� % x % `�. Then, there exists
`x 2 L such that x � `x. Then, by L-Independence, for all a 2 .0; 1�, ax C .1 � a/` �
a`xC.1�a/`. Therefore, V

�
axC.1�a/`

�
D V

�
a`xC.1�a/`

�
D aV.`x/C.1�a/V .`/ D

aV.x/C .1 � a/V .`/, as required.
Now consider the case where x � `�, the case where `� � x being analogous. Because
` % `�, Lemma 1.7 yields t`�C.1�t /` % `�, and then, by Corollary 1.6, txC.1�t /` � `�.
By continuity, there are ˛ 2 .0; 1/ and `, such that `� � ˛ .tx C .1 � t /`/C .1 � ˛/`� �
` � `�. Further, let ˇ 2 Œ0; 1� be such that ` � ˇ`�C.1�ˇ/`� (so that V .`/ D ˇ), and let

 2 .0; 1/ be such that ` � 
`�C .1�
/`�. First, from Corollary 1.6 and the definition of
V it is easy to verify that V .tx C .1 � t /`/ D 


˛
(independent of whether txC.1�t /` % `�

or not). Next, by Lemma 1.7, tx C .1 � t /` � tx C .1 � t / .ˇ`� C .1 � ˇ/`�/. Then, by
Corollary 1.6,

˛ .tx C .1 � t / .ˇ`� C .1 � ˇ/`�//C .1 � ˛/`� � 
`
�
C .1 � 
/`�

or
˛tx C ˛.1 � t /ˇ`� C Œ1 � ˛t � ˛.1 � t /ˇ� `� � 
`

�
C .1 � 
/`�

Because x � `�, Corollary 1.6 and Lemma 1.7 further imply that ˛.1 � t /.1 � ˇ/ C
.1 � ˛/ > .1�
/ or 
�˛ .1 � t / ˇ > ˛t > 0. This implies that 
 > ˛ .1 � t / ˇ. Corollary
1.6 then yields that

˛t

D1

x C
1 � ˛t � ˛.1 � t /ˇ

D1

`� �

 � ˛.1 � t /ˇ

D1

`� C
1 � 


D1

`�

where D1 D 
 � ˛.1 � t /ˇ C .1 � 
/ D 1 � ˛.1 � t /ˇ.
It follows that 1 � 
 < 1 � ˛t � ˛.1 � t /ˇ, and hence, again by Corollary 1.6,

˛t

D2

x C
1 � ˛t � ˛.1 � t /ˇ � .1 � 
/

D2

`� � `
�

where D2 D ˛t C 1 � ˛t � ˛.1 � t /ˇ � .1 � 
/ D 
 � ˛.1 � t /ˇ.
Hence, ˛t


�˛.1�t/ˇ
x C

h
1 � ˛t


�˛.1�t/ˇ

i
`� � `

�, so that V .x/ D 
�˛.1�t/ˇ

˛t
. Putting every-

thing together establishes the lemma, ie,

tV .x/C .1 � t /V .`/ D



˛
D V .tx C .1 � t /`/

(c) Suppose first that x1 � x2. Then, by Aversion to Randomization (Axiom 1 (e)), x1 %
1
2
x1 C

1
2
x2, from which it follows immediately that V.1

2
x1 C

1
2
x2/ �

1
2
V.x1/C

1
2
V.x2/.

Let us now suppose that x1 � x2 and consider the case where `� � x1. By continuity,
there exists � 2 .0; 1/ such that y WD �x2 C .1 � �/`� � x1. Notice that because
V is L-affine, V.y/ D �V.x2/ C .1 � �/V.`

�/ D V.x1/. Let Nx WD �
1C�

x1 C
1
1C�

y D
2�
1C�

.1
2
x1C

1
2
x2/C

1��
1C�

`�, so that V. Nx/ D 2�
1C�

V.1
2
x1C

1
2
x2/C

1��
1C�

V.`�/, where we have
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used the L-affinity of V . But notice also that V. Nx/ � �
1C�

V.x1/C
1
1C�

V.y/ by Aversion
to Randomization (Axiom 1 (e)) because x1 � y. We also have �

1C�
V.x1/C

1
1C�

V.y/ D
�
1C�

�
V.x1/C V.x2/

�
C

1��
1C�

V.`�/. Substituting in the value of V. Nx/ obtained above, we
see that V.1

2
x1 C

1
2
x2/ �

1
2
V.x1/C

1
2
V.x2/, as claimed.

Now consider the case where x1 � x2 but x1 � `�. Then, by continuity, there exists
a 2 Œ0; 1� such that y D ax1C.1�a/`� � x2. Therefore, V.y/ D aV.x1/C.1�a/V .`�/ D
V.x1/. Set Nx D a

1Ca
x2 C

1
1Ca

y D 2a
1Ca

.1
2
x1 C

1
2
x2/C

1�a
1Ca

`�. Then, using the L-affinity
of V , we obtain V. Nx/ D 2a

1Ca
V.1

2
x1 C

1
2
x2/C

1�a
1Ca

V.`�/.
But notice that x2 � y, so that by Aversion to Randomization (Axiom 1 (e)), V. Nx/ �
a
1Ca

V.x2/ C
1
1Ca

V.y/. We also have a
1Ca

V.x1/ C
1
1Ca

V.y/ D a
1Ca

�
V.x1/ C V.x2/

�
C

1�a
1Ca

V.`�/. Substituting in the value of V. Nx/ obtained above, we see that V.12x1C
1
2
x2/ �

1
2
V.x1/C

1
2
V.x2/, as claimed.

(d) As noted above, V is continuous, and because it is midpoint convex, it is convex.

Recall that V is Lipschitz if there exists a constant K > 0 such that for all x; y 2 X ,
jV.x/ � V.y/j � Kd.x; y/, where d.�; �/ is the metric on X .

Lemma 1.9. If % satisfies Lipschitz continuity (Axiom 1(c)) and is represented by a contin-
uous and L-affine V , then V is Lipschitz. Conversely, if V is Lipschitz, non-trivial, L-affine,
and represents %, then it satisfies Lipschitz continuity.

Proof. Let N > 0 be as given in Lipschitz continuity. Fix ˇ 2 .0; 1/ such that Nˇ < 1.
First consider the case where x; y 2 X are such that 0 < d.x; y/ � ˇ and let ˛ D Nd.x; y/.
Then, by Lipschitz Continuity, .1 � ˛/x C ˛`] � .1 � ˛/y C ˛`]. By the L-affinity of V ,
it follows that V.y/ � V.x/ < ˛

1 � ˛

�
V.`]/ � V.`]/

�
. But notice that ˛=N � ˇ, so setting

K D N=.1 �Nˇ/
�
V.`]/ � V.`]/

�
, we find that

V.y/ � V.x/ <
˛

1 � ˛

�
V.`]/ � V.`]/

�
<

N

1 � ˛

�
V.`]/ � V.`]/

�
d.x; y/

< Kd.x; y/

We now follow Dekel et al. (2007) and remove the restriction on the x and y. For
arbitrary x; y 2 X , let 0 DW �0 < �1 < � � � < �JC1 D 1 such that .�jC1 � �j /d.x; y/ � ˇ for
all j D 0; : : : ; JC1. Define xj WD �jxC.1��j /y, so d.xjC1; xj / D .�jC1��j /d.x; y/ < ˇ.
From the result established above, we see that V.xjC1/�V.xj / � Kd.xjC1; xj / D K.�jC1�
�j /d.x; y/. Summing over j , we find V.y/ � V.x/ � Kd.x; y/. Interchanging the roles of
x and y, it follows that jV.x/ � V.y/j � Kd.x; y/, as claimed. The converse is as in Dekel
et al. (2007) and is omitted.

In sum, we have proven that (a) implies (b) in the following representation result.
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Proposition 1.10. Let % be a binary relation. Then, the following are equivalent.
(a) % satisfies Basic Properties (Axiom 1) and L-Independence (Axiom 2(a)).
(b) There exists a function V W X ! R that represents % and is L-affine, Lipschitz Continu-

ous, and convex. Moreover, any such representation of % is unique up to a positive affine
transformation.

The proof that (b) implies (a) is standard and is omitted.

1.2. Abstract Convex and Monotone Representation

Every ˛ 2 F.�.C � X// is a product lottery of the form ˛1 � � � � � ˛n. A function u 2 U

acts on F.�.C � X// as follows: u.˛/ WD
P
i piui.˛i/. For any x 2 Kc.F.�.C � X///,

define its support function Hx W U! R as Hx.u/ WD max˛2x u.˛/. The extended support
function of x 2Kc.F.�.C � X/// is the unique extension of the support function Hx to
span.U/ by positive homogeneity. Theorem 5.102 and Corollary 6.27 of Aliprantis and
Border (1999) imply that a function defined on span.U/ is sublinear, norm continuous, and
positively homogeneous if, and only if, it is the extended support function of some weak*
closed, convex subset of F.�.C � X//. Therefore, a function H W U ! R is a support
function if its unique extension to span.U/ by positive homogeneity is sublinear and norm
continuous.

Given a function H W U! R whose extension to span.U/ by positive homogeneity is
sublinear and norm continuous, we may define xH WD f˛ 2 aff.Z/ W u.˛/ � H.u/ for all u 2
Ug. Support functions enjoy the following duality: For any weak* compact, convex subset x
of aff.Z/, xHx D x, and for any function H as defined above, HxH D H .

For weak* compact, convex subsets x and x0 of X , support functions exhibit the
following properties: (i) x � x0 if, and only if,Hx � Hx0 , (ii)HtxC.1�t/x0 D tHxC.1� t /Hx0

for all t 2 .0; 1/, (iii) Hx\x0 D Hx ^Hx0 , and (iv) Hch.x[x0/ D Hx _Hx0 . (By Lemma 5.14
of Aliprantis and Border (1999), ch.x[x0/ is compact because x and x0 are compact, which
ensures that Hch.x[x0/ is well defined.) Finally, observe that for `� WD `�i � � � � � `

�
n, H`� D 0.

