Devaluation Risk and the Business Cycle Implications of Exchange Rate Management

Enrique G. Mendoza
University of Pennsylvania & NBER

Based on JME, vol. 53, 2000,

joint with Martin Uribe from Columbia University
Questions

1. What are the key elements of the transmission mechanism that produces the robust business-cycle regularities associated with managed exchange rates (e.g. disinflation programs based on currency pegs)?

Price distortions and wealth effects induced by non diversifiable devaluation risk (or lack of policy credibility)
Questions

2. What are the welfare implications and policy lessons that follow from that transmission mechanism?

Distortions driven by devaluation induce large welfare costs. Tax policy can be a useful instrument to counter these distortions and support managed exchange-rate regimes.
Objectives of the Paper

1. *Develop a model of the real effects of managed ex. rates that emphasizes uncertainty & asset market structure.*

Devaluation risk under incomplete markets produces state-contingent interest differentials that trigger:

I. Tax-like distortions on money demand, saving, investment, and labor supply

II. State-contingent wealth effects via suboptimal investment and shocks to government absorption in response to changes in inflation tax
Objectives of the Paper

2. Assess whether the model can account for the quantitative & qualitative features of the data

3. Quantify welfare implications of devaluation-risk distortions

➢ 2. and 3. require developing a solution method that can keep track of the model’s state contingent evolution of wealth
EMPIRICAL BACKGROUND AND LITERATURE REVIEW
Stylized facts of exchange-rate based disinflations

I. Booms followed by recessions and devaluations

II. Sharp, non-linear real appreciations that are highly correlated with private expenditures booms

III. Large widening of external deficits that narrow around the time of currency crises

IV. Sharp decline in the velocity of circulation of money, with a sudden rise around the time of collapse

[Helpman & Razin (87), Végh (92), Kiguel & Leviathan (92), surveys by Rebelo & Végh (96) Calvo & Végh (98)]
Exchange-Rate-Based Stabilization Plans
(Calvo & Vegh (1998))

<table>
<thead>
<tr>
<th>Programs</th>
<th>Beginning and Ending Dates</th>
<th>Exchange Rate Arrangement</th>
<th>Inflation Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil 1964</td>
<td>March 1964-August 1968</td>
<td>Fixed exchange rate, with periodic devaluations</td>
<td>93.6</td>
</tr>
<tr>
<td>Uruguay 1968</td>
<td>June 1968-December 1971</td>
<td>Fixed exchange rate</td>
<td>182.9</td>
</tr>
<tr>
<td>Chilean tablita</td>
<td>February 1978-June 1982</td>
<td>Feb. 1978-June 1979: pre-announced crawling peg</td>
<td>52.1</td>
</tr>
<tr>
<td>Uruguayan tablita</td>
<td>October 1978-November 1982</td>
<td>June 1979-June 1982: fixed exchange rate</td>
<td>41.2</td>
</tr>
<tr>
<td>Argentine tablita</td>
<td>December 1978-February 1981</td>
<td>Pre-announced crawling peg</td>
<td>169.9</td>
</tr>
<tr>
<td>Israel 1985</td>
<td>July 1985-present</td>
<td>Exchange rate policy had four stages</td>
<td>445.4</td>
</tr>
<tr>
<td>Austral (Argentina)</td>
<td>June 1985-September 1986</td>
<td>June 1985-March 1986: fixed exchange rate</td>
<td>1,128.9</td>
</tr>
<tr>
<td>Cruzado (Brazil)</td>
<td>February 1986-November 1986</td>
<td>March 1986-Sept. 1986: crawling peg</td>
<td>286.0</td>
</tr>
<tr>
<td>Uruguay 1990</td>
<td>December 1990-present</td>
<td>Exchange rate band with a declining rate of devaluation</td>
<td>133.7</td>
</tr>
<tr>
<td>Convertibility (Argentina)</td>
<td>April 1991-present</td>
<td>Currency board with a one-to-one parity to the U.S. dollar.</td>
<td>267.0</td>
</tr>
</tbody>
</table>

