Beware the Side Effects: Capital Controls, Trade, Misallocation and Welfare

Eugenia Andreasen¹ Sofia Bauducco²

Evangelina Dardati³ Enrique G. Mendoza⁴

¹Universidad de Chile ²

³Universidad Diego Portales

²Banco Central de Chile

⁴University of Pennsylvania & NBER

Evolving views: CCs disliked since 1971 BW's collapse, gained favor after 1990s Sudden Stops & 2008 GFC (macroprudential CCs on inflows)

CCsInflows

- Evolving views: CCs disliked since 1971 BW's collapse, gained favor after 1990s Sudden Stops & 2008 GFC (macroprudential CCs on inflows)
 CCsInflows
- Literature typically focuses on BoP adjustment, fin. intermediaries and macro dynamics in rep. agent models with credit frictions
 - Tradeoffs due to capital-tax-like distortions (e.g., Bianchi & Mendoza (20))

- Evolving views: CCs disliked since 1971 BW's collapse, gained favor after 1990s Sudden Stops & 2008 GFC (macroprudential CCs on inflows)
 CCsInflows
- Literature typically focuses on BoP adjustment, fin. intermediaries and macro dynamics in rep. agent models with credit frictions
 - Tradeoffs due to capital-tax-like distortions (e.g., Bianchi & Mendoza (20))
- ...but the data show large heterogeneous ("side") effects on firms (Alfaro et al. (17), Forbes (07), Andreasen et al. (20))

- Evolving views: CCs disliked since 1971 BW's collapse, gained favor after 1990s Sudden Stops & 2008 GFC (macroprudential CCs on inflows)
 CCsInflows
- Literature typically focuses on BoP adjustment, fin. intermediaries and macro dynamics in rep. agent models with credit frictions
 - Tradeoffs due to capital-tax-like distortions (e.g., Bianchi & Mendoza (20))
- ...but the data show large heterogeneous ("side") effects on firms (Alfaro et al. (17), Forbes (07), Andreasen et al. (20))

New perspective: Study CCs with heterogeneous firms to determine

- 1. How important are the side effects on misallocation and exports?
- 2. What are their aggregate and social welfare implications?

What we do in this paper

- 1. Provide theoretical, quantitative and empirical answers
- 2. Analyze effects of CCs in a dynamic SOE Melitz model with:
 - entrepreneurs heterogeneous in productivity, age, assets & trade
 - monopolistic competition
 - export entry choice
 - collateral constraints
- 3. Calibration: Chile 1990-91 (pre-CCs) + CCs (encaje on inflows)
 - Unremunerated reserve requirement (91-98): 20% to 30%, 6 to 12 mos.
 CCevolution
- 4. Quantify effects on misallocation, macro-aggregates, trade & welfare
- 5. Empirical analysis using Chilean manufacturing firm-level data

Main findings

Analytic:

- 1. MRPKs change via *static* (\uparrow), *dynamic* (\downarrow) & *GE* (\uparrow / \downarrow) effects
- 2. Effects are non-monotonic in net worth, tfp & trade
- 3. LTV regulation distributes burden of credit adjustment more evenly

Main findings

Analytic:

- 1. MRPKs change via *static* (\uparrow), *dynamic* (\downarrow) & *GE* (\uparrow / \downarrow) effects
- 2. Effects are non-monotonic in net worth, tfp & trade
- 3. LTV regulation distributes burden of credit adjustment more evenly

Quantitative:

- 1. Misallocation worsens (0.5pp) and social welfare falls (0.6%)
- 2. Much worse for exporters (1.25pp) & high-prod. firms (1.5pp)
- 3. Strong GE effects: *Y* (-0.6%), *w* (-1.1%), *p* (-0.4%)
- 4. Large drops in exports (-0.82%) & exporting firms (-5.7%)
- 5. LTV regulation cuts credit by the same amount at a 1/3rd of the cost

Main findings

Analytic:

- 1. MRPKs change via *static* (\uparrow), *dynamic* (\downarrow) & *GE* (\uparrow / \downarrow) effects
- 2. Effects are non-monotonic in net worth, tfp & trade
- 3. LTV regulation distributes burden of credit adjustment more evenly

Quantitative:

- 1. Misallocation worsens (0.5pp) and social welfare falls (0.6%)
- 2. Much worse for exporters (1.25pp) & high-prod. firms (1.5pp)
- 3. Strong GE effects: *Y* (-0.6%), *w* (-1.1%), *p* (-0.4%)
- 4. Large drops in exports (-0.82%) & exporting firms (-5.7%)
- 5. LTV regulation cuts credit by the same amount at a 1/3rd of the cost

Empirical:

- 1. CCs worsened misallocation more for exporters, high-prod., & large OSG
- 2. Non-linear interactions of productivity and trade in line with theory

・ロ・・母・・ヨ・・ヨ・ ヨー うくぐ

- Builds on Buera & Moll (15), Brooks & Dovis (20), Midrigan & Xu (14), Gopinath et. al. (16), Andreasen et. al. (21)
- 1. Heterogeneous entrepreneurs: Produce inputs with C-D technology under monopolistic competition, die with prob. ρ (Blanchard-Yaari), draw TFP at birth (*z*), supply labor inelastically, make exporting choice (e = 1)
- 2. Final goods producer: CES technology with domestic and foreign inputs
- 3. **Rest of the world**: Credit market (r^*) , foreign demand for home inputs (exports) driven by y^* , p^*
- 4. **Government**: CCs as a tax on *inflows* (i.e., debt). Initial capital $k_0(z) = \kappa \bar{k}(z)$ financed with lump-sum tax T(z).

◆ロ ≻ ◆聞 ≻ ◆臣 ≻ ◆臣 ≻ ─ 臣

Trade costs & financial distortions

Trade costs

- Sunk cost wF at t for irreversible decision to become exporter at t + 1
 Exporters
- Iceberg costs for fraction ζ of exports

6/47

Trade costs & financial distortions

Trade costs

- Sunk cost wF at t for irreversible decision to become exporter at t + 1
 Exporters
- Iceberg costs for fraction ζ of exports

Collateral constraint

 $qd_{t+1} \leq \theta k_{t+1}$

Trade costs & financial distortions

Trade costs

- Sunk cost wF at t for irreversible decision to become exporter at t + 1
 Exporters
- Iceberg costs for fraction ζ of exports

Collateral constraint

 $qd_{t+1} \leq \theta k_{t+1}$

Capital Controls

$$r = \begin{cases} \hat{r} = r^* + \nu & (\hat{q} = 1/(1 + r^* + \nu)) & \text{if } d_t > 0 \\ \\ r^* & (q^* = 1/(1 + r^*)) & \text{if } d_t \le 0 \end{cases}$$

Trade costs & financial distortions

Trade costs

- Sunk cost wF at t for irreversible decision to become exporter at t + 1
 Exporters
- Iceberg costs for fraction ζ of exports

Collateral constraint

 $qd_{t+1} \leq \theta k_{t+1}$

Capital Controls

$$r = \begin{cases} \hat{r} = r^* + \nu & (\hat{q} = 1/(1 + r^* + \nu)) & \text{if } d_t > 0 \\ \\ r^* & (q^* = 1/(1 + r^*)) & \text{if } d_t \le 0 \end{cases}$$

Two regimes NCC: $\theta > 0, \nu = 0$ CC: $\theta > 0, \nu > 0$

Payoff & constraints for individual entrepreneur

• Utility function:
$$\sum_{t=0}^{\infty} \tilde{\beta}^t \frac{c_t^{1-\gamma}}{1-\gamma}, \quad \tilde{\beta} \equiv \beta(1-\rho)$$