Proposition 1.11. Let V W X ! R be Lipschitz, convex, and L-affine. Then, there exists a
minimal set M of finite normal charges on U so that V can be written as

V.x/ D max
�2M

"Z
U

max
˛2x

X
i

piui.˛i/ d�.p; u/
#

[�]

where the set M � ban.U/ is weak* compact and
R
U
max˛2x

P
i piui.˛i/ d�.p; u/ is inde-

pendent of � for all x 2 L.2 Moreover, for a dense set of points in X , there is a unique
� 2M that achieves the maximum in [�].

(2) Recall that ban.U/ is the space of finite normal charges on U.
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In Proposition 1.11 above, ban.U/ is the space of bounded additive (or finitely ad-
ditive) measures (ie, charges) on U that are also normal (ie, inner and outer regular).
The last part of the proposition reflects the fact that V is linear on L. The set M is
minimal in the sense that if N � M is compact, then there exists x 2 X such that
V.x/ > max�2N

�R
U
max˛2x

P
i piui.˛i/ d�.p; u/

�
.

Proof. By Lemma 1.1, for every x 2K.F.�.C �X///, V.x/ D V.cch.x//. Therefore, we
may restrict attention to convex menus.

Let 	 W Kc.F.�.C � X/// ! Cb.U/ be the map that associates each compact,
convex subset x of F.�.C � X// with its support function, 	 W x 7! Hx. Note that 	
is invertible. Moreover, 	 is an isometry because d.x; x0/ D kHx �Hx0k1 for all x; x0 2
Kc.F.�.C �X///. Thus 	 is an affine isometric embedding ofKc.F.�.C �X/// inCb.U/.
Moreover, 	.f`�g/ D 0. In sum, 	

�
Kc.F.�.C �X///

�
is a compact and convex subset of

Cb.U/ that contains the origin.
Let NV W 	

�
Kc.F.�.C �X///

�
! R be defined as follows: NV .H/ WD V.x/whereH D

Hx for some x. Because 	 is injective, it follows that NV is well defined. Thus, NV is Lipschitz,
convex, and 	.L/-affine. Recall that by definition, V.f`�g/ D 0 D NV .Hf`�g/, and 	.f`�g/ D
0. Therefore, NV is positively homogeneous. Extending NV to cone.	.Kc.F.�.C �X/////

by positive homogeneity, it follows by Proposition 2.4 below that NV (and hence V ) has the
desired representation.

Proposition 1.12. Let V W K.F.�.C � X/// ! R be as in [�]. Then, the following are
equivalent.
(a) V is monotone, in the sense that x � x0 implies V.x/ � V.x0/.
(b) Every charge � 2M is positive, ie, �.E/ � 0 for all (Borel) measurable E � U.

Proof. That (b) implies (a) is easy to see. That (a) implies (b) follows from Theorem S.2 of
Ergin and Sarver (2010b) after observing that NV (defined in the proof of 1.12) is monotone.
We note that a similar statement is contained in the proof of Lemma 3.5 of Gilboa and
Schmeidler (1989).

The following corollary follows immediately from Lemma 2.5.

Corollary 1.13. Let V WK.F.�.C � X///! R have a representation as in [�]. Suppose
E � K.F.�.C � X/// is convex and V jE is linear. Then, there exists � 2 M such that
V.x/ D

R
U
max˛2x

P
i piui.˛i/ d�.p; u/ for all x 2 E.

2. Convex Duality

We review some notions from convex analysis. Our review follows Ekeland and Turnbull
(1983).
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Let X be a Banach space, X� its norm dual, C � X , and f W C ! X a convex and
Lipschitz function. The subdifferential of f at x 2 C is @f .x/ WD fx� 2 X� W hy � x; x�i �
f .y/ � f .x/ for all y 2 C g. A necessary and sufficient condition for the existence of a
subdifferential at x 2 C is that there exists K � 0 such that for all y 2 X , f .x/ � f .y/ �
K ky � xk. To see this, recall that the set epi.f / WD f.x; t/ 2 X � R W t � f .x/g, the
epigraph of the function f , is a convex set (if, and only if, f is a convex function). For
each x 2 C , we define A.x/ WD f.y; t/ 2 X �R W f .x/ � t > K ky � xkg. It is easy to see
that the set A.x/ is (i) nonempty, (ii) convex, and (iii) open. It is also easy to show that
epi.f / \ A.x/ D ∅, so there exists a non-vertical hyperplane that separates the two sets.
Following the arguments in Gale (1967), we can conclude that @f .x/ ¤ ∅, and moreover,
there exists x� 2 @f .x/ such that kx�k � K. This is the content of the Duality Theorem
of Gale (1967). (Indeed, Gale (1967) also shows that local Lipschitzness is a necessary
condition for @f .x/ to be nonempty.) We will rely on the following result in the sequel.

Proposition 2.1 (Duality Theorem in Gale (1967)). Let C � X be convex and suppose
f W C ! R is convex and Lipschitz of rank K. Then, there exists x� 2 @f .x/ such that
kx�k � K.

In what follows, we will denote by @Kf .x/ WD fx� 2 @f .x/ W kxk � Kg. For each
x� 2 X� and a 2 R, we can define the continuous affine functional '.�; x�/ W X ! R as
'.yI x�/ WD hy; x�i�a. The function ' � f for all y 2 C if, and only if, hy; x�i�a � f .y/,
and is exact at x 2 C if '.xI x�/ D f .x/. If ' is exact, the value of a which makes it so is
given by �a.x�/ WD f .x/ � hx; x�i. Therefore, x� 2 @f .x/ if, and only if, the continuous
affine functional '.yI x�/ D f .x/Chy � x; x�i � f .y/ for all y 2 C with '.xI x�/ D f .x/.
In other words, x� 2 @f .x/ if, and only if, '.yI x�/ D f .x/C hy � x; x�i is a supporting
hyperplane for the graph of f at x.

Notice that for any intercept a � a.x�/, hx; x�i � a < hx; x�i � a.x�/, so a.x�/ D
infŒa 2 R W f .x/ � hx; x�i � a� D supŒx 2 C W hx; x�i � f .x/�. This smallest intercept is
the Fenchel conjugate of f , and is denoted by f ? W X� ! R [ f�1;C1g, and is given by

f ?.x�/ WD sup
x2C

�
hx; x�i � f .x/

�
Proposition 2 of Ekeland and Turnbull (1983) shows that x� 2 @f .x/ if, and only if, f .x/C
f ?.x�/ D hx; x�i.

By Proposition 2.1, it follows that for Lipschitz f , the conjugate function is given
by f ?.x�/ WD maxx2C

�
hx; x�i � f .x/

�
. We now show that for positively homogeneous

functions, the conjugate function f ? is identically 0.

Proposition 2.2. Let C � X be a convex cone, and let f W C ! R be convex and Lipschitz.
Then, the following are equivalent:
(a) f is positively homogeneous, ie, f .�x/ D �f .x/ for all � > 0;
(b) f ?.x�/ 2 R implies f ?.x�/ D 0.

9



Proof. Suppose f ? D 0. Fix x 2 C , and recall that because f is convex and Lipschitz,
there exists x� 2 @f .x/. This implies f .x/ D hx; x�i. It is easy to see that x� 2 @f .�x/ for
all � > 0, so that f .�x/ D �f .x/. That is, f is positively homogeneous.

Now suppose f is positively homogeneous. Fix x 2 C and suppose x� 2 @f .x/. We
will first show that for any � > 0, x� 2 @f .�x/. Then, by the definition of @f , for any
y 2 C , hy � x; x�i � f .y/ � f .x�/. Now let � > 0 and let y 2 C be arbitrary. Because
C is a cone, there exists ´ 2 C such that �´ D y. This implies hy � �xi D � h´ � x�i �

�
�
f .´/� f .x/

�
D f .y/� f .�x/, which proves that x� 2 @f .x/ implies x� 2 @f .�x/ for all

� > 0.
Now suppose x� is such that f ?.x�/ 2 R. Because f is positively homogeneous, we

have f .0/ D 0. (To see this, note that f .0/ D f .2 � 0/ D 2f .0/ which implies f .0/ D 0.)
Therefore, f ?.x�/ � h0; x�i � f .0/ D 0. Now suppose f ?.x�/ > 0. Then, for any " 2
.0; f ?.x�//, there exists x 2 C such that f ?.x�/� " D hx; x�i � f .x/ > 0. But then we can
choose � > 0 such that h�x; x�i � f .�x/ > f ?.x�/, which is a contradiction. Therefore, it
must be that f ?.x�/ D 0.

This allows us to establish the following corollary.

Corollary 2.3. Let C � X be a convex cone, and f 2 RC be convex, Lipschitz, and
positively homegeneous. Then, there exists a weak* compact setM � X� such that f .x/ D
maxŒhx; x�i W x� 2M�.

Proof. We have already established that for each x 2 C , there exists x� 2 @f .x/ such
that kx�k � K, where K is the Lipschitz constant of f . We have also established that
x� 2 @f .�x/ for all � � 0. Therefore, f .y/ � hy; x�i for all y 2 C . Letting M D cl.fx� 2
@f .x/ W x 2 C; kx�k � Kg/ (in the weak* topology) establishes the claim.

If C is convex and A � C is also convex, then f W C ! R is A-affine if for all x 2 C ,
a 2 A, and t 2 .0; 1/, we have f .tx C .1 � t /a/ D tf .x/C .1 � t /f .a/.

For a fixed x 2 C , notice that f is affine on the set ch.fxg[A/. Let Ex be the collection
of all (convex) subsets of C such that if E 2 Ex then (i) x 2 E and (ii) f jE is affine. A
simple application of Zorn’s lemma shows that for each x 2 C , there is a largest set Ex that
contains x and where f jEx is affine.

Notice that there exist x 2 X such that this maximal set Ex is not unique. Indeed, for
any a 2 A, and x; y 2 C such that f is not affine on Œx; y� (the closed line segment joining
x and y), then a 2 Ex \Ey , but Ex [Ey (or it’s convex hull) is not a member of Ea.

If f is Lipschitz continuous (as we shall assume below), then it is easy to see that the
set Ex must be closed as well.