1/ Initial and lowest inflation rates are annualized and in percent.
2/ Initial inflation rate is from the start of the program.
3/ Exchange rate policy had four stages: pre-announced crawling peg, fixed exchange rate, crawling peg, and floating exchange rate.
4/ Exchange rate band: initial rate was 4%, with a decline of 1% per quarter to reach 0% by Dec. 1994.
ERBS Event analysis
(Calvo & Vegh (1998))

A. Inflation and devaluation
(percent per year)

B. Real exchange rate
(index number, T-1=100)
Mexico’s 1987-1994 ERBS

- Nominal exchange rate (left scale)
- Real exchange rate index (right scale)
Mexico’s 1987-1994 ERBS
Mexico’s 1987-1994 ERBS: Domestic Expenditures & Real Exchange Rate
Mexico’s 1987-1994 ERBS: Cyclical Components of Macro Aggregates

- gross domestic product
- private consumption
Mexico’s 1987-1994 ERBS: Cyclical Components of Macro-aggregates
Mexico’s 1987-1994 ERBS: Expenditure Velocity and Nominal Interest Rate

Figure 5. Mexico: Expenditure Velocity of M2

Nominal Interest Rate on 28-day Treasury Certificates
Literature review

• *Existing models yield qualitative predictions consistent with facts, but have important drawbacks:*

a) Poor quantitative performance (Rebelo-Végh (96)): Max. real appreciation about 5%, modest booms, and counterfactual decline in nontradables sector

b) Under uncertainty, incomplete markets and fiscal-induced wealth effects are required to explain gradual booms (Calvo & Drazen (98)): Complete markets yield constant consumption. Incomplete markets without wealth effects yield falling consumption.

c) Price-consumption puzzle: positive corr. of RER & C is theoretically implausible (Uribe (99)): With strict interest parity, non-state-contingent wealth, and CES utility, C rises when RER falls.
Controversy on “early warning” indicators of currency crises (Kaminsky and Reinhart (99)):
 a) Is evidence on statistical causality evidence of economic causality?
 b) Should a “flag” in one or more indicators trigger policy action (i.e., are they a signal that crisis is imminent?)
ANALYTICAL FRAMEWORK
SOE Business Cycle Model with Incomplete Markets and Aggregate Devaluation Risk

I. Money economizes transactions costs incurred in acquiring consumption and investment goods

II. Fixed exchange rate regime with exogenous, time-variant devaluation probabilities

III. Incomplete markets (non-contingent real bonds are the only internationally-traded asset)
IV. Fiscal-induced wealth effects: sudden surge in inflation tax revenue associated with currency collapse allocated to unproductive government absorption

V. Sector-specific factors of production that increase the curvature of the sectoral PPF accommodate large real appreciations
Households

\[E_0 \sum_{t=0}^{\infty} \beta^t \left[\frac{C_t (1 - L_t)^\rho}{1 - \sigma} \right] \]

\[C_t = \left[\omega (C_t^T)^{-\mu} + (1 - \omega) (C_t^N)^{-\mu} \right]^{-\frac{1}{\mu}} \]

\[(1 + S(V_t))(C_t^T + p_t^NC_t^N + I_t) \]

\[= r_t K_t + w_t L_t + \frac{m_{t-1}}{1 + e_t} - m_t - B_{t+1} + (1 + r^*) B_t + T_t \]
$$K_{t+1} = (1 - \delta)K_t + \varphi\left(\frac{I_t}{K_t}\right)K_t$$ \hspace{1cm} (4)$$

$$V_t = \frac{c_t^T + p_t^N c_t^N + I_t}{m_t}$$ \hspace{1cm} (5)$$

$$\lim_{j \to \infty} E_t \left[\frac{B + m}{t + j + 1} \frac{t + j}{(1 + r^*)^j} \right] = 0$$ \hspace{1cm} (6)$$
Firms

\[Y_t^i = A^i \left(K_t^i \right)^{\alpha^i} \left(L_t^i \right)^{1-\alpha^i} \text{ for } i = T, N \] \hspace{1cm} (7)

\[K_t = \kappa \left(K_t^T, K_t^N \right) \quad L_t = L_t^T + L_t^N \] \hspace{1cm} (8)

\[w_t L_t + r_t K_t = Y_t^T + p_t^N Y_t^N \] \hspace{1cm} (9)
Government and market clearing