- Demand functions: $y_{h,t}(i) = \left(\frac{p_{h,t}(i)}{p_t}\right)^{-\sigma} y_t$, $y_{f,t}(i) = \left(\frac{p_{f,t}(i)}{p^*}\right)^{-\sigma} y^*$
- Technological constraint: $y_{h,t} + e(\zeta y_{f,t}) = zk_t^{\alpha}n_t^{1-\alpha}$.
- Capital evolution: $(1 \rho)k_{t+1} = [(1 \delta)k_t + x_t]$
- Net worth: $a_{t+1} \equiv k_{t+1} q_t d_{t+1}$

Payoff & constraints for individual entrepreneur

• Utility function:
$$\sum_{t=0}^{\infty} \tilde{\beta}^t \frac{c_t^{1-\gamma}}{1-\gamma}, \quad \tilde{\beta} \equiv \beta(1-\rho)$$

- Demand functions: $y_{h,t}(i) = \left(\frac{p_{h,t}(i)}{p_t}\right)^{-\sigma} y_t$, $y_{f,t}(i) = \left(\frac{p_{f,t}(i)}{p^*}\right)^{-\sigma} y^*$
- Technological constraint: $y_{h,t} + e(\zeta y_{f,t}) = zk_t^{\alpha}n_t^{1-\alpha}$.
- Capital evolution: $(1 \rho)k_{t+1} = [(1 \delta)k_t + x_t]$
- Net worth: $a_{t+1} \equiv k_{t+1} q_t d_{t+1}$
- Cash on hand (single state variable):

$$p_t m_t \equiv w_t + \frac{p_{h,t}^{1-\sigma} y_t}{p_t^{-\sigma}} + \frac{e_t \frac{p_{f,t}^{1-\sigma} y^*}{p^{*-\sigma}}}{p^{*-\sigma}} - w_t n_t + p_t (1-\delta) k_t - p_t d_t - T_t$$

Budget constraint: $c_t = m_t - (1 - \rho)a_{t+1}$

Recursive problem of a non-exporter

Ex-ante payoff:

$$v(m,z) = \max_{e \in \{0,1\}} \left\{ (1-e)v^{NE}(m,z) + ev^{S}(m,z) \right\}$$

Recursive problem of a non-exporter

Ex-ante payoff:

$$v(m,z) = \max_{e \in \{0,1\}} \left\{ (1-e)v^{NE}(m,z) + ev^{S}(m,z) \right\}$$

Two-stage optimization problem:

$$v^{NE}(m,z) = \max_{a'} \left[u \left(m - (1-\rho)a' \right) + \tilde{\beta} v \left(\tilde{m}'(a',z), z \right) \right]$$

$$\tilde{m}'(a',z) = \max_{k',d',p'_{h},n'} \left[\frac{w' + \frac{p'_{h}^{1-\sigma}}{p'^{-\sigma}}y' - w'n' + p'(1-\delta)k' - p'd' - T}{p'} \right]$$

s.t. $\left(\frac{p'_{h}}{p'}\right)^{-\sigma}y' = zk'^{\alpha}n'^{1-\alpha}$
 $a' = k' - qd'$
 $qd' \le \theta k' \& q^{*}d' \le 0$

Recursive problem of an exporter

Two-stage problem:

$$v^{E}(m,z) = \max_{a'} \left[u\left(m - (1-\rho)a'\right) + \tilde{\beta}v^{E}\left(\tilde{m}'(a',z),z\right) \right]$$

$$\begin{split} \tilde{m}'(a',z) &= \\ \max_{k',d',p'_{h},p'_{f},n'} \left[\frac{w' + \frac{p'_{h}^{1-\sigma}}{p'^{-\sigma}}y' + \frac{p'_{f}^{1-\sigma}}{p^{*-\sigma}}y^{*} - w'n' + p'(1-\delta)k' - p'd' - T}{p'} \right] \\ \text{s.t.} \quad \left(\frac{p'_{h}}{p'}\right)^{-\sigma}y' + \zeta \left(\frac{p'_{f}}{p^{*}}\right)^{-\sigma}y^{*} = zk'^{\alpha}n'^{1-\alpha} \\ a' &= k' - qd' \\ qd' &\leq \theta k' \quad \& \quad q^{*}d' \leq 0 \end{split}$$

< 口 > < 🗇

-

▶ < ≣ ▶

Recursive problem of a switcher

Two-stage problem:

$$v^{S}(m,z) = \max_{a'} \left[u \left(m - (1-\rho)a' - wF \right) + \tilde{\beta} v^{E} \left(\tilde{m}'(a',z),z \right) \right]$$

$$\begin{split} \tilde{m}'(a',z) &= \\ \max_{k',d',p'_{h'}p'_{f'},n'} \left[\frac{w' + \frac{p'_{h}^{1-\sigma}}{p'^{-\sigma}}y' + \frac{p'_{f}^{1-\sigma}}{p^{*-\sigma}}y^{*} - w'n' + p'(1-\delta)k' - p'd' - T}{p'} \right] \\ \text{s.t.} \quad \left(\frac{p'_{h}}{p'}\right)^{-\sigma}y' + \zeta \left(\frac{p'_{f}}{p^{*}}\right)^{-\sigma}y^{*} = zk'^{\alpha}n'^{1-\alpha} \\ a' &= k' - qd' \\ qd' &\leq \theta k' \quad \& \quad q^{*}d' \leq 0 \end{split}$$

→ < Ξ >

-

Final goods producer & stationary equilibrium

Final goods producer:

$$\max_{y_{h}(i),y_{m}} p \left[\int_{0}^{1} y_{h}(i)^{\frac{\sigma-1}{\sigma}} di + y_{m}^{\frac{\sigma-1}{\sigma}} \right]^{\frac{\sigma}{\sigma-1}} - \int_{0}^{1} p_{h}(i) y_{h}(i) di - p_{m} y_{m},$$

where
$$p = [\int_0^1 p_h(i)^{1-\sigma} di + p_m^{1-\sigma}]^{1/(1-\sigma)}$$

Recursive stationary equilibrium:

- 1. Entrepreneurs make optimal plans given w, p, y, r
- 2. Final goods producer makes optimal plans given $p_h(i)$'s
- 3. Labor market clears: $\int [n'(m,z) + F \mathbb{I}_{\tilde{m}'(m,z)=\hat{m}(z)}] d\phi(m,z) = 1$
- 4. Final goods market clears: $\int [c'(m,z) + x'(m,z)] d\phi(m,z) + \rho \underline{k} = y$
- 5. Government budget constraint holds: $p\rho \underline{k} = T$
- 6. Distribution of firms over m, z is stationary:

$$\phi(m',z') = \int \int [(1-\rho)I^S(m',m,z) + \rho I^D(m',m,z)]\phi(m,z)dmdz$$

How do Capital Controls Affect Misallocation?

Equilibria without financial frictions

Prop. 1 No misallocation in the *decentralized equilibrium*:

$$MRPN_i = w, \quad MRPK_i = p(r^* + \delta), \quad \forall \quad i$$

Equilibria without financial frictions

Prop. 1 No misallocation in the *decentralized equilibrium*:

$$MRPN_i = w, \quad MRPK_i = p(r^* + \delta), \quad \forall \quad i$$

Prop. 2 Same is true for a utilitarian social planner:

$$\overline{MRPK} = p^{SP}(r^* + \delta)$$

- Planner also equates consumption across entrepreneurs
- Same allocations and MRPs as competitive stationary equilibrium
- Firms move to optimal scale in one period by borrowing to finance trade deficit (zero OSGs)

Static effects (2nd-stage optimality conditions)

1. MRPK (financial distortions cause capital misallocation)

$$MRPK_{i} \equiv \frac{p_{h,i}'}{\varsigma} \alpha z_{i} (k_{i}')^{\alpha-1} (n_{i}')^{1-\alpha} = \left(\zeta \equiv \frac{\sigma}{\sigma-1} \right)$$
$$\mathbb{I}_{d' \leq 0} \left[p'(r^{*}+\delta) + \mu_{i} \right] + \mathbb{I}_{d'>0} \left[p'(\hat{r}+\delta) + \eta_{i}(1-\theta) \right]$$

Static effects (2nd-stage optimality conditions)

