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PREFERENCES FOR ONE-SHOT RESOLUTION OF UNCERTAINTY
AND ALLAIS-TYPE BEHAVIOR

By DAVID DILLENBERGER!

Experimental evidence suggests that individuals are more risk averse when they per-
ceive risk that is gradually resolved over time. We address these findings by studying a
decision maker who has recursive, nonexpected utility preferences over compound lot-
teries. The decision maker has preferences for one-shot resolution of uncertainty if he
always prefers any compound lottery to be resolved in a single stage. We establish an
equivalence between dynamic preferences for one-shot resolution of uncertainty and
static preferences that are identified with commonly observed behavior in Allais-type
experiments. The implications of this equivalence on preferences over information sys-
tems are examined. We define the gradual resolution premium and demonstrate its
magnifying effect when combined with the usual risk premium.

KEYWORDS: Recursive preferences over compound lotteries, resolution of uncer-
tainty, Allais paradox, negative certainty independence.

1. INTRODUCTION

EXPERIMENTAL EVIDENCE SUGGESTS that individuals are more risk averse
when they perceive risk that is gradually resolved over time. In an experiment
with college students, Gneezy and Potters (1997) found that subjects invest
less in risky assets if they evaluate financial outcomes more frequently. Haigh
and List (2005) replicated the study of Gneezy and Potters with professional
traders and found an even stronger effect. These two studies allow for flexi-
bility in adjusting investment according to how often the subjects evaluate the
returns. Bellemare, Krause, Kroger, and Zhang (2005) found that even when
all subjects have the same investment flexibility, variations in the frequency
of information feedback alone affect investment behavior systematically. All
their subjects had to commit in advance to a fixed equal amount of investment
for three subsequent periods. Group A was told that they would get periodic
statements (i.e., would be informed about the outcome of the gamble after
every draw), whereas group B knew that they would hear only the final yields
of their investment. The average investment in group A was significantly lower
than in group B. The authors concluded that “information feedback should be
the variable of interest for researchers and actors in financial markets alike.”

T am grateful to Faruk Gul and Wolfgang Pesendorfer for their invaluable advice during
the development of the paper. I thank Roland Benabou, Eric Maskin, Stephen Morris, Klaus
Nehring, and Uzi Segal for their helpful discussions and comments. The co-editor and four anony-
mous referees provided valuable comments that improved the paper significantly. I have also
benefited from suggestions made by Shiri Artstein-Avidan, Amir Bennatan, Bo’az Klartag, Ehud
Lehrer, George Mailath, Charles Roddie, and Kareen Rozen. Special thanks to Anne-Marie
Alexander for all her help. This paper is based on the first chapter of my doctoral dissertation
at Princeton University.
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Such interdependence between the way individuals observe the resolution of
uncertainty and the amount of risk they are willing to take is not compatible
with the standard model of decision making under risk, which is a theory of
choice among probability distributions over final outcomes.?

In this paper, we assume that the value of a lottery depends directly on the
way the uncertainty is resolved over time. Using this assumption, we provide a
choice theoretic framework that can address the experimental evidence above
while pinpointing the required deviations from the standard model. We exploit
the structure of the model to identify the links between the temporal aspect of
risk aversion, a static attitude toward risk, and intrinsic preferences for infor-
mation.

To facilitate exposition, we mainly consider a decision maker (DM) whose
preferences are defined over the set of two-stage lotteries, namely lotteries
over lotteries over outcomes. Following Segal (1990), we replace the reduction
of compound lotteries axiom with the following two assumptions: time neu-
trality and recursivity. Time neutrality says that the DM does not care about
the time in which uncertainty is resolved as long as resolution happens in a
single stage. Recursivity says that if the DM prefers a single-stage lottery p
to a single-stage lottery g, then he also prefers to substitute ¢ with p in any
two-stage lottery containing g as an outcome. Under these assumptions, any
two-stage lottery is subjectively transformed into a simpler, one-stage lottery.
In particular, there exists a single preference relation over the set of one-stage
lotteries that fully determines the DM’s preferences over the domain of two-
stage lotteries.

To link behavior in both domains, we introduce the following two properties:
the first is dynamic while the second is static.

e Preferences for one-shot resolution of uncertainty (PORU). The DM has
PORU if he always prefers any two-stage lottery to be resolved in a single stage.
PORU implies an intrinsic aversion to receiving partial information. This no-
tion formalizes an idea first raised by Palacious-Huerta (1999).

e Negative certainty independence (NCI). NCI states that if the DM prefers
lottery p to the (degenerate) lottery that yields the prize x for certain, then
this ranking is not reversed when we mix both options with any common, third
lottery g. This axiom is similar to Kahneman and Tversky’s (1979) “certainty
effect” hypothesis, though it does not imply that people weigh probabilities
nonlinearly. The restrictions NCI imposes on preferences are just enough to
explain commonly observed behavior in the common-ratio version of the Allais
paradox with positive outcomes. In particular, NCI allows the von Neumann—
Morgenstern (VNM) independence axiom to fail when the certainty effect is
present.

2All lotteries discussed in this paper are objective, that is, the probabilities are known. Knight
(1921) proposed distinguishing between risk and uncertainty according to whether the probabil-
ities are given to us objectively or not. Despite this distinction, we will use both notions inter-
changeably.
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Proposition 1 establishes that NCI and PORU are equivalent. On the one
hand, numerous replications of the Allais paradox prove NCI to be one of the
most prominently observed preference patterns. On the other hand, empirical
and experimental studies involving dynamic choices and experimental studies
on preference for uncertainty resolution are still rather rare. The dispropor-
tional amount of evidence in favor of each property strengthens the impor-
tance of Proposition 1, since it provides new theoretical predictions for dy-
namic behavior, based on robust (static) empirical evidence.

In an extended model, we allow the DM to take intermediate actions that
might affect his ultimate payoff. The primitive in such a model is a prefer-
ence relation over information systems, which is induced from preferences
over compound lotteries. Safra and Sulganik (1995) left open the question of
whether there are nonexpected utility preferences for which, when applied re-
cursively, perfect information is always the most valuable information system.
Proposition 2 shows that this property, which we term preferences for perfect in-
formation, is equivalent to PORU. As a corollary, NCI is both a necessary and
sufficient condition to have preferences for perfect information.

We extend our results to preferences over arbitrary n-stage lotteries and
show that PORU can be quantified. The gradual resolution premium of any
compound lottery is the amount that the DM would pay to replace that lot-
tery with its single-stage counterpart. We demonstrate that, for a broad class of
preferences, the gradual resolution premium can be quantitatively important;
for any one-stage lottery, there exists a multistage lottery (with the same prob-
ability distribution over terminal prizes) whose value is arbitrarily close to that
of getting the worst prize for sure.

1.1. Related Literature

Confining his attention to binary single-stage lotteries and to preferences
from the rank-dependent utility class (Quiggin (1982)), Segal (1987, 1990) dis-
cussed sufficient conditions under which the desirability of a two-stage lottery
decreases as the two stages become less degenerate. Proposition 3 shows that
these conditions cannot be extended to the general case, that is, the combina-
tion of rank-dependent utility and PORU implies expected utility. Palacious-
Huerta (1999) was the first to raise the idea that the form of the timing of res-
olution of uncertainty might be an important economic variable. By working
out an example, he demonstrated that a DM with Gul’s (1991) disappointment
aversion preferences will be averse to the sequential resolution of uncertainty
or, in the language of this paper, will be displaying PORU. He also discussed
numerous applications. The general theory we suggest provides a way to under-
stand which attribute of Gul’s preferences accounts for the resulting behavior.
It also spells out the extent to which the analysis can be extended beyond Gul’s
preferences.

Schmidt (1998) developed a static model of expected utility with certainty
preferences. His notion of certainty preferences is very close to Axiom NCI. In
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his model, the value of any nondegenerate lottery is the expectation of a utility
index over prizes, u, whereas the value of the degenerate lottery that yields the
prize x for sure is v(x). The certainty effect is captured by requiring v(x) >
u(x) for all x. Schmidt’s model violates both continuity and monotonicity with
respect to first-order stochastic dominance, while in this paper, we confine our
attention to preferences that satisfy both properties.’

Loss aversion with narrow framing (also known as myopic loss aversion) is
a combination of two motives: loss aversion (Kahneman and Tversky (1979)),
that is, people’s tendency to be more sensitive to losses than to gains, and nar-
row framing, that is, a dynamic aggregation rule that argues that when making
a series of choices, individuals “bracket” them by making each choice in isola-
tion.* Benartzi and Thaler (1995) were the first to use this approach to suggest
explanations for several economic “anomalies,” such as the equity premium
puzzle (Mehra and Prescott (1985)). Barberis, Huang, and Thaler (2006) gen-
eralized Benartzi and Thaler’s work by assuming that the DM derives utility
directly from the outcome of a gamble over and above its contribution to total
wealth.