Proposition 2.4. Let C � X be a convex set, and f 2 RC be convex and Lipschitz of
rank K. Let A � C be convex and suppose that 0 2 A, f .0/ D 0, and that f is A-affine.
Then, for each x, there exists x� 2 X� such that x� 2 @fK.y/ for all y 2 Ex where
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Ex is defined above. Moreover, there exists a weak* compact set Mf � X� such that
f .x/ D maxŒhx; x�i W x� 2Mf � and ha; x�i is independent of x� 2Mf for all a 2 A.

Proof. Fix x 2 C , let y1; : : : ; yn 2 Ex, and define y WD 1
n

P
i n. Then, by Proposition 2.1,

there exists y� 2 @Kf .y/. Recall the affine function '.�; y�/X W! R given by

'.xIy�/ WD hx � y; y�i C f .y/

The affine function ' satisfies the following two properties:
� f .x/ � '.xIy�/ for all x 2 C , and
� f .y/ D '.yIy�/.
The first requirement implies that f .yi/ � '.yi Iy�/ for all i D 1; : : : ; n. Summing up and
dividing by n, we see that 1

n

P
i f .yi/ �

1
n

P
i '.yi Iy

�/. However, f restricted toEx is affine
which implies 1

n

P
i f .yi/ D f .y/; similarly, ' is affine, which implies 1

n

P
i '.yi Iy

�/ D

'.yIy�/.
But we have noted above that f .y/ D '.yIy�/, which is possible if, and only if,

f .yi/ D '.yi Iy
�/ for all i D 1; : : : ; n. But this is equivalent to saying that y� 2 @Kf .yi/.

For any y 2 Ex, @Kf .y/ is a (nonempty) closed (and hence compact) subset of
fx� 2 X� W kx�k � Kg.3 Thus, .@Kf .y//y2Ex is a collection of closed subsets of the compact
set fx� 2 X� W kx�k � Kg. But we have just established that for any y1; : : : ; yn 2 Ex,Tn
iD1 @Kf .yi/ ¤ ∅. In other words, the collection of closed sets .@Kf .y//y2Ex has the

finite intersection property. The compactness of fx� 2 X� W kx�k � Kg then implies thatT
y2Ex

@Kf .y/ ¤ ∅. Thus, there exists �x 2
T
y2Ex

@Kf .y/ which proves the first part.
Fix this �x and notice that '.yI �x/ D f .y/ for all y 2 Ex. Because 0 2 A, this implies

'.0I �x/ D 0. In other words, f ?.�x/ D 0. (In geometric terms, the supporting hyperplane
determined by �x passes through the origin.) Now, let Mf WD cl .f�x 2 X� W x 2 C g/. It is
immediate that Mf is closed. Because f .a/ D ha; �xi for all x 2 C , it follows that the same
holds for all x� 2Mf , which completes the proof.

We end with an easy observation.

Lemma 2.5. Let C � X be a convex set, and f 2 RC , and Mf a weak* compact subset of
X� such that for all x 2 C , f .x/ D maxŒhx; x�i W x� 2Mf �. (This implies f is convex and
Lipschitz of rank K for some K.) Let C0 � C be convex. Then, the following are equivalent.
(a) The function f jC0 is linear.
(b) There exists x�0 2Mf such that x�0 2

T
x2C0

@Kf .x/ (which is equivalent to saying that
f .x/ D hx; x�0 i for all x 2 C0).

Proof. It is easy to see that (b) implies (a). To prove that (a) implies (b), we shall prove the
contrapositive. So, suppose

T
x2C0

@Kf .x/ D ∅. Then, there exist x1; : : : ; xn 2 C0 such thatTn
iD1 @Kf .xi/ D ∅. Let Nx D 1

n

Pn
iD1 xi .

Then, for all x� 2Mf we have
(3) By the Banach-Alaoglu Theorem — see, for instance, Theorem 6.25 of Aliprantis and Border (1999) —

the set fx� 2 X� W kx�k � Kg is a weak* compact subset of the dual X�.

11



� hxi ; x
�i �

˝
xi ; x

�
i

˛
D f .xi/ for all i D 1; : : : ; n, and

� hxi ; x
�i <

˝
xi ; x

�
i

˛
D f .xi/ for some i 2 f1; : : : ; ng

This implies 1
n

P
i hxi ; x

�i D h Nx; x�i < 1
n

P
i f .xi/. Since this is true for all x� 2Mf , and

because Mf is compact, it follows that f . Nx/ D maxŒh Nx; x�i W x� 2 Mf � <
1
n

P
i f .xi/,

which proves that f is not linear on C0, as claimed.

3. Minimal RICs

Let Őn be defined for all n 2 N as in Appendix A.5. Define inclusion for n D 0 as follows:
for !0; !00 2 Ő 0, !0 �0 !00 if .P; O!/ 2 !0 implies .P; O!/ 2 !00.

Let us inductively define a partial order representing inclusion for all n � 0: for
!nC1; !

0
nC1 2

Ő
nC1, let !nC1 �nC1 !0nC1 if .P;!n/ 2 !nC1 implies there exists .P;!0n/ 2

!0nC1 such that !n;s �n !0n;s for all s 2 S .
In analogy with Lemma A.2, it can be shown that �nC1 j Ő

n
D�n. As before, then, for

!;!0 2 Ő , let ! �� !0 if ! �n !0 for some n with !;!0 2 Őn.
By definition of Ő , there is some n such that !;!0 2 Őn, and because �n extends

faithfully, the precise choice of n is immaterial. Thus, �� is a well defined partial order on
Ő . We now show that �� has a recursive definition as well.

Proposition 3.1. For any !;!0 2 Ő , the following are equivalent.
(a) ! �� !0.
(b) for all .P; Q!/ 2 !, there exists .P; Q!0/ 2 !0 such that Q!s �� Q!0s for all s 2 S .
Therefore, �� is the unique partial order for inclusion on Ő defined as ! �� !0 if (b) holds.

The proof of Proposition 3.1 is analogous to the proof of Proposition A.3, and so is
omitted. Finally, just as in Proposition A.4, �� has a unique continuous extension to ˝.
Thus, �� is the unique partial order on ˝ that signifies inclusion. Moreover, for !;!0 2 ˝,
let ! \� !0 represent the ��-greatest lower bound of both ! and !0. Naturally, \� then
represents recursive set intersection.

For !;!0 2 ˝, let !n WD projn ! and !0n WD projn !0. The following is an easy
corollary.

Corollary 3.2. For !;!0 2 ˝, N! WD ! \� !0 if, and only if, N!n WD projn N! D !n \� !0n for
all n 2 N.

Proof. The ‘only if’ part is straightforward. The ‘if’ part follows from the continuity of
��.

Let h denote the symmetric part of &, the recursive Blackwell order, and note that h
is transitive. Then, ! h !0 if, and only if, ! and !0 recursively Blackwell dominate each
other.

Lemma 3.3. Let !0; !00 2 Ő 0 such that !0 h !00. Then, N!0 h !0.

12



Proof. It is easy to see that N!0 �� !0, and so !0 & N!0 (and similarly for !00). All that
remains is to show that N!0 & !0.

Towards this end, let .P .0/; O!/ 2 !0, and suppose .P .0/; O!/ … N!0. Then, because
!00 & !0, there exists .P .1/; O!/ 2 !00 such that P .1/ is (strictly) finer than P .0/. But now
because !0 & !00, either .P .1/; O!/ 2 !0 and hence N!0, in which case we are done, or there
exists .P .2/; O!/ 2 !0 where P .2/ is strictly finer than P .1/. Continuing in this fashion, we get
a sequence

�
P .j /

�
of strictly finer partitions, where the even members belong to !0 (in the

obvious sense) and the odd members belong to !00. But this sequence is finite, and so the final
member must belong to both !0 as well as !00, otherwise we would contradict the assumption
that !0 h !00. Let P .n/ be this final member of the sequence. Then, .P .n/; O!/ 2 N!0, so that
N!0 & !, which proves the claim.

A similar result holds for all Őn.

Lemma 3.4. Let !n; !0n 2 Őn. Then, for all n � 0, !n h !0n implies N!n h !n.

Proof. It is easy to see that N!n �� !n, and so !n & N!n (and similarly for !0n). All that
remains is to show that N!n & !n. We shall establish the proof by induction. Suppose that
!n h !0n, and that the result is true for n � 1.

Let .P .0/;!.0/
n�1/ 2 !n, and suppose .P .0/; �/ … N!n. Then, there exists .P .1/;!

.1/
n�1/ 2 !

0
n

such that P .1/ is finer than P .0/ and !.1/n�1;s & !
.0/
n�1;s. Continuing just as we did in Lemma

3.3, we note that there exists a sequence .P .j /;!.j /
n�1/ where P .j / is strictly finer than P .j�1/

and !
.j /
n�1;s & !

.j�1/
n�1;s for all s 2 S , and where the even members belong to !n (in the sense

of ��) and the odd members belong to !0n. But this sequence is finite, and there must be
eventual members of this sequence where .P .m/;!.m/

n�1/ 2 !n and .P .m/;!
.mC1/
n�1 / 2 !0n, and

!
.m/
n�1;s h !

.mC1/
n�1;s for all s 2 S , because by hypothesis, !n h !0n. Moreover, we must also

have that P .m/ is strictly finer than P .0/ and !.m/n�1;s & !
.0/
n�1;s.

Then, .P .m/; N!.m/
n�1/ 2 N!n, where N!

.m/
n�1;s WD !

.m/
n�1;s \ !

.mC1/
n�1;s . But, by the induction

hypothesis, N!.m/n�1 h !
.m/
n�1;s. This implies, N!n & !n, as claimed.

We can now show that the recursive intersection of two recursively Blackwell equiva-
lent rics is also in the same equivalence class.

Proposition 3.5. For !;!0 2 ˝, ! h !0 implies ! \� ! DW N! h !.

Proof. As in Appendix A.5, let !n WD projn ! and !0n WD projn !0. By Corollary A.5,
!n h !0n for all n � 0. Corollary 3.2 implies that N!n WD !n \� !0n, and Lemma 3.4 implies
N!n h !n for all n � 0. Corollary A.5 now implies N! h !, as claimed.