1. MRPK (financial distortions cause capital misallocation)

$$MRPK_{i} \equiv \frac{p'_{h,i}}{\varsigma} \alpha z_{i} (k'_{i})^{\alpha-1} (n'_{i})^{1-\alpha} = \left(\varsigma \equiv \frac{\sigma}{\sigma-1}\right)$$
$$\mathbb{I}_{d' \leq 0} \left[p'(r^{*}+\delta) + \mu_{i}\right] + \mathbb{I}_{d'>0} \left[p'(\hat{r}+\delta) + \eta_{i}(1-\theta)\right]$$

2. MRPL (no labor misallocation)

$$MRPL_i \equiv \frac{p'_{h,i}}{\varsigma} (1-\alpha) z_i (k'_i)^{\alpha} (n'_i)^{-\alpha} = w'$$

3. Pricing arbitrage

$$p_{f,i}' = \zeta p_{h,i}'$$

4. Technological constraint

$$\left(\frac{p'_{h,i}}{p'}\right)^{-\sigma} y + \zeta \left(\frac{p'_{f,i}}{p^*}\right)^{-\sigma} y^* = z_i k'^{\alpha}_i n'^{1-\alpha}_i$$

Static effects of collateral constraint in NCC regime

Prop. 3: $MRPK_i = p'(r^* + \delta) + \eta_i(1 - \theta) > \overline{MRPK}, \quad k_i < \overline{k}$

Static effects of CCs without collateral constraint

Prop. 4:
$$MRPK_i = \mathbb{I}_{d_i > 0}[p'(r^* + \nu + \delta)] + \mathbb{I}_{d_i \le 0}[p'(r^* + \delta) + \mu_i] > \overline{MRPK}$$

 $k_i < \overline{k}$

15/47

Static effects: Comparing NCC v. CC regime

Static effects of CCs on MRPKs and misallocation

▶ $\downarrow k'(z)$ in regions 2 and 3 (non-monotonic effect)

▲ロト▲聞と▲臣と▲臣と 臣 めんの

Static effects of CCs on MRPKs and misallocation

- ▶ $\downarrow k'(z)$ in regions 2 and 3 (non-monotonic effect)
- ...which increases firm prices

$$\uparrow p_h'(z) = \left[\frac{\left[(p')^{\sigma} y' + (p^*)^{\sigma} \zeta^{1-\sigma} y^* \right]^{\alpha}}{z \left(\downarrow k'(z) \right)^{\alpha} \left[\frac{1-\alpha}{w' \varsigma} \right]^{1-\alpha}} \right]^{\frac{1}{1+\alpha(\sigma-1)}}$$

Static effects of CCs on MRPKs and misallocation

- ▶ $\downarrow k'(z)$ in regions 2 and 3 (non-monotonic effect)
- ...which increases firm prices

$$\uparrow p_h'(z) = \left[\frac{\left[(p')^{\sigma} y' + (p^*)^{\sigma} \zeta^{1-\sigma} y^* \right]^{\alpha}}{z \left(\downarrow k'(z) \right)^{\alpha} \left[\frac{1-\alpha}{w' \varsigma} \right]^{1-\alpha}} \right]^{\frac{1}{1+\alpha(\sigma-1)}}$$

...which reduces capital-labor ratios

$$\downarrow \frac{k'}{n'}(z) = \left[\frac{\varsigma}{(1-\alpha)z}\left(\frac{w'}{\uparrow p'_h(z)}\right)\right]^{1/\alpha}$$

Static effects of CCs on MRPKs and misallocation

- ▶ $\downarrow k'(z)$ in regions 2 and 3 (non-monotonic effect)
- ...which increases firm prices

$$\uparrow p_h'(z) = \left[\frac{\left[(p')^{\sigma} y' + (p^*)^{\sigma} \zeta^{1-\sigma} y^* \right]^{\alpha}}{z \left(\downarrow k'(z) \right)^{\alpha} \left[\frac{1-\alpha}{w' \varsigma} \right]^{1-\alpha}} \right]^{\frac{1}{1+\alpha(\sigma-1)}}$$

...which reduces capital-labor ratios

$$\downarrow \frac{k'}{n'}(z) = \left[\frac{\varsigma}{(1-\alpha)z}\left(\frac{w'}{\uparrow p'_h(z)}\right)\right]^{1/\alpha}$$

...so that MRPKs and misallocation rise (difference relative to MRPK)

$$\uparrow MRPK(z) = \frac{\alpha z}{\varsigma} \frac{\uparrow p'_h(z)}{\left[\downarrow \frac{k'}{n'}(z)\right]^{1-\alpha}}$$

17/47

Dynamic and GE effects of CCs

Dynamic (1st-stage) effects: financial distortions increase marginal benefit of saving

$$\frac{u'(c)}{\beta u'(c')} = \mathbb{I}_{d'>0}\left[\hat{R} + \frac{\eta}{p'}\right] + \mathbb{I}_{d'\leq 0}\left[R^* + \frac{\mu}{p'}\right]$$

Firms grow net worth *faster*, spend less time at lower *k*, higher MRPK

- In R. 2, firms pay debt down to zero and R. 3 mimics financial autarky
- $\beta R^* = 1 \Rightarrow \bar{k}$ and steady state *c* are the same with CCs and in autarky

Dynamic and GE effects of CCs

 Dynamic (1st-stage) effects: financial distortions increase marginal benefit of saving

$$\frac{u'(c)}{\beta u'(c')} = \mathbb{I}_{d'>0}\left[\hat{R} + \frac{\eta}{p'}\right] + \mathbb{I}_{d'\leq 0}\left[R^* + \frac{\mu}{p'}\right]$$

Firms grow net worth *faster*, spend less time at lower k, higher MRPK
 In R. 2, firms pay debt down to zero and R. 3 mimics financial autarky
 βR* = 1 ⇒ k̄ and steady state c are the same with CCs and in autarky

- General eq. effects: w, p, y change with misallocation and $\phi(\cdot)$. If they fall, p_h falls (less for exporters) but effects on $\frac{k}{n}$, MRPK are ambiguous (depend on $\frac{w}{ph}$, relative size of exports v. domestic sales, size of p drop)
 - Quantitatively, \uparrow (\downarrow) optimal scales & MRPK diffs. for Es (NEs)
Model

Dynamic and GE effects of CCs

Dynamic (1st-stage) effects: financial distortions increase marginal benefit of saving

$$\frac{u'(c)}{\beta u'(c')} = \mathbb{I}_{d'>0}\left[\hat{R} + \frac{\eta}{p'}\right] + \mathbb{I}_{d'\leq 0}\left[R^* + \frac{\mu}{p'}\right]$$

Firms grow net worth *faster*, spend less time at lower k, higher MRPK
 In R. 2, firms pay debt down to zero and R. 3 mimics financial autarky
 βR* = 1 ⇒ k̄ and steady state c are the same with CCs and in autarky

- General eq. effects: w, p, y change with misallocation and $\phi(\cdot)$. If they fall, p_h falls (less for exporters) but effects on $\frac{k}{n}$, MRPK are ambiguous (depend on $\frac{w}{ph}$, relative size of exports v. domestic sales, size of p drop)
 - Quantitatively, \uparrow (\downarrow) optimal scales & MRPK diffs. for Es (NEs)
- Overall effects are ambiguous

18/47

Calibration strategy

- ► $\theta^E > \theta^{NE}$, with $\theta^E = (\theta_f + 1)\theta^{NE}$, so that exporters have better credit access (e.g., Muuls (2015))
- Set $\{\gamma, \beta, \sigma, \delta, \rho, r^*\}$ to common values in the misallocation literature
- Set $\{\zeta, \omega_z, F, \theta_f, \theta^{NE}, \kappa, \alpha\}$ to match seven data targets by SMM

