Editorial

Big Data in Dynamic Predictive Econometric Modeling

The modern economic environment is awash
in Big Data. The business models of many of
today’s largest and most innovative firms, for
example, are intimately connected to data col-
lection and processing. Closely related, all of
science is now similarly awash in Big Data, due
to massive advances in data capture and stor-
age technology, typically in conjunction with
the internet.’

Time-series econometrics is no exception,
and the time-series community is beginning to
confront Big Data. Whereas leading texts of a
few decades ago like Hamilton (1994) had no
mention of Big Data topics, recent texts like
Ghysels and Marcellino (2018) cover regular-
ization methods, factor models for large panels,
etc. Nevertheless the time-series econometrics
of Big Data is still in its infancy, with many
important issues explored incompletely or not
at all.

Against this background, in this volume we
present new econometric research at the in-
terface of Big Data and predictive time-series
modeling. Topics include, but are not lim-
ited to: shrinkage, selection, sparsity, dimen-
sionality reduction, structural change, high-
frequency data, mixed-frequency data, and net-
work topology description.

A simple taxonomy is useful for understand-
ing the types of Big Data that will concern us,
and hence how the volume’s papers relate and
cohere. To that end, consider a time-series re-
gression involving T time periods and K re-
gressors, with intra-period sampling m times

!The origin of the term “Big Data”, in addition to
the phenomenon itself, is also interesting. See Diebold
(2012).

per period. Then the “X matrix” is mTx K,
and Big Data corresponds to situations of very
large T, K, and/or m.

T, K, and m are usefully considered sepa-
rately, although more than one can of course
be large at once. As T gets large we have “tall
data”, in reference to the tall X matrix, due
to the large number of periods, i.e., the long
calendar span of data. As K gets large (poten-
tially even so large that K >T) we have “wide
data”, in reference to the wide X matrix due to
the large number of regressors. As m gets large
we have “dense data”, in reference to the high-
frequency intra-period sampling, regardless of
whether the data are tall.

Still maintaining our simple regression moti-
vation, there is nevertheless a fourth source of
Big Data: the regression might be multivari-
ate, say N-dimensional. As N gets very large
we have “high-dimensional data”. More gen-
erally we refer to situations involving large N
or K, or both, as high-dimensional. (Large K
is effectively high-dimensional because endog-
enizing the regressors in a large-K univariate
regression would produce a large-N vector au-
toregression.) We confront the problem raised
by high dimensionality — a small number of de-
grees of freedom relative to the estimation task
at hand — by regularization, that is, by impos-
ing restrictions of one sort or another that allow
us to recover some degrees of freedom.

The regularization spectrum runs from
unconstrained through deterministically con-
strained. At one end is completely uncon-
strained estimation. Next comes stochastically
constrained estimation; that is, with estimates
coaxed in a certain direction without being



forced. We speak of “shrinkage”, and shrink-
age strength can of course vary. (In a Bayesian
interpretation, shrinkage is toward the prior
mean, with strength governed by prior preci-
sion.) In the limit we have deterministic re-
strictions such as exact zeros, promoting spar-
sity and variable selection, and other restric-
tions such as reduced rank, associated with fac-
tor structure and cointegration.?

Many of the papers in this volume involve
large K and/or N and proceed via some sort
of shrinkage-type regularization. Examples in-
clude Billio, Casarin, and Rossini, “Bayesian
Nonparametric Sparse Vector Autoregressive
Models”; Carriero, Clark and Marcellino,
“Large Bayesian Vector Autoregressions with
Stochastic Volatility and Non-Conjugate Pri-
ors”; and Chen, Li, and Linton, “A New Semi-
parametric Estimation Approach of Large Dy-
namic Covariance Matrices with Multiple Con-
ditioning Variables”.

Others proceed with reduced-rank restric-
tions. Examples include Andreasen, Chris-
tensen, and Rudebusch, “Term Structure Anal-
ysis with Big Data: One-Step Estimation Using
Bond Prices”; Bai and Ng, “Principal Com-
ponents and Regularized Estimation of Fac-
tor Models”; Onatskiy and Wang, “Extreme
Canonical Correlations and High-Dimensional
Cointegration Analysis”; and Fan, Gong, and
Zhu, “Generalized High-Dimensional Trace Re-
gression via Nuclear Norm Regularization”.