Our model can be used to address similar phenomena. The combination of
recursivity and a specific form of atemporal preferences implies that individ-
uals behave as if they intertemporally perform narrow framing. The gradual
resolution premium quantifies this effect. The two approaches are conceptu-
ally different: loss aversion with narrow framing brings to the forefront the idea
that individuals evaluate any new gamble separately from its cumulative contri-
bution to total wealth, while we maintain the assumption that terminal wealth
matters, and we identify narrow framing as a temporal effect. In addition, we
set aside the question of why individuals are sensitive to the way uncertainty is
resolved (i.e., why they narrow frame) and construct a model that reveals the
(context-independent) behavioral implications of such considerations.

Koszegi and Rabin (2009) studied a model in which utility additively de-
pends both on current consumption and on recent changes in (rational) beliefs
about present and future consumption, where the latter component displays
loss aversion. In their setting, they identified narrow framing with preference
over such fluctuations in beliefs. They also showed that people prefer to get in-
formation clumped together (similar to PORU) rather than apart. Aside from
the same conceptual differences between the two approaches, their set of re-
sults concerning information preferences is confined to the case where con-
sumption happens only in the last period and is binary. This corresponds in

3Continuity and monotonicity ensure that the certainty equivalent of each lottery is well de-
fined. This fact is used when applying the recursive structure of Segal’s model.

4Narrow framing is an example of people’s tendency to evaluate risky decisions separately. This
tendency is illustrated in Tversky and Kahneman (1981), and further studied in Kahneman and
Lovallo (1993) and Read, Loewenstein, and Rabin (1999), among others. Barberis and Huang
(2007) presented an extensive survey of this approach.
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our setup to lotteries over only two monetary prizes. Our results are valid for
lotteries with arbitrary (finite) support.

In this paper, we study time’s effect on preferences by distinguishing between
one-shot and gradual resolution of uncertainty. A different, but complemen-
tary, approach is to study intrinsic preferences for early or late resolution of
uncertainty. This research agenda was initiated by Kreps and Porteus (1978),
and later extended by Epstein and Zin (1989) and Chew and Epstein (1989),
among others. Grant, Kajii, and Polak (1998, 2000) connected preferences for
the timing of resolution of uncertainty to intrinsic preferences for informa-
tion. We believe that both aspects of intrinsic time preferences play a role in
most real life situations. For example, an anxious student might prefer to know
as soon as possible his final grade in an exam, but still prefers to wait rather
than to get the grade of each question separately. The motivation to impose
time neutrality is to demonstrate the role of the one-shot versus gradual effect,
which has been neglected in the literature to date.

The remainder of the paper is organized as follows: we start Section 2 by es-
tablishing our basic framework, after which we introduce the main behavioral
properties of the paper and state our main characterization result. Section 3
comments on the implications of our model on preferences over information
systems. In Section 4, we elaborate on the static implications of our model and
provide examples. Section 5 first extends our results to preferences over com-
pound lotteries with an arbitrarily finite number of stages. We then define the
gradual resolution premium and illustrate its magnifying effect. Most proofs
are relegated to the Appendix.

2. THE MODEL
2.1. Groundwork

Consider an interval [w, b] = X C R of monetary prizes. Let £! be the set
of all simple lotteries (probability measures with finite support) over X. That
is, each p € L' is a function p: X — [0, 1], satisfying Y ex P(x) =1, and we
restrict our analysis to the case where in any given lottery, the number of prizes
with nonzero probability is finite. Let S(p) = {x | p(x) > 0}. For each p, g € L!
and a € (0, 1), the mixture ap + (1 — a)q € L' is the simple lottery that yields
each prize x with probability ap(x) + (1 — a)g(x). We denote by 8, € L' the
degenerate lottery that gives the prize x with certainty, that is, ,(x) = 1. Note
that for any lottery p € £', we have p=3"__, p(x)3,.

Correspondingly, let £2 be the set of all simple lotteries over £'. That is, each
Q € L?isafunction Q: L' — [0, 1], satisfying > pert Q(p) =1.Foreach P,Q €
L£? and A € (0, 1), the mixture R = AP + (1 — A)Q € £? is the two-stage lottery
for which R(p) = AP(p)+(1—A)Q(p). We denote by D, € L* the degenerate,
in the first stage, compound lottery that gives lottery pin the second stage with
certainty, that is, D,(p) = 1. Note that for any lottery Q € £?, we have Q =
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> gt Q(@)D,. We think of each O € L? as a dynamic two-stage process where,
in the first stage, a lottery g is realized with probability Q(g), and, in the second
stage, a prize is obtained according to q.

Two special subsets of £* are I' ={D, | p € L'}, the set of degenerate lot-
teries in £2,and A ={Q € L? | Q(p) > 0= p = §, for some x € X}, the set of
lotteries in £?, the outcomes of which are degenerate in £!. Note that both I”
and A are isomorphic to £!.

Let > be a continuous (in the topology of weak convergence) preference re-
lation over £2. Let > and >, be the restriction of > to I" and A, respectively.
On > we impose the following axioms:

AXIOM AO—More Is Better: Forall x,y € X, x >y < Ds, > Ds,.
AX10M Al—Time Neutrality: Forall pe L', D,~ 3" _. p(x)Ds,.

AXIOM A2—Recursivity: Forall g, p € L', all Q € £, and A € (0, 1),
D,=D, < AD,+(1—0)QxAD,+(1-M0Q.

Axiom A0 is a weak monotonicity assumption. By postulating Axiom A1, we
assume that the DM does not care about the time in which the uncertainty is
resolved as long as it happens in a single stage. Axiom A2 assumes that prefer-
ences are recursive. It states that preferences over two-stage lotteries respect
the preference relation over degenerate two-stage lotteries (that is, over single-
stage lotteries) in the sense that two compound lotteries that differ only in the
outcome of a single branch are compared exactly as these different outcomes
would be compared separately.

LEMMA 1: If > satisfies Axioms A0, Al, and A2, then both = and =, are
monotone (with respect to the relation of first-order stochastic dominance).’

PROPOSITION—Segal (1990): The relation > satisfies Axioms A0, Al, and A2
if and only if there exists a continuous function V : L' — R, such that the certainty
equivalent function ¢: L' — X is given by V (8.,)) =V (p) for all p € L', and
forall P, Q € L?,

P-Q < V(ZP(P)5c(p>) ZV(ZQ(P)SM;))-

peLl pecl

>Axioms A0, Al, and A2 imply that both > and >, satisfy the axiom of degenerate inde-
pendence (ADI; Grant, Kajii, and Polak (1992)). Simple induction arguments show that ADI is
equivalent to monotonicity with respect to the relation of first-order stochastic dominance.
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Note that under Axioms A0, Al, and A2, the preference relation >y = >,
fully determines >. The decision maker evaluates two-stage lotteries by first
calculating the certainty equivalent of every second-stage lottery using the pref-
erences represented by 1 and then calculating (using V' again) the first-stage
value by treating the certainty equivalents of the former stage as the relevant
prizes. Since only the function V' appears in the formula above, we slightly
abuse notation by writing V' (Q) for the value of the two-stage lottery Q. Last,
since under the above assumptions V' (p) =V (D)) =V (}_, ., p(x)Ds,) for all
p € L', we simply write V' ( p) for this common value.

2.2. Main Properties

We now introduce and motivate our two main behavioral assumptions. The
first is dynamic, whereas the second is static. Our static properties are imposed
on preference relations over sets that are isomorphic to £' (such as > and
>4). We denote by >; such a generic preference relation and assume through-
out that it is continuous and monotone.

2.2.1. Preference for One-Shot Resolution of Uncertainty

We model a DM whose concept of uncertainty is multistage and who cares
about the way uncertainty is resolved over time. In this section, we define con-
sistent preferences to have all uncertainty resolved in one-shot rather than
gradually or vice versa.

Define p: £? — L' to be the reduction operator that maps a compound lot-
tery to its reduced single-stage counterpart, that is, p(Q) = }_ .1 Q(q)q. Note

that by Axiom A1, Do)~ 3_ cx[D_ et Q(@)q(x)1Ds, .

DEFINITION 1: The preference relation > displays preference for one-
shot resolution of uncertainty (PORU) if VQ € £2, D, > Q. If VO € L7,
Q > D, ), then > displays preference for gradual resolution of uncertainty
(PGRU).