Baseline NCC calibration

► Tax

Predetermined parameters				Targeted parameters		
β	Discount factor	0.96	Standard	ζ	Iceberg trade cost	3.7134
γ	Risk aversion	2	Standard	ω_z	Productivity dispersion	0.4289
σ	Substitution elasticity	4	Leibovici (21)	F	Sunk export entry cost	1.5564
δ	Depreciation rate	0.06	Midrigan & Xu (14)	θ^{NE}	NEs collateral coef.	0.0610
ρ	Death probability	0.08	Chilean data	θ_{f}	Es collateral factor	1.6977
				ά	Capital intensity	0.4673
				κ	Fraction of std. st. capital	0.3002
			as initial capital			

For CC regime, $\nu = 1.75\%$ (average tax-equivalent of Chilean *encaje*)

Calibration data targets and model results

Target Moment	Data (1990-1991)	Model (<i>NCC</i> regime)
	(1)	(2)
Share of exporters	0.18	0.18
Average sales (exporters/non-exporters)	8.55	8.55
Average sales (age 5 / age 1)	1.26	1.27
Aggregate exports / sales	0.21	0.21
Aggregate credit / Value added	0.33	0.33
Aggregate capital stock / wage bill	6.60	6.61
(Investment /VA) _{exporters} / (Investment/VA) _{non-exporters}	1.84	1.85

▶ < ≣ ▶

-

Firm size distribution: Lorenz curves in data & model

Quintile	Data (1990) (1)	Model (<i>NCC</i> regime) (2)
0.2	0.0128	0.0154
0.4	0.0361	0.0441
0.6	0.0732	0.0977
0.8	0.1645	0.1684
1	0.7134	0.6745

イロト イポト イヨト イヨト

22/47

Aggregate effects of capital controls

	$(\Delta\%)$
Exports	-0.82%
Share of exporters	-5.74%
Domestic Sales	-0.94%
Investment	-1.46%
Consumption	-0.73%
Final goods output	-0.85%
Real GDP	-0.56%
Real wage	-0.70%
Wage	-1.06%
Price level (Real ex. rate)	-0.36%
Agg. credit/Value Added	-4.24pp

イロト イロト イヨト イヨト

Measures of misallocation & welfare

Firm misallocation:

$$mis_i = |ln(MRPK_i) - ln(\overline{MRPK})|, \quad \overline{MRPK} \equiv p(r^* + \delta)$$

Aggregate misallocation (mean deviation in *mis_i*):

$$MIS = \sum_{\tau} \sum_{z} mis(\tau, z) \phi(\tau, z), \qquad \phi(\tau, z) = \rho (1 - \rho)^{\tau} f(z)$$

< ≣ ▶

Measures of misallocation & welfare

Firm misallocation:

$$mis_i = |ln(MRPK_i) - ln(\overline{MRPK})|, \quad \overline{MRPK} \equiv p(r^* + \delta)$$

Aggregate misallocation (mean deviation in mis_i):

$$MIS = \sum_{\tau} \sum_{z} mis(\tau, z) \phi(\tau, z), \qquad \phi(\tau, z) = \rho (1 - \rho)^{\tau} f(z)$$

Welfare: Compensating consumption variation in utilitarian SWF

$$G = \left[\frac{\sum_{\tau}\sum_{z} V^{CC}(\tau, z)\phi(\tau, z)}{\sum_{\tau}\sum_{z} V^{NCC}(\tau, z)\phi(\tau, z)}\right]^{\frac{1}{1-\gamma}} - 1,$$

where, for i = CC, NCC, the payoff of each entrepreneur is:

$$V^{i}(\tau,z) = \begin{cases} v(\tau,z) & \text{for } \tau \leq \hat{\tau}^{i}(z) : v^{NE}(\hat{\tau}^{i}(z),z) = v^{S}(\hat{\tau}^{i}(z),z) \\ v^{E}(\tau,z) & \text{for } \tau > \hat{\tau}^{i}(z) \end{cases}$$

Effects of CCs on misallocation and welfare

	% change Misallocation	% change Welfare
All firms	0.50 <i>pp</i>	-0.61%
Exporters	1.25 <i>pp</i>	-1.82%
Non-exporters	0.34 <i>pp</i>	-0.56%
Large OSG	0.51 <i>pp</i>	—
Small OSG	0. 2 3 <i>pp</i>	—

< 口 > < 🗇

▶ < 프 ▶ < 프 ▶</p>

Effects of CCs on misallocation and welfare

	% change Misallocation	% change Welfare
All firms	0.50 <i>pp</i>	-0.61%
Exporters	1.25 <i>pp</i>	-1.82%
Non-exporters	0.34 pp	-0.56%
Large OSG	0.51 <i>pp</i>	—
Small OSG	0. 2 3 <i>pp</i>	—

< 口 > < 🗇

▶ < 프 ▶ < 프 ▶</p>

Effect of capital controls on misallocation across firms

4)Q(4

27/47

Effecs of CCs on misallocation & welfare by productivity

Productivity	% change Misallocation	% change Welfare
1	0.11 <i>pp</i>	-0.69%
2	0.22 <i>pp</i>	-0.67%
3	0.43 <i>pp</i>	-0.59%
4	0.61 <i>pp</i>	-0.47%
5	0.64 pp	-0.44%
6	0.24 pp	-0.89%
7	0.67 <i>pp</i>	-1.13%
8	0.60 <i>pp</i>	-1.20%
9	0.58 pp	-1.22%
10	0.57 <i>pp</i>	-1.23%

-

Heterogeneous income effects of capital controls

Labor income: w / p falls for everyone but matters more for those earning more from labor than capital (low-z and/or young)

Heterogeneous income effects of capital controls

- Labor income: w / p falls for everyone but matters more for those earning more from labor than capital (low-z and/or young)
- Firm's relative prices fall with fall in w/p, rise with misallocation:

$$\frac{p^{h}(\tau,z)}{p} = \frac{\varsigma(r+\delta)^{\alpha}}{(1-\alpha)^{1-\alpha}\alpha^{\alpha}z} \left(\frac{w}{p}\right)^{1-\alpha} \left(\frac{MRPK(\tau,z)}{p(r+\delta)}\right)^{\alpha}$$

Heterogeneous income effects of capital controls

- Labor income: w / p falls for everyone but matters more for those earning more from labor than capital (low-z and/or young)
- Firm's relative prices fall with fall in w/p, rise with misallocation:

$$\frac{p^{h}(\tau,z)}{p} = \frac{\varsigma(r+\delta)^{\alpha}}{(1-\alpha)^{1-\alpha}\alpha^{\alpha}z} \left(\frac{w}{p}\right)^{1-\alpha} \left(\frac{MRPK(\tau,z)}{p(r+\delta)}\right)^{\alpha}$$

• Capital income: π/p rises (falls) if p^h/p falls (rises):

$$\frac{\pi(\tau,z)}{p} = \frac{y + \frac{1}{\tau^{\sigma-1}} \left(\frac{p^*}{p}\right)^{\sigma} y^*}{\left(\frac{p^h(\tau,z)}{p}\right)^{\sigma-1}} \left[1 - \frac{(1-\alpha)}{\varsigma}\right]$$

lt also rises with y, and falls with p for exporters (real appreciation)

Counterfactuals & robustness

- 1. **LTV regulation**: Set $\nu = 0$, reduce θ to θ^{LTV} to match agg. credit drop
- 2. Tighter capital controls: Higher ν in CC regime
- 3. Tax rebates: Rebate debt tax paid by each entrepreneur
- 4. Earnings-based constraint: Profits instead of *k* as pledgeable collateral
- Domestic credit market: Allow firms to choose investing v. lending to others (analytic results)

LTV regulation is better than capital controls

- The burden of the credit cut is distributed more evenly across firms
- Region 1: Firms with low net worth unaffected by CCs now borrow less, have less capital, higher MRPKs
- Regions 2 and 3: Firms more severely affected by CCs borrow more, have more capital, lower MPRKs (nonmonotonic effect)
- w, y, p fall less, misallocation still rises but better aggregate outcomes reduce welfare costs (higher real wage, less dispersion in real profits)