Still others proceed with dynamic restric-
tions, as in Korobolis and Pettenuzzo, “Adap-
tive Hierarchical Priors for High-Dimensional
Vector Autoregressions”.

One might naively assert that tall data are
not really a part of the Big Data phenomenon.
(Time has not started moving more quickly, so
the sample calendar span, T, is still typically
not very big.) But a more sophisticated assess-
ment of the size of T" involves whether it is big

2Note that all restrictions, not just explicit zero re-
strictions, effectively promote sparsity, appropriately in-
terpreted.

enough to make structural change a potentially
serious concern. And structural change is a se-
rious concern, routinely, in time-series econo-
metrics. Hence structural change effectively
makes T big, and confronting strutuctural
change is a part of confronting the large-T as-
pect of Big Data. Contributions in this volume
include Petrova, “A Quasi-Bayesian Nonpara-
metric Approach to Time Varying Parameter
VAR Models” (smoothly time-varying parame-
ters), and Smith, Timmerman, and Zhu, “Vari-
able Selection in Panel Models with Breaks”
(abruptly time-varying parameters).

Large-m Big Data have featured prominently
in recent decades, as automated data collec-
tion now proceeds in near-continuous time in
a variety of contexts, from measuring climac-
tic conditions to measuring trades in finan-
cial markets. Moreover, most no-arbitrage fi-
nancial economic models are written in con-
tinuous time, and uncovering their primitives,
particularly stochastic volatility and jumps,
is facillitated by high-frequency data. The
large realized volatility literature, for example,
emphasizes estimating aspects of semimartin-
gales (drifts, stochastic volatilities, jumps) us-
ing high-frequency data.® Contributions in
this volume include Andersen, Fusari, Todorov,
and Varneskov, “Unifed Inference for Nonlin-
ear Factor Models from Panels with Fixed and
Large Time Span”, and Bollerslev, Meddahi,
and Nyawa, “High-Dimensional Multivariate
Realized Volatility Estimation”.

Interestingly, large K and/or N Big Data of-
ten involve mized m. That is, Big Data tend
to be mixed-frequency data: when many series
are examined, it is highly unlikely that all will
be measured at the same frequency, unless all
frequencies but one are arbitrarily discarded.
Hence mixed-frequency data arises naturally
in Big-Data contexts. Related contributions
in this volume include Babii, Chen and Ghy-
sels, “Commercial and Residential Mortgage

3See Ait-Sahalia and Jacod (2014) for a unified

overview.



Defaults: Spatial Dependence with Frailty”,
and Hautsch and Voigt, “Large-Scale Portfolio
Allocation Under Transaction Costs and Model
Uncertainty”.

Regularization is largely concerned with es-
timation in large K and/or N environments,
but there remains the issue of interpreting and
understanding regularized estimation results.
For example, a 1000-dimensional vector au-
toregression will still have a huge number of
hard-to-interpret estimated parameters, even
if successfully regularized. Methods for net-
work topology summarization and visualiza-
tion can greatly facillitate model interpreta-
tion in Big Data environments, as suggested by
Demirer et al. (2018). Related contributions in
this volume include Hale and Lopez, “Monitor-
ing Banking System Connectedness with Big
Data”, and Zhu, Wang, Wang, and Héardle,
“Network Quantile Autoregression”.

Thus far we have classified our papers by
the variety of methodological areas emphasized:
shrinkage, selection, sparsity, dimensionality
reduction, structural change, high-frequency
data, mixed-frequency data, network topology,
etc. But we hasten to add that we could equally
have classified them by the variety of substan-
tive applications addressed: asset pricing, port-
folio allocation, risk measurement and manage-
ment, bond markets, macroeconomics, financial
networks, mortgage markets, etc. For example,
Mykland’s paper, “Combining Statistical Inter-
vals and Market Prices: The Worst Case State
Price Distribution”, combines aspects of risk
measurement and asset pricing. In addition,
many papers span multiple methodological and
substantive areas.
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torial Board of Journal of Econometrics, and fi-
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