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Bayesian Learning with Model Misspecification

▶ One agent. Infinite periods t = 1, 2, · · · .

▶ In each period t...
▶ The agent chooses an action a ∈ A.
▶ Observes a signal y ∈ Y , with the dist q(a) = (q(y |a))y∈Y .
▶ Payoff is u(a, y).

▶ Subjective model θ: y follows a dist qθ(a) = (qθ(y |a))y∈Y .

▶ Initial prior µ on the subjective model space Θ.
▶ Models are misspecified if q ̸= qθ for all θ.

▶ Agent chooses myopically optimal action which maximizes

gµt
(a) =

∑
θ∈Θ

µt(θ)
∑
y∈Y

q(y |a)u(a, y).



Example: Monopolist with Unknown Demand

▶ Monopolist chooses a price a.

▶ The demand y is given by

y = f (a) + ε, ε ∼ N(0, σ2).

▶ In a subjective model θ, the demand is

y = b − θa+ ε.

▶ Other examples:
▶ Overconfidence. (Heidhues-Kosegi-Strack)
▶ Gambler’s fallacy. (He)



What is known?

▶ If models are correctly specified, the agent learns the true model.
▶ Given any action, the belief moves toward the true model θ on average.

▶ With model misspecification, the process may not converge.
▶ The “drift” of the belief depends on the action.
▶ Model θ may fit the true distribution for some a, but not for other ã.

▶ Use relative entropy to measure fitness. (Berk)



What is known?

▶ Esponda-Pouzo introduce Berk-Nash equilibrium.
▶ Action-belief pair (α, µ) which is a fixed point of the learning process.

▶ Defined in a static model. Existence.
▶ α may be a mixed action, in many cases.

▶ Necessity.
▶ If action converges, it must be a Berk-Nash equilibrium action.

▶ No sufficiency.
▶ Even if a BNE exists, the learning process may not converge.



What is known?

▶ |Θ| = 2. (General payoff function. Fudenberg-Romanyuk-Strack)
▶ If there is a pure BNE, (a, µ) converges almost surely.
▶ If not, (a, µ) oscillates forever almost surely.

▶ Continuous Θ. (Examples only.)
▶ HKS, He: Unique pure BNE, global convergence.
▶ Nyarko: No pure BNE, action oscillates forever.

▶ Can mixed BNE be a log-run outcome?
▶ Agent almost always chooses a pure action.
▶ Action cannot converge to a mixture.



Findings

▶ Yes, the belief can converge to a mixed equilibrium belief.
▶ Example with continuous Θ.
▶ Minor modification to a finite model.
▶ Action does not converge, but action frequency does.
▶ Direct foundation of mixed BNE.
▶ Perhaps action convergence is too demanding.

▶ General analysis for continuous Θ.
▶ Log-concavity assumption.
▶ If Θ = [0, 1], the belief converges almost surely.
▶ If Θ ⊆ Rk , the belief may not converge.



Notation

▶ h = (aτ , y τ )∞τ=1: Sample path.

▶ ht = (aτ , y τ )tτ=1: History with length t.

▶ A strategy is a mapping s :
∪∞

t=0H
t → △A.

▶ Ps : Probability measure over all sample paths h, given s.

▶ µt+1(ht): the posterior belief in period t + 1, given ht .

▶ µt+1(h) = µt+1(ht), where ht is a truncation.



Stable Beliefs

▶ s is myopically optimal given an initial prior µ if for each ht ,

s(ht) ∈ argmax gµt+1(ht)(α).

▶ Belief µ is stable if there is an initial prior with full support and a
myopically optimal strategy s such that

Ps
(
lim
t→∞

µt(h) = µ
)
> 0.

▶ Use a topology of weak convergence.

▶ Goal: Characterize stable beliefs.



Relative Entropy

▶ p(α): True distribution of (a, y) given a mixed action α.

▶ pθ(α): Distribution of (a, y) induced by a model θ.

▶ Relative entropy between p(α) and pθ(α):

d(p(α), pθ(α)) =
∑
(a,y)

p(a, y |α) log p(a, y |α)
pθ(a, y |α)

▶ Expected “surprise.”

▶ A “pseudo” metric.
▶ d(p, p̃) ≥ 0. Equality iff p = p̃.
▶ Does not satisfy symmetry, triangle inequality.



Berk-Nash Equilibrium

▶ “Best” model given α:

Θ(α) = argmin
θ∈Θ

d(p(α), pθ(α)).

▶ (α∗, µ∗) is a Berk-Nash equilibrium if...

(i) α∗ ∈ argmaxα∈△A gµ∗
(α).

(ii) suppµ∗ ⊆ Θ(α∗).

▶ Fixed point of the learning process.
▶ If the current belief is µ∗, the agent must choose α∗.
▶ If α∗ is chosen forever, suppµt must converge to Θ(α∗). (Berk)

▶ Stable beliefs=BNE beliefs?



Necessity

▶ Subjective models are regular if...

