Stable Berk-Nash Equilibrium

Yuichi Yamamoto
University of Pennsylvania
Bayesian Learning with Model Misspecification

- One agent. Infinite periods \(t = 1, 2, \ldots \).

- In each period \(t \ldots \)
 - The agent chooses an action \(a \in A \).
 - Observes a signal \(y \in Y \), with the dist \(q(a) = (q(y|a))_{y \in Y} \).
 - Payoff is \(u(a, y) \).

- Subjective model \(\theta \): \(y \) follows a dist \(q^{\theta}(a) = (q^{\theta}(y|a))_{y \in Y} \).

- Initial prior \(\mu \) on the subjective model space \(\Theta \).
 - Models are misspecified if \(q \neq q^{\theta} \) for all \(\theta \).

- Agent chooses myopically optimal action which maximizes

\[
g^{\mu^t}(a) = \sum_{\theta \in \Theta} \mu^t(\theta) \sum_{y \in Y} q(y|a)u(a, y).\]
Example: Monopolist with Unknown Demand

- Monopolist chooses a price a.

- The demand y is given by

$$y = f(a) + \epsilon, \quad \epsilon \sim N(0, \sigma^2).$$

- In a subjective model θ, the demand is

$$y = b - \theta a + \epsilon.$$

- Other examples:
 - Overconfidence. (Heidhues-Kosegi-Strack)
 - Gambler’s fallacy. (He)
What is known?

- If models are correctly specified, the agent learns the true model.
 - Given any action, the belief moves toward the true model θ on average.

- With model misspecification, the process may not converge.
 - The “drift” of the belief depends on the action.
 - Model θ may fit the true distribution for some a, but not for other \tilde{a}.

- Use relative entropy to measure fitness. (Berk)
What is known?

- Esponda-Pouzo introduce Berk-Nash equilibrium.
 - Action-belief pair \((\alpha, \mu)\) which is a fixed point of the learning process.

- Defined in a static model. Existence.
 - \(\alpha\) may be a mixed action, in many cases.

- Necessity.
 - If action converges, it must be a Berk-Nash equilibrium action.

- No sufficiency.
 - Even if a BNE exists, the learning process may not converge.
What is known?

- $|\Theta| = 2$. (General payoff function. Fudenberg-Romanyuk-Strack)
 - If there is a pure BNE, (a, μ) converges almost surely.
 - If not, (a, μ) oscillates forever almost surely.

- Continuous Θ. (Examples only.)
 - HKS, He: Unique pure BNE, global convergence.
 - Nyarko: No pure BNE, action oscillates forever.

- Can mixed BNE be a log-run outcome?
 - Agent almost always chooses a pure action.
 - Action cannot converge to a mixture.
Findings

▶ Yes, the belief can converge to a mixed equilibrium belief.
 ▶ Example with continuous Θ.
 ▶ Minor modification to a finite model.
 ▶ Action does not converge, but action frequency does.
 ▶ Direct foundation of mixed BNE.
 ▶ Perhaps action convergence is too demanding.

▶ General analysis for continuous Θ.
 ▶ Log-concavity assumption.
 ▶ If $\Theta = [0, 1]$, the belief converges almost surely.
 ▶ If $\Theta \subseteq \mathbb{R}^k$, the belief may not converge.
Notation

- \(h = (a^T, y^T)_{T=1}^\infty \): Sample path.

- \(h^t = (a^T, y^T)_{T=1}^t \): History with length \(t \).

- A strategy is a mapping \(s : \bigcup_{t=0}^\infty H^t \rightarrow \triangle A \).

- \(P^s \): Probability measure over all sample paths \(h \), given \(s \).

- \(\mu^{t+1}(h^t) \): the posterior belief in period \(t + 1 \), given \(h^t \).

- \(\mu^{t+1}(h) = \mu^{t+1}(h^t) \), where \(h^t \) is a truncation.
Stable Beliefs

- s is *myopically optimal* given an initial prior μ if for each h^t,

$$s(h^t) \in \arg\max g^{\mu_{t+1}}(h^t)(\alpha).$$

- Belief μ is *stable* if there is an initial prior with full support and a myopically optimal strategy s such that

$$P^s \left(\lim_{t \to \infty} \mu^t(h) = \mu \right) > 0.$$

- Use a topology of weak convergence.

- Goal: Characterize stable beliefs.
Relative Entropy

- $p(\alpha)$: True distribution of (a, y) given a mixed action α.

- $p^\theta(\alpha)$: Distribution of (a, y) induced by a model θ.