Let Œ ! � WD f!0 W !0 h !g denote the h-equivalence class of !. Note that Œ ! � is a
closed (and hence compact) subset of˝ because & is continuous. For each !0 2 Œ ! �, define
the set D.!0/ WD f Q! W Q! �� !0g. We are now ready to prove the existence of ��-minimal
rics.
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Proposition 3.6. Each Œ ! � has a unique ��-minimal element given by\
!02Œ ! �

D.!0/

Proof. Recall that, by construction, �� is a continuous partial order. Therefore, the set
D.!0/ WD f Q! W Q! �� !0g is closed for each !0 2 Œ ! �. Moreover, for any finite collection
!1; : : : ; !m 2 Œ ! �, the intersection

Tm
iD1 D.!

i/ is non-empty by Proposition 3.5. Thus, the
collection of closed sets

�
D.!0/

�
!02Œ ! �

has the finite intersection property. Because ˝ is
compact, the intersection \

!02Œ ! �

D.!0/

is non-empty. By Proposition 3.5, this intersection must have a unique element, which
proves the claim.

4. A Metric on the Space of Partitions

In this section, we define a natural metric on the space of partitions that is related to the
informational content of the partitions. The metric we introduce is fairly standard. However,
we have been unable to find a formulation suitable for our purposes, so we prove that
our proposed metric is indeed a metric. It is also worth noting that all the results in this
section remain valid if the state space S is an arbitrary countable set, � is a countably
additive measure on S , and P represents the space of all partitions of S with countably
many (measurable) cells.

Let S be a finite set, and P be the space of all partitions of S . Let � be a probability
measure on S . Define the entropy of the partition P 2 P as

H.P / WD �
X
J2P

�.J / log�.J /

Let � be a partial order on P, wherein P � Q if P is coarser thanQ (or equivalently,Q is
finer than P ). We shall say that P > Q if P � Q and P ¤ Q.

Wemay also define the coarsest refinement ofP andQ, denoted byP ^Q. IfP D .Im/
and Q D .Jn/, then P ^Q D .Im \ Jn/m;n, so

H.P ^Q/ D �
X
m

X
n

�.Im \ Jn/ log
�
�.Im \ Jn/

�
Similarly, P _Q is the finest partition coarser than P andQ. Then, .P;�;_;^/ is a lattice,
with greatest (coarsest) element fSg, and least (finest) element

˚
fsg W s 2 S

	
. Notice that

H.fSg/ D 0, while H.P / > 0 for all other partitions P . Define the conditional entropy
H.P j Q/ as

H.P j Q/ WD H.P ^Q/ �H.Q/
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It is easy to see that

H.P j Q/ D �
X
n

�.Jn/
X
m

�.Im \ Jn/

�.Jn/
log

�
�.Im \ Jn/

�.Jn/

�
We now come to the main result of this section.

Proposition 4.1. The function

d.P;Q/ WD 2H.P ^Q/ �H.P / �H.Q/ D H.P j Q/CH.Q j P /

is a metric on P.

We begin with some lemmata.

Lemma 4.2. H is anti-monotone, ie, P � Q implies H.Q/ � H.P /. Moreover, H is
strictly anti-monotone, ie, P > Q implies H.Q/ > H.P /.

The proof is trivial and is omitted.

Lemma 4.3. The function H.P j Q/ is anti-monotone in P , and is monotone in Q.

Proof. Notice that if P 0 � P , then P 0 ^ Q � P ^ Q, so the anti-monotonicity of H
implies that H.P j Q/ is anti-monotone in P . We say that Q is an elementary refinement
of Q0 if Q0 D fJ1; : : : ; JN g and Q D f QJ1; : : : ; QJn�1; QJN ; QJNC1g, where QJn WD Jn for all
n D 1; : : : ; N � 1, while JN D QJN [ QJNC1. In other words, Q and Q0 are identical except
that there exists a cell JN 2 Q0 that is the union of exactly two cells in Q.

Let Q0 � Q. Then, there exist Q1; : : : ;Qk 2 P such that Q0 D Qk � Qk�1 � � � � �

Q1 D Q, and where Qi is an elementary refinement of QiC1. Thus, in order to show that
H.P j Q/ is monotone in Q, it suffices to consider Q and Q0 where Q is an elementary
refinement of Q0.

Let P D fI1; : : : ; IM g and Q and Q0 be as above. In what follows, we shall let
�.x/ D x log x for all x > 0 and �.0/ D 0. Then � 2 RRC is strictly convex and continuous
on its domain. Let

� D �

N�1X
nD1

�.Jn/
X
m

�

�
�.Im \ Jn/

�.Jn/

�
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This allows us to write

H.P j Q/ D �
X
n

�. QJn/
X
m

�.Im \ QJn/

�. QJn/
log

 
�.Im \ QJn/

�. QJn/

!

D � �
X

nDN;NC1

�. QJn/
X
m

�

 
�.Im \ QJn/

�. QJn/

!

D � � �.JN /
X
m

X
nDN;NC1

�. QJn/

�.JN /
�

 
�.Im \ QJn/

�. QJn/

!

� � � �.JN /
X
m

�

0@ X
nDN;NC1

�.Im \ QJn/

�.JN /

1A
D � � �.JN /

X
m

�

�
�.Im \ Jn/

�.Jn/

�
D H.P j Q0/

where we have used the fact that �� is concave to establish the inequality.

Lemma 4.4. The functionH is submodular, ie,H.P ^Q/CH.P _Q/ � H.P /CH.Q/.

Proof. Fix P and Q, and let Q � Q0. We shall use the fact that the function H.P j Q/ is
anti-monotone in P and monotone in Q. Then, H.P ^Q/ �H.Q/ D H.P j Q/ � H.P j
Q0/ D H.P ^ Q0/ � H.Q0/. Now set, Q0 WD P _ Q, so that P ^ .P _ Q/ D P , which
implies H.P ^Q/ �H.Q/ � H.P / �H.P _Q/. Therefore, H is submodular.

We now list some properties of the lattice .P;�;_;^/.

Lemma 4.5. For P;Q;R 2 P, the following hold:
(a) R � .P ^R/ _ .Q ^R/.
(b) .P _Q/ ^R � .P ^R/ _ .Q ^R/.

Proof. Note thatR � P ^R andR � Q^R, soR � .P ^R/_.Q^R/, which establishes (a).
To see (b), note that P � P ^R, whileQ � Q^R. Therefore, P _Q � .P ^R/_ .Q^R/.
But we also have that R � .P ^R/ _ .Q ^R/, from (a). The definition of ^ then implies
that .P _Q/ ^R � .P ^R/ _ .Q ^R/, as required.

Proof of Proposition 4.1. The proof relies on the fact that conditional entropy H.P j Q/
is anti-monotone (Lemmas 4.2 and 4.3) and submodular (Lemma 4.4). Because H is anti-
monotone (Lemma 4.2), d.P;Q/ � 0 for all P;Q. We have already established that P < Q

implies H.P / > H.Q/. If P and Q are distinct, then P ^Q is distinct from either P or Q,
so that d.P;Q/ > 0.
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It is easy to see that d.P;Q/ � d.P;R/C d.R;Q/ if, and only if,

H.P ^Q/CH.R/ � H.P ^R/CH.Q ^R/[~]

By lemma 4.5, we see thatR � .P ^R/_.Q^R/ and .P _Q/^R � .P ^R/_.Q^R/. Set
P 0 D P ^R andQ0 D Q^R. The submodularity ofH impliesH.P 0_Q/CH.P 0^Q0/ �
H.P 0/CH.Q0/. That is,H

�
.P ^R/_ .Q^R/

�
CH.P ^Q^R/ � H.P ^R/CH.Q^R/.

ButR � .P ^R/_.Q^R/, soH.R/ � H
�
.P ^R/_.Q^R/

�
. Similarly,P ^Q � P ^Q^R,

which implies H.P ^Q/ � H.P ^Q ^ R/. These observations imply [~], so that d is a
metric.

5. Consumption Streams and the RAA Representation

To see thatL ' F.�.C �L//, note that we can defineL.1/ WD F.�.C // and then recursively
define L.n/ WD F.�.C � L.n�1// as the space of consumption streams of length n. Just as
with the definition of the space of racps X in Appendix A.2, we say that L is the space of
all consistent sequences in�1nD1L.n/.

The support of a consumption stream ` 2 L is a set B � C such that at any date and
in any state, the realized consumption lies in B. A consumption stream has finite support
if its support in C is finite. For any finite set B � C , we can define LB as the space of all
consumption streams with prizes in B . Formally, LB ' F.�.C �LB//. Let L0 be the space
of all consumption streams with finite support. That is, L0 WD

S
fLB W B � C; B finiteg.

Recall the consumption stream `� 2 L which delivers c�.s/ in state s at every date.
Clearly, the support of `� is finite. Analogous to L0, we can define L.n/0 as the space of
consumption streams of length n with finite support. For any `.n/ 2 L.n/0 , `.n/ ˘ `� 2 L0,
where `.n/ ˘ `� is the concatenation of `� to `.n/. In other words, each L.n/ is naturally
embedded in L0.

Proposition 5.1. The space L0 is dense in L.

Proof. Because probability measures on C with finite support are dense in �.C/, it follows
that for all n � 1, L.n/0 is dense in L.n/. (The metrics defined on L.n/ make this clear — see
Appendix A.2 for a formal definition.) By the definition of the product metric (see Appendix
A.2), this means that for any ` 2 L and " > 0, there exists an n and an `.n/ 2 L.n/ such that
d.`; `.n/ ˘ `�/ < ", where `.n/ ˘ `� is the concatenation of `� to `.n/. This completes the
proof.

It follows immediately from Lipschitz Continuity (Axiom 1(c)) that% jL is non-trivial,
see Corollary 1.3. We now show that %s (as defined in Section 3.1) is also non-trivial for
each s 2 S .

Lemma 5.2. Let `0; `1 2 L. Then, `0.s/ �s `1.s/ for all s 2 S implies `0 � jL`1.
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Proof. By definition of %s, `0.s/ �s `1.s/ if, and only if, `0 ˚.1;Sns/ `� � jL`1 ˚.1;Sns/ `�.
Repeatedly applying L-Independence, we find

1

n
`0 C

n � 1

n
`� D

1

n

X
s2S

`0 ˚.1;Sns/ `� � jL
1

n

X
s2S

`1 ˚.1;Sns/ `� D
1

n
`1 C

n � 1

n
`�

By L-Independence, we find `0 � jL`1. (More precisely, this follows immediately once we
note that, by the Mixture Space Theorem, % jL has an affine representation.)