Comparing LTV regulation with capital controls

< 口 > < 白*

▶ < 토▶ < 토▶

LTV v. CCs: Aggregate Effects

_

	CC regime	LTV regulation
	$\nu = 0.0175$	$\nu = 0$
	$\theta^{NE} = 0.0610$	$\theta^{NE} = 0.0538$
Exports	-0.82%	-0.94%
Share of exporters	-5.74%	-1.62%
Domestic Sales	-0.94%	-0.21%
Investment	-1.46%	-0.91%
Consumption	-0.73%	-0.08%
Final goods output	-0.85%	-0.21%
Real GDP	-0.56%	-0.38%
Real wage	-0.70%	-0.42%
Wage	-1.06%	-0.40%
Price level (Real ex. rate)	-0.36%	0.02%
Agg. credit/Value Added	-4.24 pp	-4.24 pp

LTV v. CCs: Effects on misallocation & welfare

	Baseline w. CCs		LTV regul	ation
	Misallocation Welfare		Misallocation	Welfare
All firms	0.50 <i>pp</i>	-0.61%	0.29 <i>pp</i>	-0.20%
Exp. status				
Exporters	1.25 <i>pp</i>	-1.82%	0.91 <i>pp</i>	-0.15%
Non-exporters	0.34 <i>pp</i>	-0.56%	0.16 <i>pp</i>	-0.20%
OSG				
Large	0.51 <i>pp</i>		0.31 <i>pp</i>	
Small	0.23 <i>pp</i>		0.04 pp	_

< 口 > < 🗇

▶ < 프 ▶ < 프 ▶</p>

Effect of LTV regulation on misallocation across firms

(a) Full scale

Tighter CCs: Aggregate Effects

	INCC regime	v = 2.75 / 6	V = 0 / o
	$(\nu = 1.75\%)$		
Exporto	0.82%	1 760/	5 549/
Exports	-0.62/0	-1.70/0	-5.54 /6
Share of exporters	-5.74%	-7.97%	-6.90%
Domestic Sales	-0.94%	-1.29%	-1.71%
Investment	-1.46%	-2.66%	-6.52%
Consumption	-0.73%	-0.92%	-0.88%
Final goods output	-0.85%	-1.20%	-1.78%
Real wage	-0.70%	-1.22%	-2.99%
Wage	-1.06%	-1.58%	-2.68%
Price level (Real ex. rate)	-0.36%	-0.36%	0.31%
Agg. credit/Value Added	-4.24 pp	-10.0 pp	-30.0 <i>pp</i> %

NICC regime

2 7E0/

 $a_{1} = 60/$

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ...

Tighter CCs: Effects on misallocation & welfare

	CC regime ($\nu = 1.75\%$)		$\nu = 6.0$)%
	Misallocation Welfare		Misallocation	Welfare
All firms	0.50 <i>pp</i>	-0.61%	2.28 <i>pp</i>	-1.41%
Exp. status				
Exporters	1.25 <i>pp</i>	-1.82%	5.38 <i>pp</i>	0.03%
Non-exporters	0.34 <i>pp</i>	-0.56%	1.66 <i>pp</i>	-1.45%
OSG				
Large	0.51 <i>pp</i>	—	2.36 <i>pp</i>	—
Small	0.23 <i>pp</i>	_	0.27 <i>pp</i>	_

イロト イロト イヨト イヨト

Aggregate effects of capital controls with & without rebates

	CC regime (no rebates)	With rebates
Exports	-0.82%	-0.28%
Share of exporters	-5.74%	3.67%
Domestic Sales	-0.94%	-0.43%
Investment	-1.46%	-1.80%
Consumption	-0.73%	-0.27%
Final goods output	-0.85%	-0.51%
Real GDP	-0.56%	-0.72%
Real wage	-0.70%	-0.63%
Wage	-1.06%	-0.31%
Price level (Real ex. rate)	-0.36%	0.33%
Agg. credit/Value Added	-4.24 pp	-4.04 pp

< ≣ >

< □ > < □ > < □ > < □ >

Effects of CCs with tax rebates on misallocation & welfare

	CC regime (no rebates)		W/rebates	
	Misallocation	Welfare	Misallocation	Welfare
All firms	0.50 <i>pp</i>	-0.61%	0.74 <i>pp</i>	-0.23%
Exp. status				
Exporters	1.25 <i>pp</i>	-1.82%	1.55 <i>pp</i>	0.89%
Non-exporters	0.34 <i>pp</i>	-0.56%	0.55 <i>pp</i>	-0.23%
OSG				
Large	0.51 <i>pp</i>	_	0.76 <i>pp</i>	_
Small	0.23 <i>pp</i>	—	0.23 <i>pp</i>	—

< ≣ ▶

Effect of CCs with rebates on misallocation across firms

40/47

Empirical Analysis

Objective & data

Objective

Evaluate empirical relevance of firms' productivity, exporting status and OSG in shaping the effect of CCs on misallocation.

Data

- Chilean manufacturing establishments data (ENIA), 1990-2007.
 Sum. Statistics
 - All manufacturing firms with more than 10 workers (around 5,000 firms per year, 90,000 observations aprox.).
 - Data on capital stock, investment, workers, sales, exports, income taxes (proxy for profits).
- Tax-equivalent of the CC by year. more

Measure of misallocation

As in Gopinath et al. (2017), Hsieh & Klenow (2009):

$$MRPK = \frac{\sigma - 1}{\sigma} (p_h y_h + p_f y_f) \frac{\alpha}{k}.$$

where: $p_h y_h + p_f y_f$ = value added or total sales; $k_{i,t}$ = fixed capital; σ and α take calibrated values.

Firm misallocation as defined earlier:

$$mis_{ijt} = |Ln(MRPK_{ijt}) - Ln(\overline{MRPK_{jt}})|$$

using yearly industry mean (4-digit ISIC) of MRPK to proxy for $\overline{MRPK_{it}}$

$$mis_{ijt} = \omega_1 CC_{t-1} * TFP_{ijt} + \omega_2 CC_{t-1} * Exp_{ijt} + \omega_3 CC_{t-1} * OSG_{ijt} + \omega_4 X_{ijt} + A_i + B_t + \epsilon_{ijt}$$

- CC_{t-1}: tax-equivalent encaje lagged one period
- $Exp_{ijt} = 1$ for firms that export in current period
- OSG_{ijt} is the % diff. between date-t firm's capital and industry-year mean for firms older than 10 years
- X_{ijt}: time varying firm characteristics, including TFP_{ijt}, Exp_{ijt}, OSG_{ijt}
- A_i: firm fixed effects
- B_t: time fixed effects (includes direct effect of CCs)

CCs effects on misallocation by TFP, OSG & export status

	(1)	(2)	(3)	(4)	(5)	(6)
		$mis_{iit}(VA)$			mis _{ijt} (total_sales)	
VARIABLES	All firms	Balanced Panel	W/o crisis cohort	All firms	Balanced Panel	W/o crisis cohort
CC*TFP	0.876***		0.883***	0.713***		0.728***
	(0.122)		(0.126)	(0.078)		(0.080)
CC*Exp	0.224***		0.208***	0.317***		0.299***
	(0.030)		(0.030)	(0.031)		(0.032)
CC*OSG	0.248***		0.244***	0.255***		0.250***
	(0.031)		(0.031)	(0.032)		(0.032)
CC*TFP_BP		1.363***			1.108***	
		(0.190)			(0.189)	
CC*Exp_BP		0.296***			0.410***	
		(0.060)			(0.064)	
CC*OSG_BP		0.309***			0.380***	
		(0.056)			(0.059)	
Observations	01 274	22.204	00.250	97 460	21 025	96 504
Deguered	91,374	22,204	90,359	07,409	21,935	0,524
R-squared	0.024 VEC	0.579	0.625	0.600	0.573	0.601
	TES	TES VEO	TES VEO		TES VEO	TES
	150	TES	TES		TES	TES
Time FE	TES	TES	TES	TES	TES	TES