- Relative entropy between $p(\alpha)$ and $p^\theta(\alpha)$:

$$d(p(\alpha), p^\theta(\alpha)) = \sum_{(a,y)} p(a, y|\alpha) \log \frac{p(a, y|\alpha)}{p^\theta(a, y|\alpha)}$$

- Expected “surprise.”

- A “pseudo” metric.
 - $d(p, \tilde{p}) \geq 0$. Equality iff $p = \tilde{p}$.
 - Does not satisfy symmetry, triangle inequality.
Berk-Nash Equilibrium

► “Best” model given α:

$$\Theta(\alpha) = \arg \min_{\theta \in \Theta} d(p(\alpha), p^\theta(\alpha)).$$

► (α^*, μ^*) is a Berk-Nash equilibrium if...

(i) $\alpha^* \in \arg \max_{\alpha \in \Delta A} g^{\mu^*}(\alpha)$.

(ii) $\text{supp} \mu^* \subseteq \Theta(\alpha^*)$.

► Fixed point of the learning process.

► If the current belief is μ^*, the agent must choose α^*.

► If α^* is chosen forever, $\text{supp} \mu^t$ must converge to $\Theta(\alpha^*)$. (Berk)

► Stable beliefs = BNE beliefs?
Subjective models are *regular* if...

(i) Θ is finite, or a compact convex set in \mathbb{R}^k.
(ii) If Θ is convex, $q^\theta(y|a)$ is continuous in θ.
(iii) $q^\theta(y|a) > 0$ for all θ, a, and y.

Stronger than necessary...

Proposition

Under regularity, any stable belief μ is a BNE belief.

So if the belief converges, it is a BNE belief.

Esponda-Pouzo: Any stable action α is a BNE action.
Proof Idea

- Pick an arbitrary stable belief μ^*.

- Need to find α^* s.t. (α^*, μ^*) is a BNE.

- Case 1: Optimal action is unique given μ^*.
 - Let a^* denote the optimal action.
 - Optimal action is a^* whenever the belief is close to μ^*.
 - So when the belief converges to μ^*, a^* is taken forever.
 - This implies $\text{supp}\mu \subseteq \Theta(a^*)$. (Berk)
 - (a^*, μ^*) is a Berk-Nash equilibrium.
Proof Idea

Case 2: Both a^* and \tilde{a}^* are optimal given μ^*.

- Pick a sample path h such that $\lim_{t \to \infty} \mu^t(h) = \mu^*$.
- When the belief approaches μ^*, the agent is almost indifferent.
- But not exactly indifferent, as the belief is different from μ^*.
- Action switches infinitely often.
- Let $\alpha^t(h) = \frac{1}{t} \sum_{\tau=1}^{t} s(h^{\tau-1})$ be the action frequency until period t.
- $\alpha^t(h) \in \triangle A$, so there is a convergent subsequence.
- Let $\alpha^*(h)$ be the limit of the subsequence.
- $\alpha^*(h)$ is optimal given μ, as it is a mixture of a^* and \tilde{a}^*.
- For “almost all” h, $\text{supp}\mu \subseteq \Theta(\alpha^*(h))$.
Action Convergence vs Belief Convergence

- In general, the action cannot converge to a mixed action.
 - Optimal action is almost always unique.

- But the belief may converge to a mixed BNE belief.
 - In this case, action does not converge.
 - But action frequency can converge to a mixed action.
 - More on this later.
Proposition
Assume regularity. If \((a, \mu)\) is a pure strict BNE with \(|\Theta(a)| = 1\), then \(\mu\) is stable.

- In this case, the action also converges to the equilibrium action.
- Proof idea:
 - Suppose that the initial prior is close to \(\mu\).
 - Then the agent chooses \(a\).
 - Then her belief will be even closer to \(\mu\), on average.
Example: Two actions a_1, a_2. Two signals y_1, y_2.

In the true model, two signals are equally likely, given any action.

Two subjective models, θ_1 and θ_2.

$g^{\theta_1}(a_1) = g^{\theta_2}(a_2) = 1$, and $g^{\theta_1}(a_2) = g^{\theta_2}(a_1) = 0$.

Given a_1, the signal dist is 0.3-0.7 at θ_1, 0.6-0.4 at θ_2.

Given a_2, the signal dist is 0.4-0.6 at θ_1, 0.7-0.3 at θ_2.
Mixed BNE for Finite Θ

- Simpler version of FRS example.

- If the model θ_1 is likely, the agent chooses a_1.

- But then she gets more convinced that the model is likely to be θ_2.

- Then she starts to choose a_2.

- Now she gets more convinced that the model is likely to be θ_1.