\[G_t + T_t = m_t - \frac{m_{t-1}}{1 + e_t} \quad \text{with} \]

\[\sum_{t=0}^{\infty} \frac{G_t}{(1 + r^*)^t} = \eta \sum_{t=0}^{\infty} \frac{m_{t-1}}{(1 + r^*)^t} \left(\frac{e_t}{1 + e_t} \right) \quad 0 \leq \eta \leq 1 \]

\[C_t^N = A^N(K_t^N)^{\alpha N}(L_t^N)^{1-\alpha N} \]

\[C_t^T + I_t + G_t = A^T(K_t^T)^{\alpha T}(L_t^T)^{1-\alpha T} - B_{t+1} + (1 + r^*) B_t - m_t V_t S(V_t) \]
Exchange Rate Regime

• At $t=0$, $e_0 = 0$ but policy lacks credibility or there is “uncertain duration” (Calvo & Drazen (98)):

• $Z(t)$ is the “hazard rate” function:

$$z_t = \Pr[e_{t+1} > 0 | e_t = 0]$$

with:

a) $\Pr[e_{t+1} > 0 | e_t > 0] = 1$

b) $e_t = 0$ or > 0

c) At $t = J < \infty$ policy uncertainty ends
Optimality conditions

\[\lambda_t h(i_t) = \beta^t \omega \left(\frac{C_t^T}{C_t} \right)^{(1+\mu)} C_t^{-\sigma} \left(1 - L_t^N - L_t^T \right)^{\rho(1-\sigma)} \] \hspace{1cm} (10)

\[p_t^N = \frac{1 - \omega}{\omega} \left(\frac{C_t^N}{C_t^T} \right)^{(1+\mu)} \] \hspace{1cm} (11)

\[\rho \left(\frac{C_t^T + p_t^N C_t^N}{1 - L_t^N - L_t^T} \right) h(i_t) = (1 - \alpha T) A^T \left(\frac{K_t^T}{L_t^T} \right)^{\alpha T} \] \hspace{1cm} (12)

Define marginal transactions costs as \(h(i) = 1 + S(V(i)) + V(i)S'(V(i)) \)
\[\lambda_t \left[1 - S'(V_t)V_t^2 \right] = E_t \frac{\lambda_{t+1}}{1 + e_{t+1}} \]

(13)

\[\lambda_t = E_t \lambda_{t+1} \left(1 + r^* \right) \]

(14)

\[\frac{\lambda_t h(i_t)}{\varphi' \left(\frac{I_t}{K_t} \right)} = E_t \lambda_{t+1} \left[\frac{\alpha T \alpha^T}{\kappa_1 \left(\frac{K_{t+1}^T}{L_{t+1}^T} \right)} \left(\frac{K_{t+1}^T}{L_{t+1}^T} \right)^{(1-\alpha T)} + \right] \]

(15)

\[\frac{h(i_{t+1})}{\varphi' \left(\frac{I_{t+1}}{K_{t+1}} \right)} \left[(1 - \delta) + \varphi \left(\frac{I_{t+1}}{K_{t+1}} \right) - \varphi' \left(\frac{I_{t+1}}{K_{t+1}} \right) \frac{I_{t+1}}{K_{t+1}} \right] \]
\[(1 - \alpha T) A^T \left(\frac{K_t^T}{L_t^T} \right)^{\alpha T} = (1 - \alpha N) A^N \left(\frac{K_t^N}{L_t^N} \right)^{\alpha N} p_t^N \quad (16)\]

\[\alpha T A^T \left(\frac{K_t^T}{L_t^T} \right)^{-(1 - \alpha T)} = \alpha N A^N \left(\frac{K_t^N}{L_t^N} \right)^{-(1 - \alpha N)} p_t^N \left[\frac{\kappa_1(K_t^T, K_t^N)}{\kappa_2(K_t^T, K_t^N)} \right] \quad (17)\]
Transmission Mechanism

I. Velocity is increasing in nominal interest rate:

\[S'(V_t)V_t^2 = \frac{i_t}{1 + i_t} \Rightarrow \text{in equilibrium} \quad V(i_t) \quad \text{with} \quad V' > 0 \]