PORU implies an aversion to receiving partial information. If uncertainty is
not fully resolved in the first stage, the DM prefers to remain fully unaware
until the final resolution is available. PGRU implies the opposite. As we will
argue in later sections, these notions render “the frequency at which the out-
comes of a random process are evaluated” a relevant economic variable.®

®Halevy (2007) provided some evidence in favor of PORU. In his paper, subjects were asked
to state their reservation prices for four different compound lotteries. The behavior of approxi-
mately 60% of his subjects was consistent with Axioms A0-A2. Furthermore, approximately 40%
of his subjects were classified as having preferences that are consistent with the recursive, non-
expected utility model. His results (which are discussed in Section 4.2.1 of his paper) show that
within the latter group, the reservation prices of the two degenerate two-stage lotteries (V1 and
V4, members of A and I', respectively) were approximately the same and larger than the reser-
vation price of the gradually resolved lottery (}/3).
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2.2.2. The Ratio Allais Paradox and Axiom NCI

In a generic Allais-type questionnaire (also known as common-ratio effect
with a certain prize) subjects choose between A and B, where A = 85y and
B =0.884000+0.28,. They also choose between C and D, where C = 0.2583099 +
0.758, and D = 0.284990 + 0.88,. The majority of subjects tend to systematically
violate expected utility by choosing the pair 4 and D.’

Since Allais’s (1953) original work, numerous versions of his questionnaire
have appeared, many of which contain one lottery that does not involve any
risk.> Kahneman and Tversky (1979) used the term “certainty effect” to ex-
plain the commonly observed behavior. Their idea is that individuals tend to
put more weight on certain events in comparison with very likely, yet uncertain,
events. This reasoning is behaviorally translated into a nonlinear probability-
weighting function, 7: [0, 1] — [0, 1], that individuals are assumed to use when
evaluating risky prospects. In particular, this function has a steep slope near—
or even a discontinuity point at—0 and 1. As we remark below, this implica-
tion has its own limitations. We suggest a property that is motivated by similar
insights and captures the certainty effect without implying that people weigh
probabilities nonlinearly. Consider the following axiom on >;:

AXI0M NCI—Negative Certainty Independence: For all p,q, 8, € L' and
Ae[0,1], p =1 8, implies Ap+ (1 — AN)g > A8, + (1 — A)g.

The axiom states that if the sure outcome x is not enough to compensate
the DM for the risky prospect p, then mixing it with any other lottery, thus
eliminating its certainty appeal, will not result in the mixture of x being more
attractive than the corresponding mixture of p. If we define c¢(p|A, g), the con-
ditional certainty equivalent of a lottery p, as the solution to Ap + (1 — A)g ~;
Adcpin,g + (1 — A)gq, then the axiom implies that c(p|A,g) > c(p) for all
p,q € L' and A € (0, 1). The implication of this axiom on responses to the
Allais questionnaire above is as follows: if you choose the nondegenerate lot-
tery B, then you must also choose D. This prediction is empirically rarely vio-
lated in versions of the Allais questionnaire that involved positive outcomes.’!°

"This example is taken from Kahneman and Tversky (1979). Of 95 subjects, 80% choose A
over B, 65% choose D over C, and more than half choose the pair 4 and D.

8Camerer (1995) gave an extensive survey of the experimental evidence against expected util-
ity, including the “common consequence effect” and “common ratio effect” that are related to
the Allais paradox.

°Conlisk (1989), for example, replicated the two basic Allais questions. About half of his sub-
jects (119 out of 236) violate expected utility. The fraction of violations that are of the B and C
type is 16/119 >~ 0.13.

107t is worth mentioning that there is also some empirical and experimental evidence that con-
flicts with NCI. For example, NCI will be inconsistent with the “reflection effect,” that is, a com-
mon ratio effect with negative numbers (Kahneman and Tversky (1979), Machina (1987)). I thank
a referee for pointing this out.
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As we mentioned before, NCI does not imply any probabilistic distortion. This
observation becomes relevant in experiments similar to the one reported by
Conlisk (1989, p. 398), who studied the robustness of Allais-type behavior to
boundary effects. Conlisk considered a slight perturbation of prospects similar
to A, B, C, and D above, so that (i) each of the new prospects, 4", B, C’, and
D', yields all three prizes with strictly positive probability, and (ii) in the re-
sulting “displaced Allais question” (namely choosing between A’ and B, and
then choosing between C’ and D’), the only pattern of choice that is consis-
tent with expected utility is either the pair A" and C’ or the pair B’ and D'.
Although violations of expected utility become significantly less frequent and
are no longer systematic (a result that supports the claim that violations can
be explained by the certainty effect), a nonlinear probability function predicts
that this increase in consistency would be the result of fewer subjects choosing
A’ over B’, and not because more subjects choose C’ over D'. In fact, the latter
occurred, which is consistent with NCI.

PROPOSITION 1: Under Axioms A0, Al, and A2, > satisfies NCI if and only
if > displays PORU.

PROOF: Only If. Suppose >, satisfies NCI. We need to show that an arbitrary
two-stage lottery Q is never preferred to its single-stage counterpart D, .
Without loss of generality, assume that there are / outcomes in the support
of Q. Using Axioms A(0-A2, we have

c(q") L(q’

! !
i (Axioms A0, A2) i (Axiom Al)
Q=) 0(g)Dy =" " 0GYDs T Dyt g
i=1 i=1

and by repeatedly applying NCI,

1
3 03y = Q(ql)sdql)ﬂl—Q(ql))(Z% L@,))
i=1 i#l
oven 0(q)
< Q<q1>q1+(1—Q<q1>>(lZ% cm)
0(q")
= 2)8 2 1- 2 =17
Q(q)de + (1-0(q ))<(1_Q(q2))q

0(q")
2T o) ““)

i#1,2

S 06+ 0@F + Y OGSy =+

i£1,2
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0(q") i)
= NS 1— ! § 7

il

(NCI)

!
<1 Y _0(4Hq' =p(Q).
i=1
Therefore,
!
0= ZQ(C]I)in ~ DZile(q")SC(qi) = D,g).
i=1

If. Suppose >; does not satisfy NCI. Then there exists p, g = > q(x)é,,
8, € L' and A € (0, 1) such that p >; 8, and A8, + (1 — A)g > Ap + (1 — A)g.
By monotonicity, A8, + (1 —A)g > Ap+ (1 —A)qg. Let Q:=AD, + (1 —
A) Y. q(x)Ds, and note that

Q~ D5, + (1= 1)) q(x)Ds,
> Y () + (1 = Mg()1Ds, ~ Dyg)

which violates PORU. O.E.D.

The idea behind Proposition 1 is simple: the second step of the folding-
back procedure involves mixing all certainty equivalents of the correspond-
ing second-stage lotteries. Applying NCI repeatedly implies that each certainty
equivalent loses relatively more (or gains relatively less) from the mixture than
the original lottery that it replaces would.

Proposition 1 ties together two notions that are defined on different do-
mains. The equivalence of PORU and NCI suggests that being averse to the
gradual resolution of uncertainty and being prone to Allais-type behavior are
synonymous. This assertion justifies the proposed division of the space of two-
stage lotteries into the one-shot and gradually resolved lotteries. On the one
hand, numerous replications of the Allais paradox in the last 50 years prove
that the availability of a certain prize in the choice set affects behavior in a
systematic way. On the other hand, empirical and experimental studies involv-
ing dynamic choices and experimental studies on preferences for uncertainty
resolution are still rather rare. Proposition 1 thus provides new theoretical pre-
dictions for dynamic behavior, based on robust (static) empirical evidence.

3. PORU AND THE VALUE OF INFORMATION

Suppose now that before the second-stage lottery is played, but after the
realization of the first-stage lottery, the decision maker can take some action
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that might affect his ultimate payoff. The primitive in such a model is a pref-
erence relation over information systems (as we formally define below), which
is induced from preferences over compound lotteries. Assume throughout this
section that preferences over compound lotteries satisfy Axioms AO0-A2. An
immediate consequence of Blackwell’s (1953) seminal result is that in the stan-
dard expected utility class, the DM always prefers to have perfect information
before making the decision, which allows him to choose the optimal action
corresponding to the resulting state. Schlee (1990) showed that if > is of the
rank-dependent utility class (Quiggin (1982)), then the value of perfect infor-
mation will always be nonnegative. This value is computed relative to the value
of having no information at all and, therefore, Schlee’s result has no implica-
tions for the comparison between getting complete and partial information.
Safra and Sulganik (1995) left open the question of whether there are static
preference relations, other than expected utility, for which, when applied re-
cursively, perfect information is always the most valuable. We show below that
this property is equivalent to PORU. As a corollary, such preferences for per-
fect information are fully characterized by NCI.