Heterogeneous effects by exporting status

VARIABLES	All firms	All firms	All firms	Non-Exporters	Exporters
	(1)	(2)	(3)	(4)	(5)
CC*TFP	0.990***	0.880***	0.995***	1.029***	0.243
	(0.142)	(0.130)	(0.144)	(0.135)	(0.236)
CC*Exp	1.326**	0.215***	1.339**		
	(0.523)	(0.046)	(0.540)		
CC*OSG	0.246***	0.237***	0.248***	0.268***	0.220***
	(0.032)	(0.036)	(0.037)	(0.037)	(0.073)
CC*TFP*Exp	-0.500**		-0.501**		
	(0.240)		(0.244)		
CC*TFP*OSG		0.010	-0.032		
		(0.072)	(0.073)		
Observations	91,374	91,374	91,374	72,751	17,755
R-squared	0.624	0.624	0.625	0.658	0.578
Controls	YES	YES	YES	YES	YES
Time FE	YES	YES	YES	YES	YES
Firm FE	YES	YES	YES	YES	YES

イロト イロト イヨト イヨト

Additional exercises and robustness checks

- Forward-looking definition of exporters (next 2 years) More
- Interaction of firms' characteristics with macroeconomic controls More
- Winsorization for outliers More
- Industry level regressions More

Conclusions

- CCs affect misallocation via static, dynamic and GE effects that work in different directions and are non-monotonic in net worth, tfp & trade status
- The model calibrated to Chilean *encaje* predicts that:
 - 1. Misallocation worsened and more so for Es, high-prod. & large OSG firms
 - 2. Strong GE effects reduced real wages, consumption and output
 - 3. Sizable social welfare loss and larger for exporters & high-prod. firms
 - 4. Substantial heterogeneity in MRPKs and income effects
- LTV regulation is far superior (same credit cut at 1/3rd of the cost)
- Empirical evidence consistent w. larger effects for exporters and high prod. firms, and non-monotonic effects
- Relevant for fin. repression, fin. integration & size-dependent policies

Exporters' behavior in Chile

Back

Periods as Exporter	Exporter (t+1)	Non-exp. (t+1)
1	71%	29%
2	79%	21%
3	93%	7%
4	94%	6%

◆□▶ ◆圖▶ ◆厘▶ ◆厘≯
Exporters' behavior in Chile

▶ Back

Periods as Exporter	Exporter (t+1)	Non-exp. (t+1)
1	71%	29%
2	79%	21%
3	93%	7%
4	94%	6%

Fixed Capital Interval	Share of Exporters
x < p(25)	3.03%
p(25) < x < p(50)	2.89%
p(50) < x < p(75)	12.65%
p(75) < x	30.21%
p(95) < x	53.97%

Effects on misallocation: Relative Size and Export Status by prod.

	(1)	(2)	(3)	(4)
	Misallocation	Misallocation	Taxes	Taxes
	All firms	All firms	All firms	All firms
VARIABLES	High z	Low z	High z	Low z
CC*Rel_Size	-0.002*	-0.022***	0.014***	-0.002
	(0.001)	(0.008)	(0.005)	(0.007)
CC*Exp	0.190***	0.061**	-0.085**	-0.117***
	(0.030)	(0.028)	(0.043)	(0.043)
Observations	46,340	46,350	46,337	46,350
R-squared	0.177	0.259	0.093	0.173
Number of id	7,959	8,734	7,959	8,734
Controls	YES	YES	YES	YES
Firm FE	YES	YES	YES	YES
Time FE	YES	YES	YES	YES

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへの

Forward looking definition of exporters • Back

	Backward	Backward	Backward	Forward	Forward	Forward
VARIABLES	All firms	Balanced panel	W/o crisis cohort	All firms	Balanced panel	W/o crisis cohort
	(1)	(2)	(3)	(4)	(5)	(6)
CC*TFP	0.817***	1.508***	0.804***	0.821***	1.523***	0.817***
	(0.120)	(0.208)	(0.125)	(0.120)	(0.205)	(0.125)
CC*OSG	0.003**		0.003**	0.003**		0.003**
	(0.001)		(0.001)	(0.001)		(0.001)
CC*B_Exp	0.109***	0.151***	0.107***			
	(0.027)	(0.047)	(0.027)			
CC_OSG_BP		0.009**			0.009**	
		(0.005)			(0.005)	
CC*F_Exp				0.095***	0.131***	0.081***
				(0.028)	(0.046)	(0.029)
Observations	92,143	22,203	91,112	92,690	22,203	91,659
R-squared	0.224	0.196	0.224	0.224	0.196	0.224
Number of id	11,780	1,586	11,664	12,155	1,586	12,039
Firm FE	YES	YES	YES	YES	YES	YES
Time FE	YES	YES	YES	YES	YES	YES
Controls	YES	YES	YES	YES	YES	YES

イロト イロト イヨト イヨト

Interaction with macroeconomic controls: Misallocation • Back

VARIABLES	Libor	Inflation	Growth	RER	PrivCreditGDP	WorldGrowth
	(1)	(2)	(3)	(4)	(5)	(6)
CC*TFP	0.890***	0.859***	1.007***	0.494***	1.052***	0.921***
	(0.121)	(0.119)	(0.127)	(0.104)	(0.126)	(0.118)
CC*OSG	0.249***	0.255***	0.207***	0.286***	0.248***	0.258***
	(0.031)	(0.031)	(0.034)	(0.034)	(0.031)	(0.031)
CC*Exp	0.211***	0.230***	0.139***	0.273***	0.202***	0.258***
	(0.030)	(0.030)	(0.033)	(0.034)	(0.032)	(0.030)
Observations	91,374	91,374	91,374	91,374	91,374	91,374
R-squared	0.624	0.625	0.625	0.625	0.625	0.626
Controls	YES	YES	YES	YES	YES	YES
Firm FE	YES	YES	YES	YES	YES	YES
Time FE	YES	YES	YES	YES	YES	YES

Interaction with macroeconomic controls: Taxes • Back

	(1)	(2)	(3)	(4)	(5)	(6)
	Taxes	Taxes	Taxes	Taxes	Taxes	Taxes
VARIABLES	Libor	Inflation	Growth	RER	PrivCreditGDP	WorldGrowth
CC*TFP	-0.003***	-0.003***	-0.002	-0.005***	-0.002*	-0.002**
CC*Rel_Size	0.010***	0.008**	0.014***	0.011***	0.002	0.012***
CC*Exp	-0.097***	-0.090***	-0.087**	-0.053	-0.131***	-0.099***
Exp*Libor	0.016					
TFP*Libor	0.000					
Rel_size*Libor	0.008***					
Exp*Inflation		0.015***				
TFP*Inflation		-0.001***				
Rel_sizeInflation		0.003**				
Exp*Growth			-0.002			
TFP*Growth			-0.001***			
Rel_size*Growth			-0.001			
Exp*TCR				0.008**		
TFP*TCR				-0.001***		
Rel_size*TCR				-0.000		
Exp*PrivCreditGDP					-1.302***	
TFP*PrivCreditGDP					0.042***	
Rel_size*PrivCreditGDP					-0.320***	
Exp*WorldGrowth						-0.123***
TFP*WorldGrowth						0.004***
Rel_size*WorldGrowth						-0.004
Observations	02 697	02 697	02 697	02 697	02 697	02 697
Observations	92,687	92,087	92,687	92,087	92,087	92,087
Number of id	10.156	10.156	10.150	10.156	10.137	10.150
Controlo	12,155	12,100 VEC	12,100 VEC	12,155	12,100	12,100
Eirm EE	VES	VEC	VEC	TES	VEC	VEC
Time FF	TES	TES	TES	TES	TES	TES
nine FE	YE5	YE5	YE5	YE5	YE5	YES

