Stable Berk-Nash Equilibrium

Yuichi Yamamoto University of Pennsylvania

Bayesian Learning with Model Misspecification

- One agent. Infinite periods $t = 1, 2, \cdots$.
- In each period t...
 - The agent chooses an action $a \in A$.
 - Observes a signal $y \in Y$, with the dist $q(a) = (q(y|a))_{y \in Y}$.
 - Payoff is u(a, y).

Subjective model θ : y follows a dist $q^{\theta}(a) = (q^{\theta}(y|a))_{y \in Y}$.

Initial prior μ on the subjective model space Θ.
 Models are *misspecified* if q ≠ q^θ for all θ.

Agent chooses myopically optimal action which maximizes

$$g^{\mu^t}(a) = \sum_{ heta \in \Theta} \mu^t(heta) \sum_{y \in Y} q(y|a) u(a,y).$$

Example: Monopolist with Unknown Demand

- Monopolist chooses a price a.
- The demand y is given by

$$y = f(a) + \varepsilon$$
, $\varepsilon \sim N(0, \sigma^2)$.

In a subjective model θ, the demand is

$$y = b - \theta a + \varepsilon.$$

Other examples:

- Overconfidence. (Heidhues-Kosegi-Strack)
- Gambler's fallacy. (He)

What is known?

- If models are correctly specified, the agent learns the true model.
 - Given any action, the belief moves toward the true model θ on average.
- ▶ With model misspecification, the process may not converge.
 - The "drift" of the belief depends on the action.
 - Model θ may fit the true distribution for some *a*, but not for other \tilde{a} .
- Use relative entropy to measure fitness. (Berk)

What is known?

Esponda-Pouzo introduce Berk-Nash equilibrium.

- Action-belief pair (α, μ) which is a fixed point of the learning process.
- Defined in a static model. Existence.
 - α may be a mixed action, in many cases.
- Necessity.
 - ▶ If action converges, it must be a Berk-Nash equilibrium action.
- No sufficiency.
 - Even if a BNE exists, the learning process may not converge.

What is known?

|Θ| = 2. (General payoff function. Fudenberg-Romanyuk-Strack)
 If there is a pure BNE, (a, μ) converges almost surely.
 If not, (a, μ) oscillates forever almost surely.

Continuous Θ. (Examples only.)

- ► HKS, He: Unique pure BNE, global convergence.
- Nyarko: No pure BNE, action oscillates forever.
- Can mixed BNE be a log-run outcome?
 - Agent almost always chooses a pure action.
 - Action cannot converge to a mixture.

Findings

> Yes, the belief can converge to a mixed equilibrium belief.

- Example with continuous Θ.
- Minor modification to a finite model.
- Action does not converge, but action frequency does.
- Direct foundation of mixed BNE.
- Perhaps action convergence is too demanding.

General analysis for continuous Θ.

- Log-concavity assumption.
- If $\Theta = [0, 1]$, the belief converges almost surely.
- If $\Theta \subseteq \mathbf{R}^k$, the belief may not converge.

Notation

• $h = (a^{\tau}, y^{\tau})_{\tau=1}^{\infty}$: Sample path.

- $h^t = (a^{\tau}, y^{\tau})_{\tau=1}^t$: History with length t.
- A strategy is a mapping $s : \bigcup_{t=0}^{\infty} H^t \to \triangle A$.
- P^s: Probability measure over all sample paths h, given s.
- $\mu^{t+1}(h^t)$: the posterior belief in period t + 1, given h^t .
- $\mu^{t+1}(h) = \mu^{t+1}(h^t)$, where h^t is a truncation.

Stable Beliefs

• s is myopically optimal given an initial prior μ if for each h^t ,

$$s(h^t) \in \arg \max g^{\mu^{t+1}(h^t)}(\alpha).$$

Belief µ is stable if there is an initial prior with full support and a myopically optimal strategy s such that

$$P^{s}\left(\lim_{t\to\infty}\mu^{t}(h)=\mu\right)>0.$$

Use a topology of weak convergence.