Formally, fix an interval of monetary prizes X C R. Let S ={s;,..., sy} be a
finite set of possible states of nature. Each state s € § occurs with probability
ps. Let J ={ji, ..., ju} be a finite set of signals and let 4 ={a,,...,ay} be a
finite set of actions. Let u: A x S — X be a function that gives the deterministic
outcome u(a, s) (an element of X) if action a € A4 is taken and the realized
state is s € S. The collection 2 = {S,J, A, (p,)ses, 4} is called an information
environment.

Let 7:S§ x J — [0, 1] be a function such that (s, j) is the conditional prob-
ability of getting the signal j € J when the prevailing state is s € S. We naturally
require that for all s € S, >, _,7m(s, j) = 1 (so that when the prevailing state is
s, there is some probability distribution on the signals the DM might get). The
function 7 is called an information system.

For any s € S, denote the updated probability of s after the signal j € J is
obtained by p(s|j) = (s, j) ps/ Y _yes (S, J) py. A full information system, 1,
is a function such that for all s € S there exists j(s) € J with p(s|j(s)) = 1. The
null information system, ¢, is a function such that p(s|j) = p, forall s € § and
jelJ.

Let p/(a) € L' be the second-stage lottery if signal j is obtained and action
a € Aistaken, thatis, p/(a) =Y _¢p(8]j)duw,s- For a; € argmax,.4 V (p/(a)),
let p™*:= p/(a)). Let V(m) :=V (3., (3 c57(s, J) ps) D ) be the value of the
optimal compound lottery, that is, the compound lottery assigning probability
a;(m) =Y 7(s, J)ps to p/*. Note that V (¢) = max,ea V(X .5 PsOutas) and
that V(1) =V (3", g PsOucacs).s))» Where a(s) is an optimal action if you know
that the prevailing state is s, that is, a(s) € argmax,. 4 u(a, s).

DEFINITION 2: The relation > displays preferences for perfect information
if for every information environment (2 and any information system =, V' () >
V(m).
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PROPOSITION 2: If > satisfies Axioms AO-A2, then the two statements below
are equivalent:

(i) The relation > displays PORU.

(ii) The relation > displays preferences for perfect information.
Analogously, PGRU holds if and only if for every information environment (2 and
any information system , V (7)) >V ().

Since any temporal lottery corresponds to an information environment in
which for all a € A4, u(a, s) = v(s) € X, showing that (i) is necessary for (ii)
is immediate. For the other direction, we note that two forces reinforce each
other. First, getting full information means that the underlying lottery is of the
one-shot resolution type, since uncertainty is completely resolved by observ-
ing the signal. Second, better information enables better planning; using it, a
decision maker with monotonic preferences is sure to take the optimal action
in any state. The proof distinguishes between the two motives for getting full
information: the former, which is captured by PORU, is intrinsic, whereas the
latter, which is reflected via the monotonicity of preferences with respect to
outcomes, is instrumental. The result for PGRU is similarly proven. The null
information system is of the one-shot resolution type and it has no instrumental
value.

By combining Propositions 1 and 2 we get the following corollary:

COROLLARY 1: If > satisfies Axioms AO0-A2, then = displays preferences for
perfect information if and only if =, satisfies NCI.

4. STATIC IMPLICATIONS
4.1. NCI in the Probability Tiiangle

Fix three prizes x; > x, > x;. All lotteries over these prizes can be repre-
sented as points in a two-dimensional space, A{d,,, 8,,, 0.,} := {p = (p1, p3) |
P1, p3 >0, p1 + p; <1}, asin Figure 1. The origin (0, 0) represents the lottery
0.,. The probability of the high prize, p(x3;) = p3, is measured on the verti-
cal axis, and the probability of the low prize, p(x;) = p;, is measured on the
horizontal axis. The probability of obtaining the middle prize is p(x;) = p, =
1 — p1 — p;. Given these conventions, monotonicity implies that preferences
increase in the northwest direction. The properties below are geometric re-
strictions that NCI (hence PORU) imposes on the map of indifference curves
in any probability triangle A, which corresponds to some triple x; > x, > x;.

LEMMA 2—Quasiconcavity: If >, satisfies NCI, then V' is quasiconcave, that
is, V(ap + (1 —a)q) = min{l(p), V(g)}.

COROLLARY 2: If = satisfies NCI, then all indifference curves in A are convex.
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1
Ps3 Increasing
‘ preferences
0 — 1

FIGURE 1.—The probability triangle (showing linear indifference curves). The bold indiffer-
ence curve through the origin demonstrates the steepest middle slope property (Lemma 3).

Let n(p) be the slope, relative to the (p;, p;) coordinates, of the indiffer-
ence curve at lottery p. Slope w(p) is the marginal rate of substitution be-
tween a probability shift from x, to x; and a probability shift from x, to x;.
As explained by Machina (1982), changes in the slope express local changes
in attitude toward risk: the greater the slope, the more (local) risk averse the
DM is. Denote by u*(p) the right derivative of the indifference curve at p and
denote by int(A) the interior of A. Let Z,, :={q € A| q ~ p}.

DEFINITION 3: The function V' satisfies the steepest middle slope property if
the following statements hold:

(i) The indifference curve through the origin is linear, that is, g € Z o)
implies u(q) = u*((0,0)) := n(Z0,0))-

(i) The indifference curve through the origin is the steepest, that is,
w(Z0.0)) = 1T (g) for all g € int(A).M

LEMMA 3—Steepest Middle Slope: If >; satisfies NCI, then V satisfies the
steepest middle slope property.

The applicability of the steepest middle slope property stems from its sim-
plicity. To detect violation of PORU, one need not construct the (potentially
complicated) exact choice problem. Rather, it is often sufficient to “examine”
the slopes of one-dimensional indifference curves. This, in turn, is a relatively
simple task, at least once a utility function is given. Proposition 3 below is based
on this observation. The linearity of the indifference curve through the origin
is implied by applying NCI twice: p >, 6, = p=ap+ (1 —a)p >, ad,+ (1 —
a)p = ad,+ (1 —a)d, =46,. Therefore, p ~; 6, = ap+ (1 —a)d, ~ 6,.

"By Corollary 2, all the right derivatives exist (see Rockafellar (1970, p. 214)).
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Examples of preferences that satisfy NCI will be given in Section 4.2.1. For
now, we use both lemmas to argue that two broad and widely used classes
of preferences—rank-dependent utility (Quiggin (1982)) and quadratic utility
(Chew, Epstein, and Segal (1991))—do not satisfy NCI unless they coincide
with expected utility.

Order the prizes x| < x, < --- < x,,. The functional form for rank-dependent
utility is

V(Zp(xi)Sx[) = g(p(x1))u(x;)
i=1

n i i—1
IIED [g (Zp(xj)) - g(Zp(xj))},
i=2 j=1 j=1

where g:[0, 1] — [0, 1] is increasing, g(0) =0, and g(1) = 1. If g(p) = p, then
rank-dependent utility reduces to expected utility.
The functional form for quadratic utility is

Vv (Zp(xi)axi) =Y e(xi, x) plxi) p(x)),
i=1

i=1 j=1

where ¢: X x X — R is some symmetric function. If ¢(x;, x;) = (u(x;) +
u(x;))/2, then quadratic utility reduces to expected utility.

PROPOSITION 3: If = satisfies NCI and is a member of either the rank-
dependent utility class or the quadratic utility class, then V' is an expected utility
functional ?

Confining his attention to smooth preferences, in the sense that the func-
tion V' is Fréchet differentiable, Machina (1982) suggested the following
fanning-out property: for all p, g € A, if p first-order stochastically dominates
q, then u(p) > n(q). If for all such p # g, we have u(p) > n(q), then we say
that >, satisfies the proper fanning-out property. Lemma 3 immediately im-
plies that if >, satisfies NCI, then >; does not satisfy the proper fanning-out

12Segal (1990, Section 5) used a different, but equivalent, way to write the functional form for
rank-dependent utility, using the transformation f(p) =1 — g(1 — p). He showed that within
this model, if f is convex and its elasticity is nondecreasing, then the desirability of a two-stage
lottery of the form aDs, + 1- a)Dgs, +1-p)s, decreases as the two stages become less degen-
erate. Similar results are stated in Segal (1987, Theorem 4.2). This condition is not sufficient to
imply global PORU. For example, let f(p) = p?, which satisfies Segal’s conditions and u(x) = x.
Take three prizes, 0,1, and 2 and note that V(%Da1 + %D((ﬁ_l)/ﬁ)§0+(l/\/§)52) =1>0.853 =
V(L8 + 181+ 5582,
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property. This observation does not contradict the usual explanation of fanning
out as a resolution to Allais paradox. Typical Allais experiments with positive
outcomes (as the one described in Section 2) provide evidence of behavior in
the lower right subtriangle. In this region, NCI is consistent with fanning out."