II. Currency risk induces state-contingent premium on opp. cost of holding money:

\[S'(V_t^L)(V_t^L)^2 = \frac{r^*}{1 + r^*} - \left[\frac{\lambda_{t+1}^H}{E_t[\lambda_{t+1} \mid e_t = 0]} \right] \frac{Z_t e^h}{(1 + e^h)(1 + r^*)} \]

a) Expected rate of currency depreciation (UIP)

b) Time-varying risk premium (Calvo-Drazen effect)

\[\frac{\lambda_{t+1}^H}{E[\lambda_{t+1} \mid e_t = 0]} > 1 \]
Transmission Mechanism

III. Saving distortion:

\[U_{C_t^T}(C_t^T, C_t^N, \ell_t) = \beta(1 + r^*)E_t \left[U_{C_t^T}(C_{t+1}^T, C_{t+1}^N, \ell_{t+1}) \left(\frac{h(i_t)}{h(i_{t+1})} \right) \right] \]

where \(h(i) \) is the marginal cost of transactions.

IV. Investment distortion:

\[U_{C_t^T}(C_t^T, C_t^N, \ell_t) = \]

\[E_t \left[\frac{U_{C_t^T}(C_{t+1}^T, C_{t+1}^N, \ell_{t+1})}{h(i_{t+1})} \left(\frac{\alpha T A^T}{k_1(K_{t+1}^T, K_{t+1}^N)} \left(\frac{K_{t+1}^T}{L_{t+1}^T} \right)^{-1-\alpha T} + h(i_{t+1})(1 - \delta) \right) \right] \]
Transmission Mechanism

V. Labor supply distortion:

\[\frac{U_{\ell}(C_t^T, C_t^N, \ell_t)}{U_{c^T}(C_t^T, C_t^N, \ell_t)} = \frac{(1 - \alpha T)A^T}{h(i_t)} \left(\frac{K_t^T}{L_t^T} \right)^{\alpha T} \]

VI. Role of sector specific capital

\[\ln(p_t^N) = C + (\alpha T - \alpha N) \ln \left(\frac{K_t^N}{L_t^N} \right) - \frac{\alpha T}{\xi} \ln \left(\frac{K_t^N}{K_t^T} \right) \]
CALIBRATION
Calibration: Mexico 1987-1994

a) Transactions costs
\[\frac{1}{1 + \gamma} = 0.16 \Rightarrow \text{Calvo & Mendoza (96)} \]
\[A = 0.548 \Rightarrow \text{match end 87- expenditures velocity} \]

b) Preferences \[\beta = (1 + r^*)^{-1} \]
\[\sigma = 5 \Rightarrow \text{Reinhart and Vegh (94), lower bound} \]
\[\frac{1}{1 + \mu} = 0.76 \Rightarrow \text{Ostry and Reinhart (92)} \]
\[\omega = 0.56 \Rightarrow \text{average sectoral consumption shares} \]
\[\rho = 1.5433 \Rightarrow \text{steady-state leisure allocation of 0.2} \]
Calibration: Mexico 1987-1994

c) Technology
\[1 - \alpha^T = 0.26 \quad \Rightarrow \quad 1988-1996 \text{ average} \]
\[1 - \alpha^N = 0.36 \quad \Rightarrow \quad 1988-1996 \text{ average} \]
\[\delta = 0.01 \quad \Rightarrow \quad \text{match average gross investment rate} \]
\[\phi''(\delta) = -1.8 \quad \Rightarrow \quad \text{match investment boom} \]
\[\xi = -0.1 \quad \Rightarrow \quad \text{match } \Delta p^N \quad \text{due to currency risk in VAR} \]
\[r^* = 0.065 \quad \Rightarrow \quad \text{Cooley and Prescott (95)} \]

d) Government Policy
\[\eta = 0.66 \quad \text{match 1987 government absorption/GDP ratio} \]
\[e = 170 \quad \Rightarrow \quad \text{end-87 annualized tradables inflation rate} \]
e) Hazard rate function