Lemma 5.3. There exists s 2 S such that `�.s/ �s `�.s/. For all s 2 S , there exists s0 2 S
such that .c; `� ˚.1;Sns/ `�/ �s0 .c; `�/.

Proof. Corollary 1.3 says that `� � jL`�. Therefore, by (the contrapositive to) Lemma 5.2,
there must exists an s such that `�.s/ �s `�.s/. In particular, then, `� ˚.1;Sns/ `� � jL`�.

To see the second part, let us suppose by way of contradiction that for all s0 2 S ,
.c; `� ˚.1;Sns/ `�/ �s0 .c; `�/. Now, set `0; `1 such that `0.s0/ D .c; `� ˚.1;Sns/ `�/, while
`1.s0/ D .c; `�/. It follows from Lemma 5.2 that .c; `� ˚.1;Sns/ `�/ � jL.c; `�/.

Now, L-Stationarity (Axiom 2) and the fact that `� ˚.1;Sns/ `� � jL`� imply that we
have .c; `� ˚.1;Sns/ `�/ � jL.c; `�/, which yields the desired contradiction.

Proposition 5.4. For all s 2 S , %s is non-trivial.

Proof. Lemma 5.3 and (the contrapositive to) L-History Independence (Axiom 2) imply
.c; `� ˚.1;Sns/ `�/ �s00 .c; `�/ for all s00 2 S , as claimed.

Proposition 5.5. The preference % jL on L has a standard raa representation. Moreover,
˘ and ı are unique and the collection .us/s2S is unique up to a common positive scaling.

As described in Section 3.1, for each s 2 S ,%s is an induced preference over�.C �L/.
Let%Cs denote the induced preference over�.C/ in state s. It is clear that%Cs is well defined,
continuous on �.C/, and satisfies Independence. These properties imply there exist %Cs -
maximal and -minimal lotteries that are degenerate; denote them by c�.s/ and c�.s/. Let F0
be the finite set of consumption defined as

F0 WD
˚
c�.s/; c

�.s/; c�.s/ W s 2 S
	

Lemma 5.6. For any finite set B � C , the induced preference % jLB satisfies the Axioms
stated in Corollary 5 of Krishna and Sadowski (2014, henceforth KS).

Proof. It follows from Proposition 5.4 that each %s is non-trivial. That is, % jL is state-wise
nontrivial. In addition, % jL is continuous, satisfies Independence, and is separable in `1
and `2, thereby satisfying Axioms 2, 3, and 5 in KS. Axioms 6, 7, and 9 in KS correspond
to properties (c), (d), and (b) of L-Properties (Axiom 2).

We now proceed to the proof of Proposition 5.5.
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Proof of Proposition 5.5. Let B � C be finite. By Lemma 5.6, % jLB satisfies the Axioms
in Corollary 5 of KS. This implies there exists a tuple

�
.uBs /s2S ; ı

B ; ˘B
�
that is an raa

representation of % jLB . If F0 � B, then we may assume, without loss of generality, that
uBs .c

�.s// D 0 for all s 2 S . Then, Corollary 5 in KS says that the collection of utilities .uBs /
is uniquely identified up to a joint scaling, and that˘B and ıB are also uniquely determined.

Now, consider any other finite set D such that F0 � B � D. By Lemma 5.6, % jLD
also has an raa representation

�
.uDs /s2S ; ı

D; ˘D
�
. As before, if we set uDs .c�.s// D 0 for

all s 2 S , then the collection of utilities .uDs / is identified up to a common scaling. Now,
because B � D, we have LB � LD. Therefore, the raa representation

�
.uDs /s2S ; ı

D; ˘D
�

of % jLD when restricted to LB , is also a representation of % jLB . And this representation
has the feature that uDs .c�.s// D 0 for all s 2 S . Once again, the uniqueness of the raa
representation implies that a single joint scaling of the collection .uDs / results in uDs jB D uBs
for all s 2 S , ˘B D ˘D, and ıB D ıD.

Recall that c�.s/ %Cs ˛ %Cs c�.s/ for all ˛ 2 �.C/. Because uBs and uDs represent,
respectively, %Cs j�.B/ and %Cs j�.D/, it must be that ��.s/ WD u

j
s .c
�.s// and ��.s/ WD

u
j
s .c�.s// for j D B;D. Since B and D are arbitrary, it follows that it holds for all finite
B that contains F0. In other words, the Markov transition operator ˘ has been identified
uniquely, as has the discount factor ı 2 .0; 1/.

Let us 2 C.C / be a vN-M utility representation of %Cs such that us.c�.s// D 0. Both
usj�.B/ and uBs are vN-M representations of %C j�.B/ and by the Mixture Space Theorem,
differ at most by a positive affine transformation. Because they agree on c�.s/, they differ
at most by a positive scaling. Therefore, if we scale us so that us.c�.s// D ��.s/, we must
necessarily have us.c�.s// D ��.s/ for all s 2 S .

Consider, now, the tuple ..us/;˘; ı/, and the functional W0 W L ! R defined as
W0.`/ WD

P
s �0.s/W.`; s/, where

W.`; s/ WD
X
s0

˘.s; s0/
�
us0.`1.s

0//C ıW.`2.s
0/; s0/

�
It is easy to see that the function W04 is uniquely determined by the tuple

�
.us/s2S ; ı;˘

�
.

As established above, W0 represents % jLB for every finite B . In other words, W0 represents
% jL0 . Proposition 5.1 says that L0 is dense in L, and because W0 is (uniformly) continuous,
it also represents % on L. The uniqueness of the raa representation of % jL (given our
normalizations) follows immediately, which concludes the proof.

6. Partitional Representation — Proof Details

In this section, we prove Proposition C.1 in Appendix C.1 of DKS. We begin with some
lemmas.

(4) As always, W0 also denotes the linear extension of W0 to �.L/.
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Let Q�x WD f� 2 �x W I.�/ � xg. By IICC (Axiom 4), Q�x is non-empty. It follows
from the definition of Q�x that for each � 2 Q�x, there exist f1; : : : ; fm 2 x such that for
each i D 1; : : : ; m, fi D �.s/ for some s 2 S . The collection ff1; : : : ; fmg denotes a set
of generators of the set x according to �. We shall also say that ff1; : : : ; fmg generates x
according to �.

Lemma 6.1. For x 2 X�, let ff1; : : : ; fmg generate x according to � 2 Q�x. Then, x �
ff1; : : : ; fmg.

Proof. Notice that

x % ff1; : : : ; fmg by Monotonicity (Axiom 1(d))
% I.�/ by IICC(a) and Continuity
� x by IICC(b)

which establishes the claim.

Definition 6.2. A menu x is nice if x 2 X� and there is a unique � 2 Q�x. X0 denotes the
space of nice menus. A menu x is minimal if x � x n ff g for all f 2 x.

Let x be a nice menu, � 2 Q�x, and f1; : : : ; fm the corresponding generators of x. Each
such � induces a partition J1; : : : ; Jm of S wherein �.s/ D fk if, and only if, s 2 Jk. In this
case, we shall say that fk is active in state s 2 Jk, so that Jk denotes all the states where fk
is active.

Proposition 6.3. The space X0 is dense in X .

Proof. It is easy to see that the space X� is dense in X . Therefore, it will suffice to show
that X0 is dense in X�. For any x 2 X�, it is easy to see that IICC (Axiom 4) implies
the existence of a minimal set of generators, ff1; : : : ; fmg. Let x" WD .1 � "/ x C "`� and
y WD ff1; : : : ; fmg [ x". By Monotonicity (Axiom 1(d)), y % x. Obviously d .y; x/ ! 0

as " ! 0. Because x 2 X� and " > 0 are arbitrary, it suffices to establish that (some
perturbation of) y 2 X0.

Because x 2 X�, we also have x" 2 X� and, because ff1; : : : ; fmg � x, also
ff1; : : : ; fmg 2 X

�, which then implies y 2 X�. We now show that there must be a unique
� 2 Q�y (perhaps after further perturbing y) to establish the proposition.

Suppose there is � 2 Q�y with generator set˚
f 01 ; : : : ; f

0
j ; .1 � "/ f

0
jC1 C "`�; : : : ; .1 � "/ f

0
k C "`�

	
� y

(indifference follows from Lemma 6.1) where f 0a 2 x for all a 2 f1; : : : ; kg. Consider, now,
I.�/ and note that it can be generated inductively from y0 WD

˚
f 01 ; : : : ; f

0
k

	
as follows, where
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the induction is over the set of states S D fs1; : : : ; sng. For i 2 f1; : : : ; ng, let ei W y ! Œ0; 1�

be defined by

ei .f / WD

8̂̂<̂
:̂
0 if f D �.si/ and f 2 ff1; : : : ; fmg
" if .1 � "/f C "`� D �.si/ … ff1; : : : ; fmg
1 otherwise

Given yi , let
yiC1 WD yi ˚.eiC1;siC1/ `�

Observe that, indeed, yn D I.�/. Note, further, that by IICC (part a) and Continuity
(Axiom 1(b)), yi % yiC1, with yi � yiC1 if � .si/ 2 x". Suppose, now, that k > j . In that
case, y0 � yn D I.�/ � y. By Monotonicity, x % y0, and hence x � y, which contradicts
the observation above that y % x. Therefore, m D j . But then y % x and the minimality
of ff1; : : : ; fmg implies that the generator set that corresponds to � must be ff1; : : : ; fmg.
Because � was chosen arbitrarily among the � 2 Q�y , any such � must have generator set
ff1; : : : ; fmg.