(i) Θ is finite, or a compact convex set in Rk .
(ii) If Θ is convex, qθ(y |a) is continuous in θ.
(iii) qθ(y |a) > 0 for all θ, a, and y .

▶ Stronger than necessary...

Proposition

Under regularity, any stable belief µ is a BNE belief.

▶ So if the belief converges, it is a BNE belief.

▶ Esponda-Pouzo: Any stable action α is a BNE action.



Proof Idea

▶ Pick an arbitrary stable belief µ∗.

▶ Need to find α∗ s.t. (α∗, µ∗) is a BNE.

▶ Case 1: Optimal action is unique given µ∗.
▶ Let a∗ denote the optimal action.
▶ Optimal action is a∗ whenever the belief is close to µ∗.
▶ So when the belief converges to µ∗, a∗ is taken forever.
▶ This implies suppµ ⊆ Θ(a∗). (Berk)
▶ (a∗, µ∗) is a Berk-Nash equilibrium.



Proof Idea

▶ Case 2: Both a∗ and ã∗ are optimal given µ∗.
▶ Pick a sample path h such that limt→∞ µt(h) = µ∗.
▶ When the belief approaches µ∗, the agent is almost indifferent.
▶ But not exactly indifferent, as the belief is different from µ∗.
▶ Action switches infinitely often.
▶ Let αt(h) = 1

t

∑t
τ=1 s(h

t−1) be the action frequency until period t.
▶ αt(h) ∈ △A, so there is a convergent subsequence.
▶ Let α∗(h) be the limit of the subsequence.
▶ α∗(h) is optimal given µ, as it is a mixture of a∗ and ã∗.
▶ For “almost all” h, suppµ ⊆ Θ(α∗(h)).



Action Convergence vs Belief Convergence

▶ In general, the action cannot converge to a mixed action.
▶ Optimal action is almost always unique.

▶ But the belief may converge to a mixed BNE belief.
▶ In this case, action does not converge.
▶ But action frequency can converge to a mixed action.
▶ More on this later.



Sufficiency: Pure Strict BNE

Proposition

Assume regularity. If (a, µ) is a pure strict BNE with |Θ(a)| = 1, then µ is
stable.

▶ In this case, the action also converges to the equilibrium action.
▶ Proof idea:

▶ Suppose that the initial prior is close to µ.
▶ Then the agent chooses a.
▶ Then her belief will be even closer to µ, on average.



Mixed BNE for Finite Θ

▶ Example: Two actions a1, a2. Two signals y1, y2.

▶ In the true model, two signals are equally likely, given any action.

▶ Two subjective models, θ1 and θ2.

▶ gθ1(a1) = gθ2(a2) = 1, and gθ1(a2) = gθ2(a1) = 0.

▶ Given a1, the signal dist is 0.3-0.7 at θ1, 0.6-0.4 at θ2.

▶ Given a2, the signal dist is 0.4-0.6 at θ1, 0.7-0.3 at θ2.



Mixed BNE for Finite Θ

▶ Simpler version of FRS example.

▶ If the model θ1 is likely, the agent chooses a1.

▶ But then she gets more convinced that the model is likely to be θ2.

▶ Then she starts to choose a2.

▶ Now she gets more convinced that the model is likely to be θ1.

▶ Does this process converge?



Mixed BNE for Finite Θ

▶ No pure-strategy BNE.

▶ Unique mixed BNE (α, µ):
▶ α mixes a1 and a2 equally.
▶ µ puts prob 0.5 on both models.

▶ In this equilibrium...
▶ Two models are equally close to the true world, given α.
▶ Two actions are indifferent, given µ.

▶ If the belief converges, it must be the equilibrium belief.



Mixed BNE for Finite Θ

▶ But this equilibrium belief µ cannot be stable.
▶ Suppose that the current belief is µ.
▶ If the current signal is y1, the posterior on θ1 becomes

µ′(θ1) =
0.5 · 0.3

0.5 · 0.3 + 0.5 · 0.6
=

1

3
.

▶ So the belief cannot stay around µ.

▶ Hence the belief oscillates.

▶ In general, mixed BNE is unstable when |Θ| < ∞.



Mixed BNE for Convex Θ

▶ Now modify the subjective model space: Θ = [0, 1].
▶ Given a1, the prob of y1 is 0.3(1− θ) + 0.6θ.
▶ Given a2, the prob of y1 is 0.4(1− θ) + 0.7θ.

▶ gθ(a1) = 1− θ and gθ(a2) = θ.

▶ θ = 0, 1 are identical with the models θ1, θ2 in the previous example.

▶ But now we have many “intermediate” models.

▶ Does it change the result?



Mixed BNE for Convex Θ

▶ There is a unique mixed BNE (α, µ):
▶ α mixes a1 and a2 equally.
▶ µ puts prob one on the model θ = 0.5.

▶ Equilibrium action is the same, but the belief is not.
▶ Relative entropy d(p, p̃) is convex in p̃.
▶ “Moving to the middle” improves the fitness.