The following example demonstrates that the steepest middle slope property
is weaker than NCI." For a fixed n >4, let p =1 3" | 8((j/mur(n—jp/mp and let
p=1 Zf;& O ((j/mw+(n—j)/mpy- Note that p first-order stochastically dominates p
(denoted p >, p). Let L, C L' be the set of lotteries with j possible outcomes,
thatis, £, = {p € L' :|S(p)| = j}. Define L* := {p € L' :p >, p >, p}. Observe
thatfor j<3,qe L= q¢ L".

For any p € L', denote by p* its cumulative distribution function. Let
d:L* — [0, 1] be defined as d(q) =( ”Zi:?l'l)z, where || - || is the L; norm. De-
fine f:£* — L* by f(q) =d(q)p + (1 — d(¢q))p. Note that f(p) = p and
that f(p) = p. Furthermore, if c;r € L* and g > r, then d(q)_< d(r) and
f(@) =1 f(r).

Denote by e( p) the expectation of a lottery p € £, thatis,e(p) =Y. xp(x).
Define

_[e(p), if pe L'\ L7,
V= { e(f(p)), ifpecl:.

The function V' is continuous, is monotone, and satisfies the steepest middle
slope property, but does not satisfy NCI."°

4.2. Betweenness

For the rest of the section, assume that >, is quasiconvex, that is, Vp, g € L',
V(ap+(1—a)q) <max{}V (p), V(gq)}. The conjunction of quasiconvexity with
quasiconcavity (Lemma 2) yields the following axiom:

AXI0M A3—Single-Stage Betweenness: Forall p,q e L' and a €[0,1], p >,
q implies p =y ap+ (1 —a)q > q.

Axiom A3 is a weakened form of the vINM independence axiom. It implies
neutrality toward randomization among equally good lotteries. It yields the
following representation:

BThe behavioral evidence that supports fanning out is generally weaker in the upper left sub-
triangle than in the lower right subtriangle (see Camerer (1995)).

14T thank Danielle Catambay for her help constructing this example.

5Suppose that X = [0, 1]. Let p’ = 0.5p + 0.5p € £* and note that V' (p') = 2+, But for y

4n

sufficiently close to 1, yp' + (1 — ¥)8ur1y/¢m € L£* and V(yp' + (1 — ¥)8us1y/iam) # 2.
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PROPOSITION—Chew (1989), Dekel (1986): The relation >, satisfies Ax-
iom A3 if and only if there exists a local utility function u: X x [0,1] — [0, 1],
which is continuous in both arguments, is strictly increasing in the first argu-
ment, and satisfies u(w,v) =0 and u(b,v) =1 for all v € [0, 1], such that
p=q<V(p)=VI(q),where V(p) is defined implicitly as the unique v € [0, 1]
that solves

> px)u(x,v)=v.

The next result gives the utility characterization of NCI within the between-
ness class of preferences. Let W(p,v) := ) p(x)u(x,v) and denote by 5‘12

the set of all binary lotteries, that is, £}, = {p € L':|S(p)| =2}.

PROPOSITION 4: If =, satisfies Axiom A3, then the following three statements
are equivalent:
(i) The relation >, satisfies NCI.
(ii) Forall p € L' and Vv €[0,1], W(p,v) — W (8, v) > 0.
(iii) Forall p € L}, and Vv € [0, 1], W (p, v) = W (8¢, v) = 0.

Dekel (1986) provided the following observation: If W(p,v) = v and
W(q,v) =, then V(p) >V (gq) < v >v'. That is, to compare two lotteries
p and g, it is enough to evaluate them at the same value v, which is between
V(p) and V' (q). The proof of Proposition 4 is based on Dekel’s observation.

The term W (p,v) can be interpreted as the value (expected utility) of p
relative to a reference utility level v. Roughly speaking, condition (ii) then
implies that risk aversion is maximized at the true lottery value: by defini-
tion, W(p,V(p)) = W (., V(p)) =V (p), whereas the value assigned to
p relative to any other v is (weakly) greater than that of 6.,,. Put differ-
ently, condition (ii) is the utility equivalent of the requirement that the con-
ditional certainty equivalent of p (when p is a part of a mixture) is never less
than its unconditional certainty equivalent (see Section 2). Condition (iii) is
condition (ii) restricted to binary lotteries. It is equivalent to the following
weaker version of NCI: Vg, 6, € L', p € L},, and A € [0, 1], p >=; 8, implies
Ap+ (1 —A)g =1 A6, + (1 — A)g. We use the convexity of betweenness indif-
ference sets to show that condition (iii) is also sufficient for condition (ii).'

4.2.1. Examples

In a dynamic context, expected utility preferences trivially satisfy PORU: a
DM with such preferences is just indifferent to the way uncertainty is resolved.

61n terms of preferences, the steepest middle slope property is equivalent to NCI with the
restrictions that p € 5‘12 and S(q) € x U S(p). Its analogous utility characterization is Vp € 5‘12
with two outcomes X, >x,, W(p,v) — W(8.p),v) =0 Yv e (V(Bip), V(8z,)). Note that this
condition is weaker then condition (iii) in Proposition 4.
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Gul (1991) proposed a theory of disappointment aversion. He derived the
local utility function:

¢ (x)+ By
u(x’v): 1+B ) ¢(x)>v,
¢ (x), d(x) <,

with B € (-1, 00) and ¢ : X — R increasing.

For Gul’s preferences, the sign of B, the coefficient of disappointment aver-
sion, unambiguously determines whether preferences satisfy PORU (if 8 > 0)
or PGRU (if —1 < B <0). (See Artstein-Avidan and Dillenberger (2010).)"’

4.2.2. NCI and Differentiability

In most economic applications, it is assumed that individuals’ preferences
are “smooth.” We confine our attention to the betweenness class and suppose
that the local utility function u: X x [0, 1] — [0, 1] is sufficiently differentiable
with respect to both arguments. In this case, the function V' is (continuously)
Fréchet differentiable (Wang (1993)).' The following result demonstrates that
coupling this smoothness assumption with NCI leads us back to expected util-

1ty.

PROPOSITION 5: Suppose u(x, v) is at least twice differentiable with respect
to both arguments, and that all derivatives are continuous and bounded. Then
preferences satisfy NCI if and only if they are expected utility.

To prove Proposition 5, we use the fact that betweenness (Axiom A3), along
with monotonicity, implies that indifference curves in any unit probability tri-
angle are positively sloped straight lines. In particular, for any lottery p € A
such that V' (p) = v,

u(xz,v) —u(xy, v)
u(xs3, v) — u(xz,v)’

u(p) = mw(vlxs, Xz, X1) =

Expected utility preferences are characterized by the independence axiom
that implies NCI. To show the other direction, we fix v and denote by x(v)
the unique x satisfying v = u(x, v). Combining Lemma 3 with differentia-
bility implies that for any x > x(v) > w, the derivative with respect to v of

"The question of whether there is a continuous and monotone function V' : £! — R, which
represents preferences that satisfy NCI but not betweenness, remains open.

8The notion of smoothness we consider here is the one assumed in Neilson (1992). For a for-
mal definition of Fréchet differentiability, see Machina (1982). Roughly speaking, Fréchet differ-
entiability means that 1V(p) changes continuously with p and that I can be locally approximated
by a linear functional. The economic meaning of Fréchet differentiability is discussed in Safra
and Segal (2002).
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w(v|x, x(v), w) must vanish at v. We use the fact that this statement is true for
any x > x(v) and that v is arbitrary to get a differential equation with a solution
on {(x,v) | v < u(x,v)} given by u(x,v) = h'(v)g'(x) + f1(v) and A'(v) > 0.
We perform a similar exercise for x < x(v) < b to uncover that on the other
region, {(x,v) | v> u(x,v)}, u(x,v) = h*(v)g*(x) + f*(v) and h*(v) > 0. Con-
tinuity and differentiability then imply that the functional form is equal in both
regions, and, therefore, for all x, u(x, v) = A(v)g(x) + f(v) and h(v) > 0. The
uniqueness theorem for betweenness representations establishes the result.'

5. GRADUAL RESOLUTION PREMIUM

We now extend our results to finite-stage lotteries.