Suppose, then, that there are �; � 0 2 Q�y with the same generator set ff1; : : : ; fmg, and
fb D � .s/ ¤ �

0 .s/ for some s 2 S and b 2 f1; : : : ; mg. Let

Ofb.s
0/ WD

(
fb.s

0/ s0 ¤ s

.1 � t /fb C t`� s0 D s

Note that, by Continuity, for t > 0 small enough, ff1; : : : ; Ofb; : : : ; fmg remains the unique
generator set for Oy WD Œyn ffbg� [ f Ofbg. Let O� 2 � Oy be the contingent plan with

O�.s0/ WD

(
Ofb.s
0/ �.s0/ D fb

�.s0/ otherwise

and analogously for O� 0 and � 0. Then IICC (part a) implies that y � I. O�/. At the same time
I. O� 0/ D I.� 0/ � y. It is also clear that, for t > 0 small enough and by Continuity, for any
� 00 2 �y with I.� 00/ � y, also I

�
O� 00
�
� Oy;where O� 00 is again defined analogously. Hence,

Q� Oy has at least one element less than Q�y . In finitely many steps we arrive at an (arbitrarily
small) perturbation of y that is in X0. This establishes the proposition.

A (static) strategy for dm at a menu x given � 2 M is a mapping ��x W U ! x. The
strategy ��x is partitional if there is a finite partition .Ei/ of U, such that for each Ei there
exists fi 2 x with ��x .Ei/ D fi . The value of this strategy is

V.x; �; ��x / D
X
i

Z
Ei

X
s

psus.fi.s// d�.p; u/
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A strategy ��x is optimal at x if there is no other strategy that gives a higher payoff. A
partitional optimal strategy ��x is an optimal strategy that is partitional, ie, one where

V.x; �; ��x / D
X
i

Z
Ei

h.p; u/; fii d�.p; u/

D max
�2M

�Z
U

max
f 2x
h.p; u/; f i d�.p; u/

�
where h.p; u/; f i D

P
s psus.fi.s//. Notice that if a partitional strategy �

�
x is optimal at

x and if fi is the act chosen in the cell Ei , we must necessarily have, for all .p; u/ 2 Ei ,
h.p; u/; fii � h.p; u/; f i for all f 2 x.

In the sequel, ��x denotes an optimal partitional strategy when one exists. It is easy
to see that for a finite x, an optimal strategy is always partitional, though there may be
many such strategies that are optimal. If ��x induces the partition .Ei/, we refer to .Ei/ as
an optimal partition for � at x.

Definition 6.4. Let ff1; : : : ; fmg be a set of generators of x, and let .Ei/miD1 be a partition
of U. Then, .Ei/ is a partition of U consistent with ff1; : : : ; fmg if .p; u/ 2 Ei implies
h.p; u/; fii �

˝
.p; u/; fj

˛
for all j D 1; : : : ; m.

Intuitively, a partition .Ei/ of U is consistent with ff1; : : : ; fmg if there is some optimal
� such that it is optimal to choose fi when .p; u/ 2 Ei . As in Appendix C of DKS,
� W X ⇒ M is the mapping selecting the maximizing � for each x; that is, � .x/ WD
argmax�2M V.x; �/. The following lemma implies that finite menus always have consistent
partitions.

Lemma 6.5. Let x 2 X be finite and suppose ff1; : : : ; fmg is a set of generators of x. Then,
� 2 � .ff1; : : : ; fmg/ implies � 2 � .x/.

Proof. Consider the following string of inequalities:

V.x/ D V.ff1; : : : ; fmg/ because ff1; : : : ; fmg generates x
D V.ff1; : : : ; fmg; �/ definition of �
� V.x; �/ V .�; �/ is monotone
� V.x/ definition of V

which proves that � 2 � .x/, as claimed.

Lemma 6.6. Let x be finite. For any ` 2 L and " > 0, (i) � .x/ D �
�
.1� "/xC "`

�
, (ii) if x

is nice, then .1� "/xC "` is also nice, and (iii) if � 2 � .x/ and .Ei/ is an optimal partition
for � at x, then it is also an optimal partition for � at .1 � "/x C "`.
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Proof. Let x be finite and � 2 � .x/. Then, V.x/ D V.x; �/ � V.x; �0/ for all �0 2M. We
also have

V
�
.1 � "/x C "`; �

�
D .1 � "/V .x; �/C "V .`; �/

� .1 � "/V .x; �0/C "V .`; �/

D .1 � "/V .x; �0/C "V .`; �0/

D V
�
.1 � "/x C "`; �0

�
where the inequality uses the fact that V.x; �/ � V.x; �0/ and the second equality follows
because V.`; �/ D V.`; �0/ for all �;�0 2 M and ` 2 L. This proves part (i). Part (ii)
follows immediately from the definition.

To see part (iii), let ��x be a partitional optimal strategy with optimal partition .Ei/.
Then,

V.x/ D V.x; �; ��x / D
X
i

Z
Ei

h.p; u/; fii d�.p; u/

For the menu .1 � "/x C "`, consider the strategy ��
.1�"/xC"`

.Ei/ D .1 � "/fi C "`. Then,

V
�
.1 � "/x C "`; �; �

�

.1�"/xC"`

�
D .1 � "/

X
i

Z
Ei

h.p; u/; fii d�.p; u/C "
X
i

Z
Ei

h.p; u/; `i d�.p; u/

D .1 � "/V .x/C "V .`/

� V
�
.1 � "/x C "`; �0

�
for all �0 2M where the second equality follows from part (i). This proves that ��

.1�"/xC"`
is

a partitional optimal strategy at the menu x given the optimal � 2M and completes the
proof.

For a fixed partition .Ei/ of U, � 2M, and s 2 S , consider the map

.�;Ei ; s/ 7!

Z
Ei

psus.�/ d�.p; u/

Each tuple .�;Ei ; s/ induces a continuous and linear preference functional
R
Ei
psus.�/ d�.p; u/

on�.C �X/. By the Expected Utility Theorem, this linear functional has a vN-M utility rep-
resentation which we denote by Npi.s/Nui;s.�/, where kNui;sk1 D 1. Thus, for all ˛ 2 �.C �X/,
we have

Npi.s/Nui;s.˛/ D

Z
Ei

p.s/us.˛/ d�.p; u/

Then, Npi.s/Nui;s is a local EU representation of � on Ei for state s. We do not index Npi.s/Nui;s
by the relevant .Ei/ and � because these should be clear from the context.

Definition 6.7. Let � 2M and .Ei/ a partition of U. Then,
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� A measure � is Type Ia on Ei in state s if Npi.s/Nui;s D 0, ie, if Npi.s/Nui;s is trivial.
� A measure � is Type Ib on Ei in state s if Npi.s/Nui;s is non-trivial, Npi.s/Nus is constant on
�.C � L/, and `� maximizes Npi.s/Nui;s on �.C �X/.
� A measure � is Type IIa on Ei in state s if Npi.s/Nui;s is non-trivial and not constant on
�.C � L/.
� A measure � is Type IIb on Ei in state s if Npi.s/Nui;s is non-trivial, constant on �.C �L/,
and there exists ˛ 2 �.C �X/ such that Npi.s/Nui;s.˛/ > Npi.s/Nui;s.ˇ/ for some (and hence
all) ˇ 2 �.C � L/.

It is easy to see that the above taxonomy of measures is both mutually exclusive and
exhaustive. Analogous to the definition in Section 3.1 of DKS (and abusing notation), for
any ˛ 2 �.C �X/ we define

�
f ˚";s ˛

�
.s0/ WD

(
.1 � "/f .s/C "˛ if s0 D s
f .s/ otherwise

Lemma 6.8. Let x be a finite menu, � 2 � .x/, and suppose there is a partitional optimal
strategy ��x with optimal partition .Ei/, where ��x .Ei/ D fi 2 x. Suppose � is Type II (a or
b) on some Ei in state s 2 S and there exists ˛ 2 �.C �X/ such thatZ

Ei

p.s/us
�
˛ � fi.s/

�
d�.p; u/ > 0

Then, the menu ´ WD x n ffig [ ffi ˚";s ˛g is such that V.´/ > V.x/ for all " > 0.

Proof. Let � 2 � .x/ so that V.x/ D V.x; �/. IfZ
Ei

p.s/us
�
˛ � fi.s/

�
d�.p; u/ > 0

then it must necessarily be that �.Ei/ > 0. The measure � and the set Ei induce the
functional

Vi.x; �;Ei/ WD

Z
Ei

max
f 2x

X
s

p.s/us.f .s// d�.p; u/

on X . Let V 0i denote the restriction of Vi to F.�.C �X//. By construction,

V 0i .f / D

Z
Ei

X
s

p.s/us.f .s// d�.p; u/

and because �.Ei/ > 0, V 0i is non-trivial. By hypothesis, we have V 0i .f ˚";s ˛/ > V 0i .fi/.
Consider the menu ´ and the strategy which entails the choice of fj for .p; u/ 2 Ej

when j ¤ i , and the choice of fi ˚";s ˛ when .p; u/ 2 Ei . This strategy delivers utility
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bounded above by V.´; �/, ie,

V.´; �/ �
X
j¤i

"Z
Ej

X
s

p.s/usfj .s// d�.p; u/
#
C

Z
Ei

X
s

p.s/us.fi.s// d�.p; u/

C "

Z
Ei

p.s/us.˛ � fi.s// d�.p; u/

D V.x/C "

Z
Ei

p.s/us.˛ � fi.s// d�.p; u/

> V.x/

because
R
Ei
p.s/us.˛ � fi.s// d�.p; u/ > 0 by hypothesis. Noting that V.´/ � V.´; �/ by

the definition of V completes the proof.

Let M0 WD f� .ff1; : : : ; fmg/ W ff1; : : : ; fmg generates x for some x 2 Xg. It follows
from Lemma 6.5 that for all finite x,

max
�2M0

V.x; �/ D max
�2M

V.x; �/

In what follows, we shall restrict attention to finite menus and, therefore, it suffices to
consider the set M0. Let �0 W X0 ⇒ M0 be defined as �0.x/ D � .x/ \M0 (where � is
defined in Appendix C of DKS).

Lemma 6.9. Let x0 WD ff1; : : : ; fmg be the generator set for some nice menu x, and suppose
� 2 � .x0/. Let Ji denote the states where fi is active, and also let .Ei/ represent an optimal
partitional strategy (for �) at x so that act fi is chosen in the cell Ei . Then, � is not Type II
(a or b) at Ei in state s for all i D 1; : : : ; m and s 2 J ci .

Proof. Let � 2 � .x0/ so that V.x/ D V.x0/ D V.x0; �/ and suppose � is Type II (a or b)
at Ei in state s 2 J ci . Note also that because x is nice, there is a unique � 2 �x such that
x � I.�/, and the generator of x is unique.

