VAR Network Methods for Summarizing and Visualizing High-Dimensional Connectedness

Discussion of Basu, Das, Michailidis, and Purnanandam:

“A System-Wide Approach to Measure Connectivity in the Financial Sector”

Francis X. Diebold
University of Pennsylvania

July 10, 2017
Vector Autoregressions (VAR’s)

\(N\)-dimensional \(VAR(p)\) environment:

\[
\Phi(L)x_t = \varepsilon_t
\]

\(\varepsilon_t \sim (0, \Sigma)\)

e.g., 2-dimensional \(VAR(1)\):

\[
\begin{pmatrix}
x_{1t} \\
x_{2t}
\end{pmatrix} = \begin{pmatrix}
\phi_{11} & \phi_{12} \\
\phi_{21} & \phi_{22}
\end{pmatrix} \begin{pmatrix}
x_{1t-1} \\
x_{2t-1}
\end{pmatrix} + \begin{pmatrix}
\varepsilon_{1t} \\
\varepsilon_{2t}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\varepsilon_{1t} \\
\varepsilon_{2t}
\end{pmatrix} \sim WN\left(\begin{pmatrix}
0 \\
0
\end{pmatrix}, \begin{pmatrix}
\sigma_1^2 & \sigma_{12} \\
\sigma_{12} & \sigma_2^2
\end{pmatrix}\right)
\]
Understanding Connectedness: Variance Decompositions (Diebold-Yilmaz Tradition)

v_{ij} answers a key question:

What fraction of the future uncertainty faced by variable i is due to shocks from variable j?

\[
V = \begin{bmatrix}
 x_1 & x_2 & \cdots & x_5 \\
 x_1 & v_{1,1} & v_{1,2} & \cdots & v_{1,5} \\
x_2 & v_{2,1} & v_{2,2} & \cdots & v_{2,5} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
x_5 & v_{5,1} & v_{5,2} & \cdots & v_{5,5}
\end{bmatrix}
\]
Financial Connectedness

- Old days: \(\text{dim}(x) = 5 \)

- Now: \(\text{dim}(x) = 50, \text{ or } 500, \text{ or } 5,000, \text{ or } \ldots \)

- Standard estimation methods are now totally unworkable (Must regularize with shrinkage, selection, hybrid, \ldots)

- Standard interpretive tools are now totally unworkable (Must summarize and visualize.)

\[
\begin{array}{c|cccc}
 & x_1 & x_2 & \ldots & x_{5000} \\
\hline
x_1 & v_{1,1} & v_{1,2} & \cdots & v_{1,5000} \\
x_2 & v_{2,1} & v_{2,2} & \cdots & v_{2,5000} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_{5000} & v_{5,1} & v_{5,2} & \cdots & v_{5,5000} \\
\end{array}
\]
Variance Decomposition Summarization
Via the Network Degree Distribution

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>\ldots</th>
<th>x_N</th>
<th>From Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>v_{11}</td>
<td>v_{12}</td>
<td>\ldots</td>
<td>v_{1N}</td>
<td>$\sum_{j \neq 1} v_{1j}$</td>
</tr>
<tr>
<td>x_2</td>
<td>v_{21}</td>
<td>v_{22}</td>
<td>\ldots</td>
<td>v_{2N}</td>
<td>$\sum_{j \neq 2} v_{2j}$</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>x_N</td>
<td>v_{N1}</td>
<td>v_{N2}</td>
<td>\ldots</td>
<td>v_{NN}</td>
<td>$\sum_{j \neq N} v_{Nj}$</td>
</tr>
</tbody>
</table>

To Others

$\sum_{i \neq 1} v_{i1}$ \quad $\sum_{i \neq 2} v_{i2}$ \quad \ldots \quad $\sum_{i \neq N} v_{iN}$ \quad $\sum_{i \neq j} v_{ij}$

“pairwise connectedness”
“total connectedness from all others (similar to S-Risk)”
“total connectedness to all others (similar to CoVaR)”
“system-wide connectedness”
Variance Decomposition Visualization Via the Network Graph
Understanding Connectedness: Granger-Sims Causality (Billio et al. Tradition, Including BDMP)

\(g_{ij} \) answers a key question:

Is the history of \(x_j \) useful for predicting \(x_i \), over and above the history of \(x_i \)?

\[
\begin{array}{cccccc}
 & x_1 & x_2 & \ldots & x_5 \\
\hline
x_1 & g_{1,1} & g_{1,2} & \cdots & g_{1,5} \\
x_2 & g_{2,1} & g_{2,2} & \cdots & g_{2,5} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x_5 & g_{5,1} & v_{g,2} & \cdots & g_{5,5} \\
\end{array}
\]
Thoughts on BDMP

1. BDMP Improve Importantly on Billio et al.
 - Full VAR rather than many bivariate VAR’s
 - Control false discovery rate
 - Network methods for understanding G

2. There are Many Interesting BDMP Issues/Extensions
 - Are returns interesting? Basically serially uncorrelated...
 - What is the relevant causality horizon? Single-step or multi-step?
 - Related, what is the relevant observational frequency?
 - Examine (big) block causality...
Moving Forward (And Backward) I:
Going beyond 0-1 G matrix to account for “full” VAR

$$\Phi(L)x_t = \varepsilon_t$$

– Account for all of Φ

Moving Forward (And Backward) II:
Incorporating Σ

$$\Phi(L)x_t = \varepsilon_t$$

$$\varepsilon_t \sim (0, \Sigma)$$

– Account for all of Φ *and* Σ

– G accounts only for Φ ($G = f(\Phi)$)
– V accounts for both Φ and Σ ($V = f(\Phi, \Sigma)$)