<ロト <回 > < 臣 > < 臣 > 、 臣 > の

Sub-samples Back

	(1)	(2)	(3)
	Misallocation	Taxes	Taxes
VARIABLES	W/o crisis cohort	W/o crisis cohort	Since 1992
CC*TFP	0.010***	-0.003***	-0.003***
	(0.001)	(0.001)	(0.001)
CC*Rel_Size	-0.004**	0.012***	0.012***
	(0.002)	(0.004)	(0.004)
CC*Exp	0.097***	-0.095***	-0.078**
	(0.021)	(0.031)	(0.033)
Constant	1.235*	-10.246***	-2.670***
	(0.734)	(1.180)	(0.476)
Observations	91,659	91,656	83,475
R-squared	0.218	0.137	0.132
Number of id	12,039	12,039	11,780
Controls	YES	YES	YES
Firm FE	YES	YES	YES
Time FE	YES	YES	YES

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Winsorization, Industry Level & Exporters Definition • Back

VARIABLES	Wins. MRPK	Wins. Controls	Wins. Sectors	Backward-looking	Forward-looking	Industry level
	(1)	(2)	(3)	(4)	(5)	(6)
CC*TEP	0.855***	1 289***	0 902***	0 901***	0.897***	0.033
00	(0.126)	(0.093)	(0.130)	(0.121)	(0.121)	(0.133)
CC*Exp	0.229***	0.238***	0.234***	0.177***	0.156***	0.347***
	(0.019)	(0.031)	(0.030)	(0.028)	(0.029)	(0.132)
CC*OSG	0.248***	0.263***	0.246***	0.234***	0.218***	1.260***
	(0.022)	(0.031)	(0.031)	(0.031)	(0.031)	(0.133)
Observations	91,374	83,348	91,374	91,030	91,374	1,600
R-squared	0.624	0.630	0.622	0.623	0.624	0.595
Controls	YES	YES	YES	YES	YES	YES
Firm FE	YES	YES	YES	YES	YES	YES
Time FE	YES	YES	YES	YES	YES	NO
Industry FE	NO	NO	NO	NO	NO	YES

イロト イロト イヨト イヨト

Recursive Equilibrium

For a given value of the interest rate r, a recursive stationary competitive equilibrium of this economy consists of prices (w, p) policy functions and value functions v and g such that:

- 1. Policy and value functions solve the entrepreneurs' problem.
- 2. Policy functions solve the final good producers' problem.
- 3. Labor market clears.
- 4. The government's budget constraint is satisfied.
- 5. Markets for domestic varieties and final goods market clear.
- 6. The measure ϕ of entrepreneurs is stationary.

Table: Summary	Statistics:	1990-2007
----------------	-------------	-----------

	(1)	(2)	(3)	(4)	(5)
VARIABLES	Ν	mean	sd	min	max
Fixed Capital	92,690	11.39	2.771	0	22.47
Total Workers	92,690	3.578	1.112	0	8.656
Interest Expenditures	92,690	4.895	4.675	0	18.24
TFP	92,690	2.151	0.149	-3.536	2.858
L_Exp	92,690	0.334	0.472	0	1
F_Exp	92,690	0.195	0.396	0	1
Misallocation	92,690	4.715	3.127	0	17.72
Rank_TFP	92,690	2,584	1,502	1	5,765
Young	92,690	0.486	0.500	0	1
Number of id	12,155	12,155	12,155	12,155	12,155

Summary Statistics: Macroeconomic Indicators 1990-2007

	(1)	(2)	(3)	(4)	(5)
VARIABLES	Ν	mean	sd	min	max
CC	18	0.881	1.109	0	2.649
Inflation	18	0.017	0.536	-0.626	1.887
RER_dev	18	-0.009	0.055	-0.082	0.113
Growth	18	0.055	0.028	-0.021	0.120
World Growth	18	3.054	1.000	1.369	4.476
Private Credit/GDP	18	0.613	0.107	0.442	0.743
Libor 12m	18	4.918	1.799	1.364	8.415

< 口 > < 🗇

▶ < 프 ▶ < 프 ▶</p>

▶ back

The Chilean Encaje

Policy: Unremunerated Reserve Requirement: 20% (to 30%) of capital inflows had to be deposited at the Central Bank at 0% interest rate for a fixed period of time (6 to 12 months).

 \Rightarrow Analogous to a tax on the interest rate for borrowers (De Gregorio et al., 2000).

- Context: Surge of capital inflows, RER appreciation.
- Aggregate effects: Longer maturity of capital inflows, increased interest rate differential, small effect on RER, not so robust. (De Gregorio, Edwards and Valdes, 2000.; Edwards, 1999)

Back

Main changes in the URR administration

	20% URR introduced for all new credit
	Holding period (months)=min(max(credit maturity, 3),12)
lup 1001	Holding currency=same as creditor
Jun-1991	Investors can waive the URR by paying a fix fee
	(Through a repo agreement at discount in favor of the central bank)
	Repo discount= US\$ libor
Jan-1992	20% URR extended to foreign currency deposits with proportional HP
May 1000	Holding period (months)=12
Way-1992	URR increased to 30% for bank credit lines
Aug 1002	URR increased to 30%
Aug-1992	Repo discount= US\$ libor +2.5
Oct-1992	Repo discount= US\$ libor +4.0
Jan-1995	Holding currency=US\$ only
Sep-1995	Period to liquidate US\$ from Secondary ADR tightened
Dec-1995	Foreign borrowing to be used externally is exempt of URR
Oct-1996	FDI committee considers for approval productive projects only
Dec-1996	Foreign borrowing <us\$ (500,000="" 200,000="" a="" exempt="" in="" of="" td="" urr<="" year)=""></us\$>
Mar-1997	Foreign borrowing <us\$ (100,000="" 100,000="" a="" exempt="" in="" of="" td="" urr<="" year)=""></us\$>
Jun-1998	URR set to 10%
Sep-1998	URR set to zero

Source: De Gregorio et al. (2000).

The Chilean Encaje and CCs plots

The evolution of the Chilean encaje

Figure: Tax equivalent

▶ < 프 > < 프</p>

< 口 > < 🗇

Why Chile?

- Most well-known example of market-based control.
- Economic importance: 1.9% of GDP (Gallego, Hernandez and Schmidt-Hebbel, 2002).
- Firm level data in period of analysis.
- Time period large enough to do SS analysis and to have enough variation for the empirical analysis.

Back

The Chilean Encaje and CCs plots

Capital controls on inflows (Fernandez et. al., IMF ER (2016))

Back

< 口 > < 🗇

Effects of capital controls on aggregate outcomes

	Benchmark	Lump-sum	LTV
	(Δ%)	$(\Delta\%)$	$(\Delta\%)$
	(1)	(2)	(3)
Exports	-0.92%	-0.35%	-1.01%
Share of exporters	-5.74%	3.67%	-1.62%
Domestic Sales	-0.96%	-0.46%	-0.23%
Investment	-1.55%	-1.90%	-1.00%
Consumption	-0.74%	-0.28%	-0.09%
Final goods output	-0.87%	-0.54%	-0.24%
Real GDP	-0.60%	-0.77%	-0.43%
Wage	-1.09%	-0.35%	-0.44%
Price level (Real ex. rate)	-0.35%	0.33%	0.03%
Agg. credit/Value Added	-14.09%	-13.49%	-14.11%

Other Results: LS and LTV

Lump Sum: % change in misallocation and welfare, by z

Productivity	% change Misallocation	% change Welfare	
1	0.12%	-0.62%	
2	0.23%	-0.59%	
3	0.43%	-0.51%	
4	0.61%	-0.37%	
5	0.63%	-0.27%	
6	0.88%	0.01%	
7	0.81%	-0.56%	
8	0.73%	-0.51%	
9	0.71%	-0.49%	
10	0.70%	-0.49%	