Case 1: First consider the case where fi.s/ is not a maximizer for Npi.s/Nui;s.�/ on
�.C � X/. Let f �i be the act such that (i) f �i .s0/ D fi.s

0/ for all s0 ¤ s, and (ii) f �i .s/
maximizes Npi.s/Nui;s.�/ on �.C � X/, so that Npi.s/Nui;s

�
f �i .s/

�
> Npi.s/Nui;s

�
fi.s/

�
. An act

satisfying (ii) exists because � is Type II at Ei in state s.
Now, consider the menu xi;" WD ff1; : : : ; .1 � "/fi C "f �i ; : : : ; fmg. By Lemma 6.8,

V.xi;"/ > V.x/ for all " > 0. Notice also that xi;" ! x as "! 0.
For any " > 0, consider �xi;" , and notice that the set-valued map " 7! �xi;" is a

continuous, closed, and compact valued correspondence. By Axiom IICC (Axiom 4), there
exists � 2 Q�xi;" . Consider the maximization problem (parametrized by ")

W."/ WD maxV
�
I.�/

�
s.t. � 2 �xi;"[P1]
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Notice that W.0/ D V.x/ and that because �i;" is finite, a solution to [P1] always exists.
We claim that for any " > 0, the value of problem [P1] is precisely the value of xi;", ie,
W."/ D V.xi;"/.

To see this, notice that from the proof of Lemma 6.1, it follows that V.xi;"/ � V.I.�//
for all � 2 �i;". By Axiom IICC (Axiom 4), there exists � 2 Q�xi;" such that V.I.�// D
V.xi;"/. Therefore, W."/ � V.xi;"/. Combining the two inequalities establishes that W."/ D
V.xi;"/ for all " > 0.

By the Theorem of the Maximum— see for instance, Ok (2007, p306) —W is contin-
uous in ". The Theorem of the Maximum also implies that the maximizer correspondence
is upper hemicontinuous, and therefore for any ��" that is optimal for the problem [P1],
the limit ��0 WD lim"!0 �

�
" is also a maximizer. (The limit always exists because �xi;" is a

continuous, closed, and compact valued correspondence.) The continuity ofW then implies
that W.0/ D V.I.��0 //.

There are two possibilities now. The first is that for all "ı > 0, there exists " 2 .0; "ı/
such that ��" .s/ D .1 � "/fi C "f

�
i is active in state s. Because ��0 D lim"!0 �

�
" , it follows

that ��0 .s/ D fi , ie, fi is active in state s. In other words, ��0 ¤ �. But we have already
established that W.0/ D V.x/ D V.I.��0 //, which contradicts the assumption that x is nice,
which rules out this first possibility.

The other possibility is that there exists an "ı > 0 such that for all " < "ı, the act
.1 � "/fi C "f

�
i is inactive in every such state s 2 J ci , ie, ��" .s/ ¤ .1 � "/fi C "f �i . In this

case, for all " < "ı, we have ��0 D ��" . Because x is nice, it must necessarily be that ��0 D �.
This implies that for all such ", V.xi;"/ D W."/ D W.0/ D V.x/. But this contradicts our
earlier observation (which follows from Lemma 6.8) that V.xi;"/ > V.x/ if � is Type II at
Ei in state s whenever fi is active in state s 2 Ji . This contradiction rules out the second
possibility, and completes the proof of the first case.

Case 2: Suppose that fi.s/ is a maximizer for Npi.s/Nui;s.�/ on �.C � X/. If � is of
Type IIa on Ei in state s 2 J ci , then Npi.s/Nui;s.�/ is not constant on �.C �L/. If � is of Type
IIb on Ei in state s 2 J ci , then Npi.s/Nui;s.�/ is constant on �.C � L/. However, in either case,
there exists ` 2 L such that Npi.s/Nui;s.fi.s// > Npi.s/Nui;s.`.s//. (Such an ` exists because
fi.s/ is a maximizer of Npi.s/Nui;s.�/ and by hypothesis that � is of Type II, there exists some
ˇ 2 �.C � L/ that is not a maximizer.)

Consider the menu 1
2
x C 1

2
`. By Lemma 6.6, we see that � 2 � .x/ implies � 2

� .1
2
x C 1

2
`/. Because x is nice, x0, which satisfies V.x0/ D V.x/, is the unique generator

set of x. L-Independence now implies that V.1
2
x0 C

1
2
`/ D V.1

2
x C 1

2
`/. Moreover, Lemma

6.6 says that 1
2
x C 1

2
` is nice. It follows immediately that 1

2
x0 C

1
2
` is a generator set for

1
2
x C 1

2
`.

Now consider the nice menu 1
2
xC 1

2
`with generator 1

2
x0C

1
2
`, and let� 2 � .1

2
x0C

1
2
`/.

By construction, 1
2
fi.s/ C

1
2
`.s/ is not a maximizer of Npi.s/Nui;s on �.C � X/ (although

fi.s/ is), which means that we now satisfy the hypotheses of Case 1. Lemma 6.6 ensures
that � .1

2
x C 1

2
`/ \ � .x/ ¤ ∅ and that a partitional optimal strategy at x is also optimal at
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1
2
x C 1

2
`. These facts allow us to establish that even in this case, � cannot be of Type II,

which completes the proof.

Let x be nice and let � 2 �0.x/. Let .E�;xi / be the partition induced by an optimal
strategy (for instance, one coming from the generators of x) given � and consider the
mapping

.�;E
�;x
i ; s/ 7! Npi.s/Nui;s.�/ D

Z
E
�;x

i

p.s/us.�/ d�.p; u/

Let ff1; : : : ; fkg be the unique generator set of x, and let Ji denote the set of states where
fi is active so .Ji/ is a partition of S . Now define


 i�;x WD
X
s2Ji

Npi.s/

pi.s/ WD

(
Npi.s/=


i
�;x if s 2 Ji

0 otherwise
[|]

Ous WD 

i
�;x Nui;s where i is such that s 2 Ji

and let

OM WD f O� 2 �.U/ W supp. O�/ D f.pi ; Ou/ W i D 1; : : : ; k where k � n D jS jgg

Note that 
 i�;x ¤ 0 so that pi is well defined. To see this, suppose that 
 i�;x D 0. Then,
Npi.s/ D 0 for all s 2 Ji . This implies that Npi.s/Nui;s.f / D 0 for all acts f , which implies that
ff1; : : : ; fkg � ff1; : : : ; fkg n ffig. That is, we can drop the act fi from the set ff1; : : : ; fkg
without any loss in utility, contradicting the assumption that ff1; : : : ; fkg is the unique
generator set of x.

Consider the mapping

D.�; x; .E�;xi // 7! O� 2 OM

where supp O� D f.pi ; Ou/ W i D 1; : : : ; kg, pi for i D 1; : : : ; k and Ou are defined in [|], and O�
itself is defined as

O�
�
.pi ; Ou/

�
D �

�
E
�;x
i

�
Let OMp �

OM be the image of D. (The domain of D is easily defined, but notationally
cumbersome, and because omitting it will not cause any confusion in the sequel, we refrain
from a formal definition.)

A collection of probability measures fp1; : : : ; pkg on S (so each pi 2 �.S/) forms a
partitional system if (i) for all s 2 S , pi.s/ > 0 implies pj .s/ D 0 for all j ¤ i , and (ii) for
all s,

Pk
iD1 pi.s/ > 0. In other words, every state s is supported by exactly one pi in the

collection.
A positive measure � on U is elementary if its support is Dirac (degenerate) on Us;`�.s/

(see Appendix C of DKS for a definition) and the support on �.S/ is a partitional system of
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probability measures on S . In other words, there exist p1; : : : ; pk 2 �.S/ and us 2 Us;`�.s/ for
all s such that � is supported on the finite collection .p1; u/; : : : ; .pk; u/ where u D .us/s2S .
Rather than saying that the marginal of � on �.S/ has support fp1; : : : ; pkg, we will often
say in the sequel that � supports the partitional system .pi/.

With these definitions, it is clear that each O� 2 OMp is elementary. The following
proposition says that it is without loss of generality to restrict attention to elementary
measures. Towards this end, let us define OV W X0 ! R as

OV .x/ WD sup
�2 OMp

"X
i

h
max
f 2x

X
s

pi.s/us.f .s//
i
�.pi ; u/

#

Proposition 6.10. For all nice x, OV .x/ D V.x/. Moreover, the supremum in the definition
of OV is attained.

Proof. Let x be nice, � 2 �0.x/, and ff1; : : : ; fkg the unique generator set of x. Let us
first prove that V.x/ � OV .x/. Let .E�;xi / be an optimal partition for � at x, and let O� D
D.�; x; .E�;xi //. Then,

V.x; �/ D
X
i

max
f 2x

�X
s

Z
E
�;x

i

p.s/us.f .s// d�.p; u/
�

D

X
i

max
f 2x

X
s

Npi.s/Nui;s.f .s//

Lemma 6.9 says that � cannot be of Type II (a or b) if s 2 J ci , and hence must be either Type
Ia or Type Ib. In either case, Npi.s/Nui;s.f .s// � 0 D Npi.s/Nui;s.`�.s// for all s 2 J ci . Therefore,
it must be that

V.x/ D V.x; �/ �
X
i

max
f 2x

X
s

pi.s/Ous.f .s// D OV .x; O�/ � OV .x/

We now prove that OV .x/ � V.x/ for all nice x. Suppose, by way of contradiction,
that OV .x; O�/ > V.x/ for some nice x and O� 2 OMp. Suppose the optimal strategy here is to
choose fi 2 x whenever the ‘interim information’ is .pi ; u/.