Set to mimic econometric evidence on “J-shaped” devaluation probabilities (Blanco and Garber (86), Klein and Marion (97))
BASELINE CALIBRATION
RESULTS
Main Results

I. Booms in GDP, C and I with recessions before devaluation. Amplitudes of GDP and C in line with data.

II. C and RER are highly correlated (state-contingent, time-varying monetary distortion and marginal utility of wealth).

III. With $\xi = -0.1$, model yields sharp rise in RER of 18% in first 2 years. RER then stabilizes and depreciates slightly, but ends appreciated by 13% at “maximum duration.”
IV. Model mimics qualitative pattern of sectoral expansion and contraction, with faster growth in CT than in CN in early stages of peg

V. Private TB ($net \text{ exports} - public \text{ absorption}$) falls markedly on impact, continues to fall for the first 2 years and then rises slowly. At “maximum duration,” TB falls by 12%.

VI. V falls by 10% when the peg begins, then falls gradually for the first 10 quarters before it begins to rise gradually. Amplitude is smaller than in data.
Amplitude of ERBS Business Cycle

<table>
<thead>
<tr>
<th></th>
<th>Mexican Data</th>
<th>Benchmark (J-shaped hazard rate)</th>
<th>Flat Hazard rate</th>
<th>Perfect foresight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross domestic product</td>
<td>5.01</td>
<td>4.73</td>
<td>3.93</td>
<td>5.81</td>
</tr>
<tr>
<td>(peak 88:2, trough 92:3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private consumption</td>
<td>9.91</td>
<td>9.57</td>
<td>8.55</td>
<td>10.93</td>
</tr>
<tr>
<td>(peak 88:1, trough 92:1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed investment</td>
<td>17.92</td>
<td>17.69</td>
<td>15.06</td>
<td>19.60</td>
</tr>
<tr>
<td>(peak 88:1, trough 92:1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net exports/GDP ratio</td>
<td>11.31</td>
<td>6.00</td>
<td>5.47</td>
<td>7.38</td>
</tr>
<tr>
<td>(trough 88:1, peak 92:4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Money Velocity</td>
<td>28.92</td>
<td>14.93</td>
<td>10.93</td>
<td>14.93</td>
</tr>
<tr>
<td>(trough 88:1, peak 93:1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real exchange rate</td>
<td>41.50</td>
<td>18.15</td>
<td>18.81</td>
<td>22.42</td>
</tr>
</tbody>
</table>
Baseline simulation results
Comparison with Existing Work

I. Reinhart & Vegh (95) simulated Calvo’s (86) deterministic, endowment economy model.
 - Mimicking C boom required huge interest rate cuts.
 - C jumps on impact as peg begins, and remains constant until it falls when the peg is abandoned (cyclical dynamics and price-consumption puzzle are unexplained).
Comparison with Existing Work

II. Rebelo & Végh (96) simulated variants of a deterministic 2-sector, GE framework (including Calvo-Végh (93) sticky-price model).

- Booms and real appreciations still small (best case with staggered prices yields 5% real appreciation).
- $CT (CN)$ rises on impact by 5% and then rises (falls) gradually until it collapses with the devaluation.
- Real appreciation driven by counterfactual fall in Y^N.
- Price-consumption puzzle remains unresolved.
- I and m still display sudden jumps.
- L falls if GHH utility is replaced with standard utility.
Why are results different?

• Results differ because of uncertainty, incomplete markets (preferences & technology are similar):

I. Time-varying interest rate during the peg driven by expectations of devaluation and currency risk
 ➢ in deterministic models $e=0$ implies $i=i^*$

II. Wealth effects due to fiscal adjustment and distortions on savings and investment
 ➢ Deterministic models rebate fiscal revenue, but even if they did not, they don’t produce cyclical dynamics (once-and-for-all change in wealth).
 ➢ Assumption that stabilization featured fiscal cuts of uncertain duration is in line Mexican case.
Accounting for Different Results

III. Differences relative to Calvo & Drazen (98) trade reform of uncertain duration:

- “Uncertain duration” of currency peg yields a distortion that depends on probability of reversal
- General-equilibrium setting yields “slope” of equilibrium dynamics that depends on path of z_t.
SENSITIVITY ANALYSIS
Sensitivity Analysis Experiments