5.1. Extension to n-Stage Lotteries

Fix n € N and denote the space of finite n-stage lotteries by £". The ex-
tension of our setting to £" is as follows: equipped with a continuous and in-
creasing function V' : £! — R, the DM evaluates any n-stage lottery by folding
back the probability tree and applying the same V' in each stage. Preferences
for one-shot resolution of uncertainty imply that the DM prefers to replace
each compound sublottery with its single-stage counterpart. The equivalence
between PORU and NCI remains intact. In what follows, we will continue sim-
plifying notation by writing }'(Q) for the value of any multistage lottery 0. We
sometimes write Q" to emphasize that we consider an n-stage lottery.

5.2. Definitions

As before, for any p € £! we denote by e(p) the expectation of p. We
say that p second-order stochastically dominates ¢ if for every nondecreas-
ing concave function u, ) u(x)p(x) =)  u(x)q(x). The DM is risk averse
if Vp, q € L' with e(p) = e(q), p second-order stochastically dominates g im-
plies p = q.

For any p € £, the risk premium of p, denoted by rp(p), is the number
that satisfies S¢(p)—rpp) ~1 p. The risk premium rp(p) is the amount that the
DM would pay to replace p with its expected value. By definition, rp(p) > 0
whenever the DM is risk averse.?’

YNeilson (1992) provided sufficient conditions for smooth (in the sense of Proposition 5) be-
tweenness preferences to satisfy the mixed-fan hypothesis (that is, indifference curves fan out
in the lower right subtriangle and fan in in the upper left subtriangle). The additional require-
ment that the switch between fanning out and fanning in always occurs at the indifference curve
that passes through the origin (the lottery that yields the middle prize for certain) renders those
conditions empty, as is evident from Proposition 5.

OWeak risk aversion is defined as for all p, 8, > p. This definition is not appropriate once
we consider preferences that are not expected utility. The definition of the risk premium, on the
other hand, is independent of the preferences considered.
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DEFINITION 4: Fix p € £! and let P(p) :={Q | p(Q) = p}. For any Q €
‘P(p), the gradual resolution premium of Q, denoted by grp(Q), is the number
that satisfies (1, 8.(p)—gmp0)) ~ Q-

The gradual resolution premium grp(Q) is the amount that the DM would
pay to replace Q with its single-stage counterpart. By definition, PORU implies
grp(Q) > 0. Since c(p) =e(p) — rp(p), we can, equivalently, define grp(Q) as
the number that satisfies (1, 8¢ (p)—rp(p)—erp0)) ~ Q-

Observe that the signs of rp(p) and grp(Q) need not agree. In other words,
(global) risk aversion does not imply and is not implied by PORU. Indeed,
Gul’s disappointment aversion preferences (see Section 4.2.1) are risk averse if
and only if 8 > 0 and ¢ : X — R is concave (Gul (1991, Theorem 3)). However,
for sufficiently small 8 > 0 and sufficiently convex ¢, one can find a lottery p
with rp(p) < 0, whereas B > 0 is sufficient for grp(Q) > 0 for all Q € P(p).
On the other hand, if A'(v) > 0 and A(v) > 1 for all v,* then the local utility
function

w(x, v) = X, if x > v,
T lv= ) (v—x), ifx<wv,

has the property that u(-, v) is concave for all v. Therefore, the DM is globally
risk averse (Dekel (1986, Property 2)), and hence rp(p) > 0V p € L'. However,
these preferences do not satisfy NCI,>> meaning that there exists Q € P(p)
with grp(Q) < 0.

5.3. The Magnifying Effect

In the case where the DM is both risk averse and displays PORU, these
two forces magnify each other. By varying the parameter n, we change the fre-
quency at which the DM updates information. Our next result demonstrates
that high frequency of information updates (sufficiently large value of n) alone
might inflict an extreme cost on the DM; a particular splitting of a lottery
drives down its value to the value of the worst prize in its support. Although
the same result holds for more general preferences, for purposes of clarity, we
state Proposition 6 below in terms of biseparable preferences.

DEFINITION 5: The relation >, satisfies biseparability if there exist an in-
creasing and continuous function 7 from [0, 1] onto [0, 1] and a mapping

ZThe condition that A(v) is nondecreasing is both necessary and sufficient for u to be a local
utility function. See Nehring (2005).

2Look at the slope of an indifference curve for values x3 > v > x, > x;. We have
n(vl|xs, X2, x1) = % In this region, the slope is increasing in v if x3 > %@;’“ + v.
For a given v, we can always choose arbitrarily large x5 that satisfies the condition, and construct,
by varying the probabilities, a lottery whose value is equal to v. Apply this argument in the limit
where v = x, to violate the steepest middle slope property.
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¢:X — R (unique up to positive affine transformations), such that the re-
striction of >, to {ad, + (1 — a)d,:a €[0,1],x,y € X and x > y} can be rep-
resented by the function

V(ad+ (1 —a)d,) = m(a)p(x) + (1 — m(a)) ().

Examples of biseparable preferences include any rank-dependent utility
(Section 4.1), as well as betweenness preferences that are represented by a
local utility of the form

v+ (p(x) —d(v), ifx>v,

o = { v—B($(W) — (X)), ifx<v,

with B8,y > 0 (Nehring (2005)). We consider biseparable preferences with

m(a) < aB?

PROPOSITION 6: Suppose >, satisfies biseparability and that 7m(«) < a. Then
for any & > 0 and for any lottery p = Z;"Zl p(x;)8y,, there exist T < oo and a
multistage lottery Q" € P(p) such that V (Q") < min, 5., ¢ (x;) + &.

Let p be a binary lottery that yields 0 and 1 with equal probabilities. Con-
sider n tosses of an unbiased coin. Define a series of random variables {z;}"_,
with z; =1 if the ith toss is heads and z; = 0 if it is tails. Let the terminal nodes
of the n-stage lottery be

n

1, if Yz >
i=1

0.58, +0.58,, if Zz,- =

i=1
0, itz < >

Note that the value of this n-stage lottery, calculated using recursive bisep-
arable preferences as in the premise of Proposition 6, is identical to the value

b

SN

BNote that these preferences need not satisfy NCI. For example, in rank-dependent utility,
m(p)=1—g(1 — p) < pif g is concave.

%In the context of decision making under subjective uncertainty (with unknown probabilities),
Ghirardato and Maccheroni (2001) argued that the biseparable preferences model is the most
general model that achieves a separation between cardinal utility and a unique representation of
beliefs.
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calculated using recursive expected utility and probability 7(0.5) < 0.5 for
heads in each period. Applying the weak law of large numbers yields

Pr(Zzi < g) -1
i=1

and, therefore, for n large enough, the value approaches ¢ (0). We use a similar
construction to establish that this result holds true for any lottery.

If most actual risks that individuals face are resolved gradually over time,
then these risks cannot be compounded into a single lottery and, therefore, the
gradual resolution premium should not be disregarded. The combination of
risk aversion and PORU can help explain why people often buy periodic insur-
ance for moderately priced objects, such as electrical appliances and cellular
phones, at much more than the actuarially fair rates.” A formal analysis of this
phenomenon will be developed in future work.

APPENDIX

PROOF OF PROPOSITION 2: Since any temporal lottery corresponds to some
information environment in which u(a, s) = v(s) € X for all a € A, showing
that (i) is necessary for (ii) is immediate. To show sufficiency, fix an informa-
tion environment 2 = {S,J, A, (p,)ses, u}. Let Q and p’ be two intermedi-
ate lotteries, where p’ assigns probability p(s|j) to the outcome u(a(s),s),
and the compound lottery Q assigns probability «;(7) to p/, that is, Q =
> ie@i(m)Ds, ., - Clearly, since for each state s and for any action a we have
u(a,s) < u(a(s), s), by monotonicity of the value of a lottery with respect to
the relation of first-order stochastic dominance, V' (p’*) < V' (p’) and, hence,
by the same reason, also V' (7) <V (Q).

However, now Q is simply the folding back of the two-stage lottery, which
when played in one shot is the lottery that corresponds to full information sys-
tem /. Thus by (i) we have that (1) > V' (Q). Combining the two inequalities
establishes the result.

Similarly, it is obvious that PGRU is necessary for ¢ to be the least valuable
information system. To show sufficiency, let a = argmax, V' (3 ¢ PsOu,s). Let
Q and p’ be two intermediate lotteries, where p’ assigns probability p(s|j) to
the outcome u(a, s), and the compound lottery Q assigns probability «;(7) to
p’, thatis, Q= > j@i(mDs,, - By definition, V(p)) <V (p™) for all j and,
therefore, by monotonicity, V' (Q) < V(7).