Now recall that O� D D.�; y; .E�;yi // for some � 2 �0 and y 2 X0. Consider the
strategy �� that is constant on E�;yi , ie, satisfies ��.E�;yi / D fi 2 x for each i (where fi is
the optimal choice when presented with the interim information .pi ; u/). The value of this
strategy, V.x; �; ��/, is given by

V.x; �; ��/ D
X
i

"X
s

Z
E
�;y

i

p.s/us.fi.s// d�.p; u/
#

D

X
i

"X
s

Npi.s/Nui;s.fi.s//

#
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It follows from Lemma 6.9 that � is not Type II (a or b) at E�;yi in state s for all s 2 J ci .
(Note that the partition .Ji/ is generated by the unique � 2 Q�y . Thus, .Ji/ does not depend
on x.) Therefore, for all such s 2 J ci , it must be that Npi.s/Nui;s.fi.s// � 0. For such an
s 2 J ci , if we replace fi.s/ by `�, we obtain the new menu x0, which has the property
that V.x0; �; ��x0/ D OV .x; O�/. But this implies V.x0/ � OV .x; O�/ > V.x/, where the strict
inequality follows from our hypothesis. This violates Axiom IICC (Axiom 4) and Continuity
because x0 is obtained from x by replacing payoffs in acts in x by `�, so that x % x0. This
proves that OV .x/ D V.x/ for all nice x.

Now, to show that the maximum is achieved in the definition of OV .x/, observe that for
each nice x, there exists � 2 �0.x/, so that

V.x/ D V.x; �/ definition of �
� OV .x; O�/ from proof of V.x/ � OV .x/ above
� OV .x/ definition of OV
� V.x/ because OV .x/ � V.x/ as proved above

where O� D D.�; x; .E�;xi //, � 2 �0.x/, and .E�;xi / is an optimal partition strategy for � at
x. Therefore, O� is OV -optimal for x, as claimed.

Because V is Lipschitz, it follows immediately that OV is also Lipschitz on X0. By
Proposition 6.3, X0 is dense in X , so that OV uniquely extends to X . It is easy to see that in
the representation of OV , this amounts to replacing OMp with its closure. In what follows, we
shall therefore assume that OMp is closed and that OV is defined on X .

Thus far, we have shown that % is represented by a function V W X ! R that has the
form

V.x/ D max
�2M

V.x; �/[6.1]

where
� each � 2M is a positive elementary measure,
� V.x; �/ D

�P
p2�.S/

�
maxf 2x

P
s2S p.s/us

�
f .s/

��
�.pI u/

�
, and

� V.`I�/ D V.`I�0/ for all �;�0 2M and ` 2 L.
Our first result establishes that we can replace an elementary measure by an elementary

probability measure.

Lemma 6.11. Let � be an elementary measure. Then, there exists an elementary probability
measure O� such that for all x 2 X , V.x; �/ D V.x; O�/.

Proof. Let� be supported on .p1; u/; : : : ; .pk; u/, and let k�k1 be the total weight of�. (That
is, k�k1 WD

P
i �..pi ; u//.) For any s 2 S , define Ous WD k�k1 us, and for any p 2 �.S/, let
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O�.p; Ou/ WD �.p; u/= k�k1 where Ou D .Ous/s2S . It is easy to see that O� so defined is elementary
and is also a probability measure.

Moreover, we have

V.x; O�/ D
X
p

max
f 2x

X
s

O�.p; Ou/p.s/Ous.f .s//

D

X
p

max
f 2x

X
s

�.p; u/

k�k1
p.s/ k�k1 us.f .s//

D V.x; �/

which establishes the claim.

Two partitional systems of probability measures fp1; : : : ; pkg and fq1; : : : ; qkg are
similar if for all i D 1; : : : ; k, supp.pi/ D supp.qi/.

Every elementary probability measure � on �.S/ supports a partitional system. We
now show that we can replace, ie, without affecting utility considerations, � by another
elementary probability measure O� that supports another partitional system that is similar to
the partitional system supported by �.
Lemma 6.12. Let� be an elementary probabilitymeasurewhose support is .p1; u/; : : : ; .pk; u/.
Let f Qp1; : : : ; Qpkg be a partitional system on �.S/ that is similar to fp1; : : : ; pkg. Then, there
exists an elementary probability measure Q� with support . Qp1; Qu/; : : : ; . Qpk; Qu/ such that for
all x 2 X we have V.x; �/ D V.x; Q�/.
Proof. Define Qus WD .pi.s/= Qpi.s//us, and set �.pi ; u/ D Q�. Opi ; Qu/, where Qu D .Qus/s2S . Then,
we have

V.x; Q�/ D
X
i

max
f 2x

X
s

Q�. Qpi ; Qu/ Qpi.s/ Qus.f .s//

D

X
i

max
f 2x

X
s

�.pi ; u/ pi.s/ us.f .s//

D V.x; �/

which completes the proof.

Let � be an elementary probability measure and define �� 2 �.S/ as

��.s/ WD
X
p

�.p/ p.s/

Let �0 2 �.S/ and P WD .Ji/ be a partition of S . Then, the conditional probability induced
by Ji is qi.�; �0 j Ji/ where

qi.sI�0 j Ji/ WD �0.s j Ji/

for all Ji 2 P . It is easy to see that
�
qi.�; �0 j Ji/

�
is a partitional system of probabilities on

S . Conversely, let � be an elementary measure that supports the partitional system .pi/.
This induces the partition P� WD .Ji/ of S where Ji WD supp.pi/.

30



Lemma 6.13. Let �0 2 �.S/, � an elementary probability measure that supports the
partitional system .pi/, and let .Ji/ be the partition of S induced by .pi/. Then, there exists
an elementary probability measure O� such that
(a) �� supports the partitional system

�
qi.�; �0 j Ji/

�
,

(b) ��� D �0, and
(c) V.x; �/ D V.x; ��/ for all x 2 X .

Proof. Let � and �0 be as hypothesized and consider the induced partitional system�
qi.�I�0 j Ji/

�
. By Lemma 6.12, there exists an elementary probability measure Q� that

supports
�
qi.�I�0 j Ji/

�
while keeping utilities unaltered.

For each s, define the utility function

u�s WD

"P
i Q�
�
qi.sI�0 j Ji/; Qu/

�
1fs2Ji gP

i �0.Ji/1fs2Ji g

#
Qus

and observe that in the sums in both the numerator and denominator, only one term is
non-zero. Now, define the elementary probability measure �� as follows: If s is supported
by qi.�I�0 j Ji/, set

��
�
qi.�I�0 j Ji/; u

�
�
WD �0.Ji/

and 0 otherwise, which proves (a). With this definition, ���.s/ D
P
i �
�
�
.qi.�I�0 j Ji/; u

�/
�
�

qi.sI�0 j Ji/ D �0.s/, as desired for the proof of (b). To see (c), notice that we have

V.x; ��/ D
X
i

max
f 2x

X
s

��
�
qi.�I�0 j Ji/; u

�
�
qi.sI�0 j Ji/ u

�
s .f .s//

D

X
i

max
f 2x

X
s

�0.Ji/ qi.sI�0 j Ji/
Q�
�
qi.�I�0 j Ji/; Qu

�
�0.Ji/

Qus.f .s//

D

X
i

max
f 2x

X
s

qi.sI�0 j Ji/ Q�
�
qi.�I�0 j Ji/; Qu

�
Qus.f .s//

D V.x; Q�/ D V.x; �/

which completes the proof.

We are now in a position prove Proposition C.1 of DKS.

Proof of Proposition C.1. We shall first prove (a) implies (b). We have shown that given the
representation [�] in Theorem 1 and IICC (Axiom 4), V has the form in [6.1], where every
� 2M is an elementary (positive, but finite) measure. Lemma 6.11 shows that it is without
loss of generality to consider � that are elementary probability measures. Consider such a �
and suppose it supports the partitional system .pi/. Let Ji D supp.pi/, and notice that .Ji/
is a partition of S . Lemma 6.13 says that it is without loss of generality to assume that every
� supports the partitional system

�
qi.�I�0 j Ji/

�
(recall that qi.sI�0 j Ji/ D �0.s j Ji/) and
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also has the feature that ��.s/ WD
P
i �
�
qi.sI�0 j Ji/

�
qi.sI�0 j Ji/ D �0.s/ for all s. (To

ease notational burden, in what follows we shall write qi.sI�0 j Ji/ as qi.s/.)
In particular, this last property implies that �.qi ; u/ D �0.Ji/ and �.qi ; u/qi.s/ D

�0.Ji/�0.s j Ji/. This implies

V.x; �/ WD
X
i

"
max
f 2x

X
s

qi.s/ us.f .s//

#
�.qi ; u/

D

X
Ji2P

"
max
f 2x

X
s

�0.s j Ji/ us.f .s//

#
�0.Ji/

D

X
Ji2P

24max
f 2x

X
s2Ji

�0.s j Ji/ us.f .s//

35�0.Ji/
DW V 0.x; �0; .P; u//

In other words, the informational content of the elementary probability measure � is now
encoded into the prior �0, the partition P D .Ji/, and the utility functions u D .us/. Let M0
be the collection of all such pairs .P; u/ induced by elementary probability measures in M.
Then, we can write

V.x/ D max
�
V.x; �/

D max
.P;u/2M0

V 0.x; �0; .P; u//

DW V 0.x/

where V 0.x/ D V.x/ for all x 2 X ; this proves the representation part.
Observe now — see [6.1] — that for all ` 2 L and �;�0 2 M, we have V.`; �/ D

V.`; �0/. This implies that, for all ` 2 L and .P; u/; .P 0; u0/ 2M0, we have V 0.`; �0; .P; u// D
V.`; �0; .P

0; u0//.
Recall that `� 2 L is such that us.`�.s// D 0 for all s 2 S . For any ˛ 2 �.C � L/,

define Òs˛ 2 L as

Òs
˛.s
0/ D

(
˛ if s0 D s
`�.s0/ otherwise

For all .P; u/; .P 0; u0/ 2M0, we then have V. Òs˛; �0; .P; u// D V. Òs˛; �0; .P 0; u0//. Notice that
V. Òs˛; �0; .P; u// D �0.s/us.˛/ D �0.s/u

0
s.˛/ D V.

Òs
˛; �0; .P

0; u0//. Since this is true for all
˛ 2 �.C � L/, it follows that us and u0s are identical on C � L for all .P; u/; .P 0; u0/ 2M0.
This proves that (a) implies (b).

That (b) implies (a) follows immediately from Lemma 6.13 which shows how to
construct an elementary measure � given the prior �0, the partition P� D .Ji/, and the
utility function u D .us/.
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