Other Results: LS and LTV

LTV: % change in misallocation and welfare, by z

Productivity % change Misallocation		% change Welfare	
1	0.02%	-0.42%	
2	0.05%	-0.41%	
3	0.10%	-0.39%	
4	0.18%	-0.33%	
5	0.25%	-0.22%	
6	0.21%	-0.11%	
7	0.70%	0.11%	
8	0.72%	0.19%	
9	0.73%	0.21%	
10	0.73%	0.22%	

-

Earnings-linked collateral constraint

 $qd_{t+1} \leq \theta(\pi_{t+1}/p_{t+1})$

Earnings-linked collateral constraint

$$qd_{t+1} \leq \theta(\pi_{t+1}/p_{t+1})$$

$$k' = rac{1}{1 - heta rac{\pi(k', z; w', p', y')}{p'k'}} a',$$

- 1. Effective pledgeable collateral shrinks by $\pi(\cdot) / p'k'$ (flatter region 1)
- 2. Feedback effect: $\pi(\cdot) / p'k'$ falls with k' (constraint tightens endogenously)

Earnings-linked collateral constraint

$$qd_{t+1} \le \theta(\pi_{t+1}/p_{t+1})$$

$$k' = rac{1}{1 - heta rac{\pi(k', z; w', p', y')}{p' k'}} a',$$

- 1. Effective pledgeable collateral shrinks by $\pi(\cdot) / p'k'$ (flatter region 1)
- 2. Feedback effect: $\pi(\cdot) / p'k'$ falls with k' (constraint tightens endogenously)
- Interacts with monopolistic competition (under perfect competition, π(·) is linear in k and ELCC is similar to KLCC)

Earnings-linked collateral constraint

$$qd_{t+1} \le \theta(\pi_{t+1}/p_{t+1})$$

$$k' = rac{1}{1 - heta rac{\pi(k', z; w', p', y')}{p' k'}} a',$$

- 1. Effective pledgeable collateral shrinks by $\pi(\cdot) / p'k'$ (flatter region 1)
- 2. Feedback effect: $\pi(\cdot) / p'k'$ falls with k' (constraint tightens endogenously)
- Interacts with monopolistic competition (under perfect competition, π(·) is linear in k and ELCC is similar to KLCC)
- Pecuniary and nonpecuniary externalities via p', w', y'

Earnings-linked collateral constraint

$$qd_{t+1} \le \theta(\pi_{t+1}/p_{t+1})$$

$$k' = rac{1}{1 - heta rac{\pi(k', z; w', p', y')}{p' k'}} a',$$

- 1. Effective pledgeable collateral shrinks by $\pi(\cdot) / p'k'$ (flatter region 1)
- 2. Feedback effect: $\pi(\cdot) / p'k'$ falls with k' (constraint tightens endogenously)
- lnteracts with monopolistic competition (under perfect competition, $\pi(\cdot)$ is linear in *k* and ELCC is similar to KLCC)
- Pecuniary and nonpecuniary externalities via p', w', y'
- Calibration to observed credit ratio requires higher θ than with KLCC (similar effects of CCs)

Effects of CCs with earnings-linked collateral constraint

	% change	% change
	Misallocation	Welfare
All firms	0.61%	-0.33%
Exp. status		
Exporters	0.93%	-1.08%
Non-exporters	0.55%	-0.30%
OSG		
Large	0.64%	—
Small	0.18%	—

back

Parameter Values: ELCC

Predetermined parameters			Calibrated parameters			
β	Discount factor	0.96	Standard	ζ	Iceberg trade cost	3.8271
γ	Risk aversion	2	Standard	ω_z	Productivity dispersion	0.4350
σ	Substitution elasticity	4	Leibovici (21)	F	Sunk export entry cost	1.3993
δ	Depreciation rate	0.06	Midrigan & Xu (14)	θ^{NE}	NEs collateral coef.	0.3481
ρ	Death probability	0.08	Chilean data	θ_f	Es collateral factor	1.0361
				ά	Capital intensity	0.4491
				κ	Fraction of std. st. capital as initial capital	0.4012

< Ξ

→ < Ξ >

Target Moment	Data	Model
	(1990-1991)	(No C.controls)
	(1)	(2)
Share of exporters	0.18	0.18
Average sales (exporters/non-exporters)	8.55	8.64
Average sales (age 5 / age 1)	1.26	1.24
Aggregate exports / sales	0.21	0.21
Aggregate credit / Value added	0.33	0.33
Aggregate capital stock / wage bill	6.60	6.53
(Investment /VA) _{exporters} / (Investment/VA) _{nonexporters}	1.84	1.84

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯

Domestic Credit Market

- Domestic bonds *b* traded at price q^b ($R^b \equiv 1/q^b$).
- Collateral constraint applies to net bond position:

$$qd'-q^bb'\leq\theta k'.$$

Net worth also uses net bond position:

$$a' = k' - qd' + q^b b'.$$

...so collateral constraint in terms of net worth is unchanged:

$$k' \le \frac{a'}{1-\theta}.$$

Domestic credit market

Possible outcomes & portfolio choice

1. $R^b > \hat{R}$: all firms that borrow do so from abroad, so b' = 0 for all firms. Firms in region 3 accumulate net worth along the ray k' = a' as before (*no domestic debt market*)

Possible outcomes & portfolio choice

- 1. $R^b > \hat{R}$: all firms that borrow do so from abroad, so b' = 0 for all firms. Firms in region 3 accumulate net worth along the ray k' = a' as before (*no domestic debt market*)
- 2. $R^* < R^b < \hat{R}$, all firms that borrow do so in the domestic market, so d' = 0 for all firms. At equilibrium, b' < 0 for some, b' > 0 for others and bond market must clear at R^b (*CCs cause financial autarky*)

Possible outcomes & portfolio choice

- 1. $R^b > \hat{R}$: all firms that borrow do so from abroad, so b' = 0 for all firms. Firms in region 3 accumulate net worth along the ray k' = a' as before (*no domestic debt market*)
- 2. $R^* < R^b < \hat{R}$, all firms that borrow do so in the domestic market, so d' = 0 for all firms. At equilibrium, b' < 0 for some, b' > 0 for others and bond market must clear at R^b (*CCs cause financial autarky*)
- 3. $R^b = \hat{R}$, bonds are perfect substitutes and borrowers are indifferent. Portfolio composition depends on whether there is excess demand or supply of credit. With excess supply, since lenders cannot get \hat{R} abroad, R^b falls and $R^b = \hat{R}$ cannot be an equilibrium. With excess demand, portfolio is undetermined

Possible outcomes & portfolio choice

- 1. $R^b > \hat{R}$: all firms that borrow do so from abroad, so b' = 0 for all firms. Firms in region 3 accumulate net worth along the ray k' = a' as before (*no domestic debt market*)
- 2. $R^* < R^b < \hat{R}$, all firms that borrow do so in the domestic market, so d' = 0 for all firms. At equilibrium, b' < 0 for some, b' > 0 for others and bond market must clear at R^b (*CCs cause financial autarky*)
- 3. $R^b = \hat{R}$, bonds are perfect substitutes and borrowers are indifferent. Portfolio composition depends on whether there is excess demand or supply of credit. With excess supply, since lenders cannot get \hat{R} abroad, R^b falls and $R^b = \hat{R}$ cannot be an equilibrium. With excess demand, portfolio is undetermined
- 4. $R^b < R^*$, firms that save always prefer foreign bonds so no firm can borrow domestically at R^b (no domestic debt market).

Do entrepreneurs in region 3 become lenders?

Proposition F.1 Assume that $R^* < R^b \le \hat{R}$ ($q^* > q^b \ge \hat{q}$), an entrepreneur with net worth $a' \ge \bar{k}^{cc}(\tilde{z})$ increases its cash-on-hand more by investing its additional net worth into domestic bonds than by accumulating capital.

Proof: Entrepreneur's increase in cash-on-hand in response to increase in a' is larger by investing into bonds than into capital, because the marginal return of the former exceeds that of the latter.

Domestic credit market

Equilibrium in domestic credit market

Domestic credit market

Effects of CCs with domestic credit market

▶ Back

74/47