Goal: Characterize stable beliefs.

Relative Entropy

- $p(\alpha)$: True distribution of (a, y) given a mixed action α .
- $p^{\theta}(\alpha)$: Distribution of (a, y) induced by a model θ .
- Relative entropy between $p(\alpha)$ and $p^{\theta}(\alpha)$:

$$d(p(\alpha), p^{\theta}(\alpha)) = \sum_{(a,y)} p(a, y|\alpha) \log \frac{p(a, y|\alpha)}{p^{\theta}(a, y|\alpha)}$$

Expected "surprise."

A "pseudo" metric.

- $d(p, \tilde{p}) \ge 0$. Equality iff $p = \tilde{p}$.
- Does not satisfy symmetry, triangle inequality.

Berk-Nash Equilibrium

• "Best" model given α :

$$\Theta(\alpha) = \arg\min_{\theta\in\Theta} d(p(\alpha), p^{\theta}(\alpha)).$$

•
$$(\alpha^*, \mu^*)$$
 is a *Berk-Nash equilibrium* if...
(i) $\alpha^* \in \arg \max_{\alpha \in \triangle A} g^{\mu^*}(\alpha)$.
(ii) $\operatorname{supp} \mu^* \subseteq \Theta(\alpha^*)$.

- Fixed point of the learning process.
 - If the current belief is μ^* , the agent must choose α^* .
 - ▶ If α^* is chosen forever, supp μ^t must converge to $\Theta(\alpha^*)$. (Berk)
- Stable beliefs=BNE beliefs?

Necessity

Subjective models are *regular* if...
 (i) Θ is finite, or a compact convex set in R^k.
 (ii) If Θ is convex, q^θ(y|a) is continuous in θ.
 (iii) q^θ(y|a) > 0 for all θ, a, and y.

Stronger than necessary...

Proposition

Under regularity, any stable belief μ is a BNE belief.

- So if the belief converges, it is a BNE belief.
- Esponda-Pouzo: Any stable action α is a BNE action.

• Pick an arbitrary stable belief μ^* .

• Need to find α^* s.t. (α^*, μ^*) is a BNE.

Case 1: Optimal action is unique given μ*.

- Let a* denote the optimal action.
- Optimal action is a^* whenever the belief is close to μ^* .
- So when the belief converges to μ^* , a^* is taken forever.
- This implies supp $\mu \subseteq \Theta(a^*)$. (Berk)
- (a^*, μ^*) is a Berk-Nash equilibrium.

Case 2: Both a^{*} and ã^{*} are optimal given μ^{*}.

- Pick a sample path h such that $\lim_{t\to\infty} \mu^t(h) = \mu^*$.
- When the belief approaches μ^* , the agent is almost indifferent.
- But not exactly indifferent, as the belief is different from μ^* .
- Action switches infinitely often.
- Let $\alpha^t(h) = \frac{1}{t} \sum_{\tau=1}^t s(h^{t-1})$ be the action frequency until period t.
- $\alpha^t(h) \in \triangle A$, so there is a convergent subsequence.
- Let $\alpha^*(h)$ be the limit of the subsequence.
- $\alpha^*(h)$ is optimal given μ , as it is a mixture of a^* and \tilde{a}^* .
- For "almost all" h, supp $\mu \subseteq \Theta(\alpha^*(h))$.

Action Convergence vs Belief Convergence

In general, the action cannot converge to a mixed action.

- Optimal action is almost always unique.
- But the belief may converge to a mixed BNE belief.
 - In this case, action does not converge.
 - But action frequency can converge to a mixed action.
 - More on this later.

Sufficiency: Pure Strict BNE

Proposition

Assume regularity. If (a, μ) is a pure strict BNE with $|\Theta(a)| = 1$, then μ is stable.