% An example was given by Tim Harford (“The Undercover Economist,” Financial Times, May
13, 2006): “There is plenty of overpriced insurance around. A popular cell phone retailer will
insure your $90 phone for $1.70 a week—nearly $90 a year. The fair price of the insurance is
probably closer to $9 a year than $90.”
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However, now Q is simply the folding back of the two-stage lottery, which
when played in one shot is the lottery corresponding to ¢. Thus by (i), we
have that V' (¢) < V' (Q). Combining the two inequalities establishes the re-
sult. QO.E.D.

PROOF OF LEMMA 2: Suppose not. Then there exist p, g € L' and a € (0, 1)
such that

V(aD,+ (1 —a)Dy) =V (adyp + (1 — a)dy)

> min{V(ac(p))a V(SC(q))} > V(‘SC(ale—a)q))
=V(ap+(1-a)g),

where the weak inequality is implied by monotonicity, contradicting PORU.
Q.E.D.

PROOF OF LEMMA 3: (i) By monotonicity and continuity, there exists g =
(g, (1 —q)) € L0y By applying NCI twice, g = Bg + (1 — B)g = Bg+ (1 —
B)(0,0) = B(0,0) + (1 — B)(0,0) = (0,0) for all B € [0, 1]. Since g € Z,0)),
the result follows.

(ii) Suppose not. Let ¢’ be a lottery such that w(Z.0)) < n*(g’). Take
P € Z.0 and look at the triangle with vertices (0, 0), p, ¢'. Using the triangle
proportional sides theorem, for « sufficiently close to 1, we have ag’ + (1 —
«)(0,0) > aq' + (1 — ) p a contradiction. QO.E.D.

PROOF OF PROPOSITION 3: (i) Suppose that >, is of the rank-dependent
utility class. Let £}, be the set of all binary lotteries, that is, L}, = {p €
L':18(p)| = 2}. Consider the following axiom:

AXIOM A*: Forall g€ L},, x € X and a € (0,1), q ~ 8, implies aq + (1 —
0[)5x ~1 8x.

By Lemma 3, NCI implies Axiom A*. Bell and Fishburn (2003, Theorem 1)
showed that if > is of the rank-dependent utility class and satisfies Axiom A*,
then >, is expected utility.

(ii) Suppose that >, is of the quadratic utility class. Fix x3 > x, > x;. By the
quadratic utility formula, w(p) equals

(Pile (G, x2) — @(x1, X)) + sl (x2, X3) — @(x1, %3)]
+ (1= p1 = p3)le(xz, x2) — @(x1, x2)])
/(pile(x1, X3) — ©(x1, X2)]1+ psle(xs, x3) — @(x2, x3)]
+ (1= p1 — p)le(x2, X3) — @(x2, X2)]).
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Note that if w(m, 1 —m) = u(x,1—x) =k, thenforall « € [0, 1], w(am+ (1 —
a)x,a(l-m)+ (1 —-a)(1—x))=k.

Lotteries p and g lie on the same expansion path if there is a common
subgradient to the indifference curves at p and g. Chew, Epstein, and Segal
(1991) showed that for any quadratic utility, all expansion paths are straight
lines and perspective, that is, they have a common point of intersection, which
could be infinity if they are parallel lines. An implication of this projective
property is that for all m € (0, 1) there exists either (i) x € (0, 1) such that
pt(m,0) = ut(0,x) or (ii) y € (0, 1) such that u*(m,0) = u(y,1 — y). For
case (i), let a;, € (0, 1) solves a(m, 0) + (1 — @)(0, x) € Z,0)- By Lemmas 2
and 3,

©'(0,0) < ulay, m, (1—a;, Jx)=pu"(0,x) <u'(0,0),

and similarly for case (ii). Therefore, all indifference curves are linear and par-
allel, hence preferences are expected utility. Q.E.D.

PROOF OF PROPOSITION 4: Let W(q,v) :=)_ q(x)u(x,v).

(i) = (ii) Suppose not. Then there exists a lottery p such that W(p,v) —
W (8cpy, v) <0 for some v. Pick y € X and « € (0, 1) such that V' (ap + (1 —
a)8,) =v. We have v < au(c(p),v)+(1—a)u(y,v) = W(ad.,+(1—a)d,,v)
or ad.p + (1 —a)d, > ap+ (1 — a)d,, contradicting NCI.

(i) = (i) Assume p >; 8,. Then W(p,V(p)) = W(é,,V (p)). By (ii) and
monotonicity, W (p, v) > W(8,, v) for all v and, in particular, for v=V (Ap +
(1—=21)q).”® Therefore, W (Ap+ (1= N)q, V(Ap+ (1= AN)q)) > W (A8, + (1 —
Mg,V (Ap+(1—21)q)),whichis equivalentto Ap+ (1 —A)g =1 Ad,+(1—A)g.

(iii) = (ii) Take a lottery p with |S(p)| = n—1 that belongs to an indifference
set I, :={p :W(p',v) = v} in an (n — 1)-dimensional unit simplex. Assume
further that for some x, € (w, b) with x, ¢ S(p), (1, 8,,) € I,*’. By monotonic-
ity and continuity,”® p can be written as a convex combination ar + (1 — a)w
for some a € (0,1) and r,w € I, with |S(r)| = |S(w)| = n — 2. By the same
argument, both r and w can be written, respectively, as convex combinations
of two other lotteries with size of support equal to » — 3 and that belong to
I,. Continue in the same fashion to get an index set J and a collection of
lotteries, {¢'};cs, such that for all j € J, |S(¢/)| =2 and ¢’ € I,. Note that by
monotonicity, if y, z € S(¢’) then either z > x, > y or y > x,, > z. By construc-

BIf p ~ 8, the assertion is evident. Otherwise, we need to find p* that is both first-order
stochastically dominated by p and satisfies p* ~ &, and to use the monotonicity of u(-, v) with
respect to its first argument. By continuity, such p* exists.

?The analysis would be the same, although with messier notation, even if |S(p)| = n, that is, if
xeS(p).

BThese two assumptions guarantee that no indifference set terminates in the relative interior
of any k < n — 1-dimensional unit simplex.
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tion, for some ay, ..., a; with a; > 0 and Z/‘ aj=1, Z]. a;q’ = p. By hypothe-
sis, W(q’,v) > u(x,,v') for all j € J and for all v/, and, therefore, also

W(p,v) = ZajW(q/, V) = Z Zajq{[u(x, V)
J x j

J

> aju(x,, v) = ux,, v) = u(c(p),v).
J

(ii) = (iii) Obvious. Q.E.D.

PROOF OF PROPOSITION 5: Since for expected utility preferences, NCI is
always satisfied, it is enough to demonstrate the result for lotteries with at most
three prizes in their support.

For x € [w, b], denote by V' (8, ) the unique solution of v = u(x, v). Without
loss of generality, set u(w,v) =0 and u(b,v) =1 for all v € [0,1]. Fix v €
(0, 1). By monotonicity and continuity there exists x(v) € (w, b) such that v=
V (8.w)- Take any x > x(v) and note that w(v|x, x(v), w) = [Wﬁ%] is
continuous and differentiable as a function of v on [0, V' (5,)].

Since v € (0, V' (8,)), Lemma 3 implies that w(v|x, x(v), w) is maximized at
v = v. A necessary condition is

d [ u(x(v),v) ] —0

v [ u(x,v) — u(x(v),v)

v

Alternatively,” using v = u(x(v), v) and denoting by u; the partial derivative
of u with respect to its ith argument yields

(1) U (x(0), V)[u(x, ) — U] = [u2(x, D) — up(x(0), v) 0.

Note that by continuity and monotonicity of u(x, v) in its first argument, for
all x € (x(v), b) there exists p € (0, 1) such that pé, + (1 — p)&, ~1 8, or
u(x,v)(1 — p) = u(x(v),v) =v. Therefore, and again using Lemma 3, ( 1) is
an identity for x € (x(v), b), so we can take the partial derivative of both sides
with respect to x and maintain equality. We get

U (x(0), V)u1(x, V) = Uy (X, V)v.

Since u is strictly increasing in its first argument, u, (x, v) > 0 and v > 0. Thus
by _ 1w — |(y) independent of x or, by changing order of differentia-
uy(x,v) ) v o
tion, <[Inu;(x,v)] is independent of x.