1) Flat, linear hazard rate $z_t = 0.28$ for all $0 \leq t < J$
(same unconditional expectation of devaluation implicit in J-shaped hazard rate)

2) Perfect foresight ($z_t = 0$ for $0 \leq t < J$ and $z_t = 1$ for $J-1=23$)

3) Full rebate of the inflation tax revenue ($\eta = 0$)

4) Extended maximum duration ($J=36$)

5) Unitary elasticity of substitution between C^T and C^N ($\mu=0$)
6) Low elasticity of substitution between K^T and K^N ($\xi = -0.0001$)

7) Homogeneous capital ($\xi = -1$)

8) Positive long-run probability of “success” ($\Pi = 1/10 \text{ and } 1/2$)

9) Production with intermediate inputs

10) M1 velocity ($V = 15.4 \text{ per year before peg}$)

11) Logarithmic utility ($\sigma = 1$)

12) Inelastic labor supply ($\rho = 0$).
Sensitivity Analysis: Findings

• Results of benchmark simulation hinge on four key elements:

I. Uncertainty and a J-Shaped hazard rate are critical for matching observed cyclical dynamics.

II. Endogenous wealth effects induced by market incompleteness and short-lived fiscal adjustment are critical for explaining magnitude of booms and large real appreciations.
Sensitivity Analysis: Findings

III. Sector-specific factors of production are important to increase curvature of sectoral PPF and allow Cobb-Douglas technologies (with nearly-identical factor intensities) to produce large relative price changes.

IV. Devaluation-risk distortions on investment and labor supply are key for realistic cyclical dynamics (recessions in production and consumption of traded and nontraded goods that predate currency crises).
Sensitivity Analysis

The benchmark model

Flat hazard rate

\[p_t^N \]
\[NX_t \]
\[C_t \]
\[I_t \]
Sensitivity Analysis

The benchmark model

Perfect foresight
Sensitivity Analysis

The benchmark model

Full rebate of the inflation tax ($\eta = 0$)
Sensitivity Analysis

The benchmark model

Extended maximum duration \((J = 36)\)
Sensitivity Analysis

The benchmark model

Cobb-Douglas aggregator function ($\mu = 0$)
Sensitivity Analysis

The benchmark model

High labor share in nontradables ($\alpha^N = .6$)
Sensitivity Analysis

The benchmark model

Low elasticity of substitution between traded and non-traded capital ($\xi = -10^{-5}$)
Sensitivity Analysis

The benchmark model

Unitary elasticity of substitution between traded and non-traded capital ($\xi = -1$)
Sensitivity Analysis

The benchmark model

\[\rho_t^N \quad NX_t \quad Ct \quad It \]

Non-zero probability of long-run success

\[\Pr(e_J = e^H | e_{J-1} = e^L) = 0.9 \quad \text{and} \quad \Pr(e_{j+l} = e^i | e_J = e^i) = 1 \quad \text{for} \quad i = H, L \ \text{and} \ j > 1 \]
Sensitivity Analysis

The benchmark model

\[P_r(e_j = e^H | e_{j-1} = e^L) = 0.5 \] and \[P_r(e_{j+j} = e^i | e_j = e^i) = 1 \] for \(i = H, L \) and \(j > 1 \)
Sensitivity Analysis

The benchmark model

Intermediate materials
Sensitivity Analysis

The benchmark model

High money velocity ($V^H = 15.4$ per year)
Sensitivity Analysis

The benchmark model

Log period utility ($\sigma = 1$)
Sensitivity Analysis

The benchmark model

Inelastic labor supply ($\rho = 0$)
WELFARE ANALYSIS
Stabilization policy trade-off (when policy lacks credibility):

• **Desirable**: High-inflation steady state features high nominal interest rate, with corresponding distortions

• **Undesirable**: Devaluation risk causes stochastic distortions on saving, investment and labor and large wealth effects

• Need quantitative analysis to examine welfare gain/loss of stabilization with devaluation risk
Welfare Analysis: Key Findings