- In this case, the action also converges to the equilibrium action.
- Proof idea:
 - Suppose that the initial prior is close to μ .
 - Then the agent chooses a.
 - Then her belief will be even closer to μ , on average.

Example: Two actions a_1 , a_2 . Two signals y_1 , y_2 .

In the true model, two signals are equally likely, given any action.

• Two subjective models, θ_1 and θ_2 .

•
$$g^{\theta_1}(a_1) = g^{\theta_2}(a_2) = 1$$
, and $g^{\theta_1}(a_2) = g^{\theta_2}(a_1) = 0$.

• Given a_1 , the signal dist is 0.3-0.7 at θ_1 , 0.6-0.4 at θ_2 .

• Given a_2 , the signal dist is 0.4-0.6 at θ_1 , 0.7-0.3 at θ_2 .

- Simpler version of FRS example.
- lf the model θ_1 is likely, the agent chooses a_1 .
- But then she gets more convinced that the model is likely to be θ_2 .
- Then she starts to choose a_2 .
- Now she gets more convinced that the model is likely to be θ_1 .
- Does this process converge?

No pure-strategy BNE.

- Unique mixed BNE (α, μ) :
 - α mixes a_1 and a_2 equally.
 - μ puts prob 0.5 on both models.
- In this equilibrium...
 - Two models are equally close to the true world, given α .
 - Two actions are indifferent, given μ .

If the belief converges, it must be the equilibrium belief.

• But this equilibrium belief μ cannot be stable.

- Suppose that the current belief is μ .
- If the current signal is y_1 , the posterior on θ_1 becomes

$$\mu'(\theta_1) = \frac{0.5 \cdot 0.3}{0.5 \cdot 0.3 + 0.5 \cdot 0.6} = \frac{1}{3}.$$

So the belief cannot stay around μ.

- Hence the belief oscillates.
- In general, mixed BNE is unstable when $|\Theta| < \infty$.

Mixed BNE for Convex Θ

Now modify the subjective model space: Θ = [0, 1].
 Given a₁, the prob of y₁ is 0.3(1 - θ) + 0.6θ.

• Given a_2 , the prob of y_1 is $0.4(1-\theta) + 0.7\theta$.

•
$$g^{\theta}(a_1) = 1 - \theta$$
 and $g^{\theta}(a_2) = \theta$.

▶ $\theta = 0, 1$ are identical with the models θ_1 , θ_2 in the previous example.

- But now we have many "intermediate" models.
- Does it change the result?

Mixed BNE for Convex Θ

• There is a unique mixed BNE (α, μ) :

- α mixes a_1 and a_2 equally.
- μ puts prob one on the model $\theta = 0.5$.

Equilibrium action is the same, but the belief is not.

- Relative entropy $d(p, \tilde{p})$ is convex in \tilde{p} .
- "Moving to the middle" improves the fitness.
- This new belief is more "robust."
 - Observing one more signal does not change the posterior much.
- So it can be stable.

Mixed BNE for Convex Θ

Proposition

For any initial prior with full support and for any myopically optimal strategy s,

$$P^{s}\left(\lim_{t\to\infty}\mu^{t}(h)=\mu\right)=1.$$

- Global convergence to the mixed BNE belief.
- Action frequency also converges to the equilibrium action.
- First direct foundation of mixed BNE.
 - Esponda-Pouzo: I.i.d. payoff shock, so BNE is purified.
- New interpretation of Nyarko.
 - The belief can converge, even when the action does not.

Step 1: Belief concentration.

Likelihood maximizer in period t:

$$heta_{\sf max}^t(h^{t-1})\in rg\max_{ heta}\mu^t(h^{t-1})[heta].$$

• After a long time, the posterior becomes approximately $\delta_{\theta_{\max}^t(h^{t-1})}$.