)

2Second-order conditions would be

uxn(x(v), v) v
Uun(x,v) u(x,v)

(<.
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Since v was arbitrary, we have the following differential equation on
{(x, v)|v < u(x, v)}:

J
—[nu(x, V)] =1(v).
v
By the fundamental theorem of calculus, the solution of this equation is
J
—[nu(x, v)] =I(v)
v

== lnul(x,v)zlnul(x,())-l-/ I(s)ds
=0

I(s) ds)

— Ml(x,v)=u1(x70)exp<
5s=0

=  u(x,v) —u(x(v),v) = exp(/v 1(s) ds>/x u(t,0)dt
s=0

x(v)

=  u(x,v)—v= exp(/v I(s) ds) (u(x,0) — u(x(v),0)).
s=0

Note that the term

exp(/v 1(s) ds) =exp</w st)
s=0 s=0

is well defined, since by the assumption that all derivatives are continuous and
bounded, and that u; > 0, we use I’'HOpital’s rule and implicit differentiation
to show that the term

lirr(} w = lirr(} Uz (x(s), $)X'(s) + uz (x(s), s)
— lim sy (x(s), 5) 25619 L xs), )
s—0 u(x(s),s)

is finite and hence ( f ! M ds) is finite as well.

To uncover u(x,v) on the region {(x,v)|v > u(x,v)}, again fix some v €
(0,1) and the corresponding x(v) € (w, b) (with v = u(x(v), v)). Take any
x < x(v) and note that u(v|b, x(v), x) = [W] is continuous and dif-
ferentiable as a function of v on [V (§,), b].

Since v € (V' (8,), b), by using Lemma 3 we have

J lu(x(),v) —u(x,v) | _
av[ 1 —u(x(v),v) }_
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or
(2) (u2(x(0), V) — ur(x,0))[1 — 0] = —u(x(0), V) [V — u(x, v)].

Using the same argumentation from the former case, (2) holds for all x €
(w, x(v)), so we can take the partial derivative of both sides with respect to x
and maintain equality. We get

—ux (X, V)[1 = v] = uy (x, V)uz(x(v), V).

Since u is strictly increasing in its first argument, u;(x,v) >0 and 1 — v >

upn () _ T w@E®) Ly .
0. Thus e = i = k(v) independent of x or, by changing order of

differentiation, a—i}[ln u;(x,v)] is independent of x.
Since v was arbitrary, we have the following differential equation on
{(x, V)|v>u(x,v)}:

J
—[Inu(x,v)] = k(v).
Jv

Its solution is given by

2w (x, )] = k(v)
Jv

1
= Inu(x,1) —Inu(x,v) =/ k(s)ds
1 ) -1
=  u(x,v) =u(x, 1)exp</ k(s) ds)
1 -1 ax(v)
=  u(x,v) —u(x(v),v) = exp(/ k(s) ds) / u(t,1)de

1 -1
— u(x,v)—v= —[u(x(v), 1) —u(x, 1)] exp(/ k(s) ds) ,

which is again well defined since
1 1
_ Ur(x(s), 8)
ool [Lroas) zen( [ (-#7257) )

(_ Uz (x(5), 8)
[1—5s]

and

lim

s—>1

> = llg} Uy (x(8), $)X'(8) + uxn (x(s), s)

= lim u,; (x(s), S)M + U (x(5), 5)
s—1 I/ll(x(s)7 S)
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is finite, and hence the whole integral is finite.
So far we have

[u(x,0) — u(x(v),0)]
X exp(/ M ds), x> x(v),
s=0

§

—[u(x(v),1) — u(x, 1]

1 -1
X (exp(/_ (—%) ds)) , x<x(v).

We add the following restrictions:
(i) Forall v € [0, 1], u(b, v) =1, which implies

[1 - u(x(v), 0)] exp(/u 19,9 ds) —1-w.
s=0

(i) For all v € [0, 1], u(w, v) =0, which implies

1 -1
s pfo( [ (2552} -

Substituting into (3), we get

3) u(x,v)—v=

1—-v )

4) W(x, B) —v— [M(X,O)—u(x(v),o)]m, if x > x(v),
b v '

e, D —ue D] i <x()

We add two further requirements:
(iii) Continuity at x = x(v), which is immediate since

lim (u(x,v) —v)= lim (u(x,v)—v)=

x—_x(v) x—4+x(v)

(iv) Differentiability at x(v) for all v:
uy (x(v) 0)# (x(v) )7
T ey, 01 - Y ), 1)
or

u(x(v), 1) [1—u(x(),v)] u(x(v),1)

5 = .
®) u(x(v),0)  [1—u(x(),0)] u(x(v),v)
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Let r(x, v) := =*Y Gijven v € (0, 1), note that

uy(x,v)
_Un(X,O) x> x(v)
r(x U) _ ul(xa()) ’ ’
’ _Un(X,l) x < x(v)
ul(x7 1) ’ ‘

But since u is continuous and r(x, v) is well defined, r(x, v) must be continuous
as well. Therefore, we require

_un(x®),0  unx(), 1)
ui(x(v), 0) ur(x(v), 1)’

and since this is true for any v and the function x(v) is onto, we have for all
x € (w,b),

_ull(x7 0) __ull(xal)
ul(x7 0) B ul(x’ 1) ’

which implies that for some a and b, u(x,1) = au(x,0) + b. But u(0,1) =
u(0,0) =0 and u(1,1) = u(1,0) =1, hence, by continuity, b =0 and a =1 or
u(x, 1) =u(x,0) := z(x) for all x € [w, b]. Plug into (4) to get

1-—
[Z(x) —Z(x(v))]l—v,
(6) u(x,v) —v= [1—=2z(x(v))]

v
—[z(x(v)) — Z(X)]m,

if x > x(v),
if x < x(v),

and plug into (5) to get

u(z(x)) 1= [1—-v]  z(x(v))
u1(z(x)) [1-z(x()] v

or

v _ [1—v] .
z(x(v))  [1—z(x()]

Substituting (7) into (6), we have

() m(v).
®) u(x,v) —v=[z(x) — z(x(v)) Jm(v),
and using the boundary conditions (i) and (ii), again we find that

u(w,v) —v=0-v=[0-z(x(v))]m(v)
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or
9 v — z(x(v))m(v) =0
and

ub,v) —v=1-v=[1-z(x())]m)
or
(10) 1=m() +v— z(x(v))m(v) = m(v),

where the second equality is implied by (9). Therefore, m(v) = 1, and using (7)
and (8), we have

u(x,v) =z(x),

which implies that the local utility function is independent of v, hence prefer-
ences are expected utility. Q.E.D.

PROOF OF PROPOSITION 6: We first show that the result holds for lotteries
of the form a8, + (1 — @)d,, with x > y. There are three cases to consider:

CASE 1—a = 0.5: Construct the compound lottery Q" € P(0.56, +0.568,) as
follows:
In each period Pr(success) = Pr(failure) = 0.5. Define

_ |1, if success,
= 0,

if failure, | 2

The terminal nodes are
- n
5x , lf ;Zi > E ,

0.58,+0.58,, if Y z=

y if zn:z,» < g

We claim that lim,_. ..V (Q") =V (8,) = ¢ (y). To prove this claim, we use the
fact that the value of the lottery using recursive biseparable preferences (with
7(0.5) < 0.5) and probability 0.5 for success in each period is equal to the
value of the lottery using recursive expected utility and probability 7(0.5) for
success in each period. Since z;’s are independent and identically distributed
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(i.i.d.) random variables, the weak law of large numbers implies

n

>

i=1

A 70.5)<0.5

or

Pr(Zzi < g) — 1.
i=1

Therefore,
V@ = qs(x)Pr(Zzi > g)
i=1

+ (0.5 (x) + (1 — w(0.5>)¢(y>Pr<Zz,- - g)
i=1

+ ¢(y)Pr<Zzi < g) ~ 6.
i=1

CASE 2—a < 0.5: Take 0" = (2a, 0" 1 — 2, 6,), with Q" as defined
above.

CASE 3—a > 0.5: Fix & > 0. Using the construction in Case 1, obtain Q1
with V' (Q") € (b (y), ¢ (y) + %). Reconstruct a lottery as above, but replace
8, with Q™ in the terminal node. By the same argument, there exist 75 and
V(Q1*2) € (¢ (y), ¢(y) + €). Note that the underlying probability of y in
QN+ js 0.25. Therefore, by monotonicity, the construction works for any
a < 0.75. Repeat in the same fashion to show that the assertion is true for
of <3k k=1,2,..., and note that o* — 1.

Now take any finite lottery Z;":la j0; and order its prizes as x; < X, <--- <
x.,. Repeat the construction above for the binary lottery x,,_;, x,, to make its
value arbitrarily close to ¢ (x,,_;). Then mix it appropriately with x,,_, and
repeat the argument above. Continue in this fashion to get a multistage lottery

OVer X, ..., X, with a value arbitrarily close to ¢ (x,). Conclude by mixing it
with x; and repeat the construction above. Q.E.D.
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