▶ This new belief is more “robust.”
▶ Observing one more signal does not change the posterior much.

▶ So it can be stable.



Mixed BNE for Convex Θ

Proposition

For any initial prior with full support and for any myopically optimal
strategy s,

Ps
(
lim
t→∞

µt(h) = µ
)
= 1.

▶ Global convergence to the mixed BNE belief.

▶ Action frequency also converges to the equilibrium action.
▶ First direct foundation of mixed BNE.

▶ Esponda-Pouzo: I.i.d. payoff shock, so BNE is purified.

▶ New interpretation of Nyarko.
▶ The belief can converge, even when the action does not.



Proof Idea

▶ Step 1: Belief concentration.

▶ Likelihood maximizer in period t:

θtmax(h
t−1) ∈ argmax

θ
µt(ht−1)[θ].

▶ After a long time, the posterior becomes approximately δθtmax(h
t−1).

Lemma

For any smooth initial prior with full support, there is T > 0 and K > 0
such that for any t ≥ T, for any history ht , and for any θ,

µt+1(θt+1
max)

µt+1(θ)
≥ exp

{
tK

2
(θt+1

max − θ)2
}
.

▶ Key: Convexity of relative entropy.



Proof Idea

▶ Step 2: Show Ps(limt→∞ θtmax(h) = 0.5) = 1.

▶ In the long run, BR is determined by θtmax.

a1 is optimal a2 is optimal

θtmax = 0 θtmax = 0.5 θtmax = 1



Proof Idea

▶ Intuition is simple, but the actual proof is not.

▶ Reason: θmax is not a sufficient statistic.
▶ θt+1

max depends not only on θtmax, but on µt .

▶ Key step: For any ε > 0, if a1 is chosen forever, θmax cannot drop by
ε infinitely often.



Unstable Mixed BNE

▶ Now assume that...
▶ Given a1, the prob of y1 is 0.3θ + 0.4(1− θ).
▶ Given a2, the prob of y1 is 0.6θ + 0.7(1− θ).

▶ gθ(a1) = 1− θ and gθ(a2) = θ.

▶ Given a1, the agent gets more convinced that θ = 0 is more likely.

▶ Given a2, the agent gets more convinced that θ = 1 is more likely.



Unstable Mixed BNE

▶ Two pure-strategy BNE.
▶ a = a1 and a degenerate belief on θ = 0.
▶ a = a2 and a degenerate belief on θ1.

▶ Also a mixed BNE.
▶ α mixes two actions equally. A degenerate belief on θ = 0.5.

▶ This mixed BNE is unstable.



Unstable Mixed BNE

Proposition

For any initial prior with full support, for any myopically optimal strategy
s, and for any open set U containing θ = 0 and θ = 1,

Ps
(
lim
t→∞

µt(h)[U ∩Θ] = 1
)
= 1.

a1 is optimal a2 is optimal

θtmax = 0 θtmax = 0.5 θtmax = 1



General Analysis for Continuous Θ

▶ Previous two examples: qθ(y |a) is linear w.r.t. θ.

▶ Belief concentration under a more general condition.

▶ Signal distributions are log-concave if

(i) Θ is convex and
(ii) qθ(y |a) is log-concave w.r.t. θ.

▶ Many exiting models satisfy this assumption.
▶ Nyarko, He, Section 5 of HKS.
▶ HKS’s general model does not satisfy this.



General Analysis for Continuous Θ

▶ Strong identifiability: qθ(a) ̸= qθ̃(a) ∀a∀θ∀θ̃.

Proposition

Assume log concavity and strong identifiability. Then d(f , pθ(α)) is
convex with respect to θ for any α and f ∈ △(A× Y ).

▶ Given an observation f , there is a unique “best” model θ.

▶ Hence belief concentration.

▶ Also, any equilibrium belief is δθ for some θ.



General Analysis for Continuous Θ

▶ Assume Θ = [0, 1].

▶ θ is absorbing if there is ε > 0, a1, and a2 (possibly a1 = a2) s.t.
▶ Unique optimal action is a1 for any θ̃ ∈ (θ − ε, θ).
▶ Θ(a1) > θ.
▶ Unique optimal action is a2 for any θ̃ ∈ (θ, θ + ε).
▶ Θ(a2) < θ.

▶ µ is absorbing if µ = δθ for some absorbing θ.



General Analysis for Continuous Θ

Proposition

Assume...

▶ Θ = [0, 1]

▶ Regularity, log concavity, strong identifiability.

▶ Optimal action is unique except for finite θ.

Then the belief converges almost surely to an equilibrium belief.

Proposition

In addition, if

▶ Optimal action is unique for Θ(a)

then the belief converges to an absorbing belief.



General Analysis for Continuous Θ

▶ When Θ ⊂ Rk , θtmax can be cyclic.

▶ So the belief may not converge, even if there is a unique pure BNE.