Lemma

For any smooth initial prior with full support, there is T > 0 and K > 0 such that for any $t \ge T$, for any history h^t , and for any θ ,

$$rac{\mu^{t+1}(heta_{\mathsf{max}}^{t+1})}{\mu^{t+1}(heta)} \geq \exp\left\{rac{tK}{2}(heta_{\mathsf{max}}^{t+1}- heta)^2
ight\}.$$

Key: Convexity of relative entropy.

Step 2: Show
$$P^{s}(\lim_{t\to\infty} \theta^{t}_{\max}(h) = 0.5) = 1.$$

• In the long run, BR is determined by θ_{max}^t .

- Intuition is simple, but the actual proof is not.
- Reason: θ_{max} is not a sufficient statistic.
 θ^{t+1}_{max} depends not only on θ^t_{max}, but on μ^t.
- Key step: For any ε > 0, if a₁ is chosen forever, θ_{max} cannot drop by ε infinitely often.

Unstable Mixed BNE

Now assume that...

- Given a_1 , the prob of y_1 is $0.3\theta + 0.4(1 \theta)$.
- Given a_2 , the prob of y_1 is $0.6\theta + 0.7(1 \theta)$.

•
$$g^{\theta}(a_1) = 1 - \theta$$
 and $g^{\theta}(a_2) = \theta$.

• Given a_1 , the agent gets more convinced that $\theta = 0$ is more likely.

• Given a_2 , the agent gets more convinced that $\theta = 1$ is more likely.

Unstable Mixed BNE

Two pure-strategy BNE.

- $a = a_1$ and a degenerate belief on $\theta = 0$.
- $a = a_2$ and a degenerate belief on θ_1 .
- Also a mixed BNE.

• α mixes two actions equally. A degenerate belief on $\theta = 0.5$.

This mixed BNE is unstable.

Unstable Mixed BNE

Proposition

For any initial prior with full support, for any myopically optimal strategy s, and for any open set U containing $\theta = 0$ and $\theta = 1$,

$$P^{s}\left(\lim_{t\to\infty}\mu^{t}(h)[U\cap\Theta]=1
ight)=1.$$

• Previous two examples: $q^{\theta}(y|a)$ is linear w.r.t. θ .

Belief concentration under a more general condition.

Signal distributions are *log-concave* if

 Θ is convex and
 q^θ(y|a) is log-concave w.r.t. θ.

Many exiting models satisfy this assumption.

- Nyarko, He, Section 5 of HKS.
- HKS's general model does not satisfy this.

• Strong identifiability: $q^{\theta}(a) \neq q^{\tilde{\theta}}(a) \forall a \forall \theta \forall \tilde{\theta}$.

Proposition

Assume log concavity and strong identifiability. Then $d(f, p^{\theta}(\alpha))$ is convex with respect to θ for any α and $f \in \triangle(A \times Y)$.

• Given an observation f, there is a unique "best" model θ .

- Hence belief concentration.
- Also, any equilibrium belief is δ_{θ} for some θ .

• Assume $\Theta = [0, 1]$.

• θ is absorbing if there is $\varepsilon > 0$, a_1 , and a_2 (possibly $a_1 = a_2$) s.t.

- Unique optimal action is a_1 for any $\tilde{\theta} \in (\theta \varepsilon, \theta)$.
- $\triangleright \ \Theta(a_1) > \theta.$
- Unique optimal action is a_2 for any $\tilde{\theta} \in (\theta, \theta + \varepsilon)$.
- $\triangleright \ \Theta(a_2) < \theta.$
- μ is absorbing if $\mu = \delta_{\theta}$ for some absorbing θ .

Proposition

Assume...

- ► Θ = [0, 1]
- Regularity, log concavity, strong identifiability.
- Optimal action is unique except for finite θ .

Then the belief converges almost surely to an equilibrium belief.

Proposition

In addition, if

• Optimal action is unique for $\Theta(a)$

then the belief converges to an absorbing belief.

- When $\Theta \subset \mathbf{R}^k$, θ_{\max}^t can be cyclic.
- So the belief may not converge, even if there is a unique pure BNE.