I. Noncredible stabilization increases welfare:
 - Gains range from 0.25% to 9.1% (very large compared to Lucas (87) and Calvo (88)).
 - Even with rebated inflation tax, short-lived stabilization increases welfare because of investment-driven wealth effects.
II. Devaluation risk entails large welfare costs

- With fiscal wealth effects, a peg that lasts 24 quarters with full certainty increases welfare by 5.6%, but with J-shaped Z the gain falls to 1.27% (with flat Z gain is lower at 0.95%)
Welfare Analysis: Key Findings

III. Devaluation risk is costly even without fiscal wealth effects

- If inflation tax is rebated, gain under perfect foresight is 2.5%, but gains with dev. risk are much smaller (0.5% with J-shaped Z and 0.3% with flat Z).
<table>
<thead>
<tr>
<th>Model</th>
<th>Rebate of 1/3 of inflation tax</th>
<th></th>
<th>Full rebate of inflation tax</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J-shaped Hazard</td>
<td>Flat Hazard</td>
<td>Perfect Foresight</td>
<td>J-shaped Hazard</td>
</tr>
<tr>
<td>Benchmark</td>
<td>1.27</td>
<td>0.95</td>
<td>5.56</td>
<td>0.51</td>
</tr>
<tr>
<td>$J = 36$</td>
<td>1.11</td>
<td>0.98</td>
<td>7.94</td>
<td>0.43</td>
</tr>
<tr>
<td>$\mu = 0$</td>
<td>1.24</td>
<td>0.92</td>
<td>5.40</td>
<td>0.51</td>
</tr>
<tr>
<td>$s_{HN} = .6$</td>
<td>1.21</td>
<td>0.90</td>
<td>5.25</td>
<td>0.50</td>
</tr>
<tr>
<td>$\xi = -10^{-5}$</td>
<td>1.14</td>
<td>0.85</td>
<td>5.00</td>
<td>0.50</td>
</tr>
<tr>
<td>$\xi = -1$</td>
<td>1.76</td>
<td>1.34</td>
<td>7.78</td>
<td>0.51</td>
</tr>
<tr>
<td>$z_{J-1} = .5$</td>
<td>1.27</td>
<td>0.95</td>
<td></td>
<td>0.51</td>
</tr>
<tr>
<td>$z_{J-1} = .9$</td>
<td>1.28</td>
<td>0.95</td>
<td></td>
<td>0.51</td>
</tr>
<tr>
<td>Materials</td>
<td>1.87</td>
<td>1.42</td>
<td>8.28</td>
<td>0.51</td>
</tr>
<tr>
<td>High money velocity</td>
<td>2.02</td>
<td>1.54</td>
<td>9.11</td>
<td>0.51</td>
</tr>
<tr>
<td>Log preferences</td>
<td>1.32</td>
<td>0.96</td>
<td>5.56</td>
<td>0.50</td>
</tr>
<tr>
<td>Inelastic labor supply</td>
<td>1.30</td>
<td>0.97</td>
<td>5.70</td>
<td>0.42</td>
</tr>
</tbody>
</table>
POLICY LESSONS & CONCLUSIONS
Policy Lessons and Conclusions

1) *Policy risk can cause large price & wealth distortions affecting business cycles, welfare.*
 - This occurs whether ex-post a devaluation occurs or not (“lack of credibility”)

2) *Price distortions are akin to stochastic taxes.*
 Hence, tax policy can be used to counter them.
 - Depends on whether Z is known or not, and whether tax policy is “more credible.”
Policy Lessons and Conclusions

3) In a more general setting, managing an unsustainable peg involves choosing among inflation tax, other taxes and changes in gov. purchases (Drazen & Helpman (88))
 – In 1987-94 Mexican tax rates fell, in part as a result of economic reforms (sequencing?)

4) Further work on unifying ERBS & currency crises models.
 – Endogenize Z using findings on “early-warning indicators” to specify variables.
 – Endogenous currency crises emerge given limited ability to borrow reserves (Mendoza & Uribe (99)).
Policy Lessons and Conclusions

5) *Early-warning indicators may be misleading*

- Regardless of whether a currency collapses or not in the long run, and even under perfect capital mobility, flexible prices, and fiscal discipline, early stages of ERBS plans feature overvalued RERs and large external deficits.