- Does this process converge?
Mixed BNE for Finite Θ

- No pure-strategy BNE.

- Unique mixed BNE (α, μ):
 - α mixes a_1 and a_2 equally.
 - μ puts prob 0.5 on both models.

- In this equilibrium...
 - Two models are equally close to the true world, given α.
 - Two actions are indifferent, given μ.

- If the belief converges, it must be the equilibrium belief.
But this equilibrium belief μ cannot be stable.

Suppose that the current belief is μ.

If the current signal is y_1, the posterior on θ_1 becomes

$$
\mu'(\theta_1) = \frac{0.5 \cdot 0.3}{0.5 \cdot 0.3 + 0.5 \cdot 0.6} = \frac{1}{3}.
$$

So the belief cannot stay around μ.

Hence the belief oscillates.

In general, mixed BNE is unstable when $|\Theta| < \infty$.
Mixed BNE for Convex \(\Theta \)

- Now modify the subjective model space: \(\Theta = [0, 1] \).
 - Given \(a_1 \), the prob of \(y_1 \) is \(0.3(1 - \theta) + 0.6\theta \).
 - Given \(a_2 \), the prob of \(y_1 \) is \(0.4(1 - \theta) + 0.7\theta \).

- \(g^\theta(a_1) = 1 - \theta \) and \(g^\theta(a_2) = \theta \).

- \(\theta = 0, 1 \) are identical with the models \(\theta_1, \theta_2 \) in the previous example.

- But now we have many “intermediate” models.

- Does it change the result?
There is a unique mixed BNE \((\alpha, \mu)\):
- \(\alpha\) mixes \(a_1\) and \(a_2\) equally.
- \(\mu\) puts prob one on the model \(\theta = 0.5\).

Equilibrium action is the same, but the belief is not.
- Relative entropy \(d(p, \tilde{p})\) is convex in \(\tilde{p}\).
- “Moving to the middle” improves the fitness.

This new belief is more “robust.”
- Observing one more signal does not change the posterior much.

So it can be stable.
Mixed BNE for Convex \(\Theta \)

Proposition

For any initial prior with full support and for any myopically optimal strategy \(s \),

\[
P^s \left(\lim_{t \to \infty} \mu^t(h) = \mu \right) = 1.
\]

- Global convergence to the mixed BNE belief.
- Action frequency also converges to the equilibrium action.
- First direct foundation of mixed BNE.
 - Esponda-Pouzo: i.i.d. payoff shock, so BNE is purified.
- New interpretation of Nyarko.
 - The belief can converge, even when the action does not.
Proof Idea

▶ Step 1: Belief concentration.

▶ Likelihood maximizer in period t:

$$\theta^t_{\max}(h^{t-1}) \in \arg\max_{\theta} \mu^t(h^{t-1})[\theta].$$

▶ After a long time, the posterior becomes approximately $\delta_{\theta^t_{\max}(h^{t-1})}$.

Lemma

For any smooth initial prior with full support, there is $T > 0$ and $K > 0$ such that for any $t \geq T$, for any history h^t, and for any θ,

$$\frac{\mu^{t+1}(\theta^t_{\max})}{\mu^{t+1}(\theta)} \geq \exp \left\{ \frac{tK}{2} (\theta^t_{\max} - \theta)^2 \right\} .$$

▶ Key: Convexity of relative entropy.
Proof Idea

- **Step 2:** Show $P^s(\lim_{t \to \infty} \theta^t_{\text{max}}(h) = 0.5) = 1$.

- In the long run, BR is determined by θ^t_{max}.

\[
\begin{aligned}
\theta^t_{\text{max}} &= 0 &\quad\theta^t_{\text{max}} &= 0.5 &\quad\theta^t_{\text{max}} &= 1 \\
\text{a}_1 \text{ is optimal} &\quad\text{a}_2 \text{ is optimal}
\end{aligned}
\]
Proof Idea

- Intuition is simple, but the actual proof is not.

- Reason: θ_{max} is not a sufficient statistic.
 - $\theta_{\text{max}}^{t+1}$ depends not only on θ_{max}^t, but on μ^t.

- Key step: For any $\varepsilon > 0$, if a_1 is chosen forever, θ_{max} cannot drop by ε infinitely often.
Unstable Mixed BNE

- Now assume that...
 - Given a_1, the prob of y_1 is $0.3\theta + 0.4(1 - \theta)$.
 - Given a_2, the prob of y_1 is $0.6\theta + 0.7(1 - \theta)$.

- $g^\theta(a_1) = 1 - \theta$ and $g^\theta(a_2) = \theta$.

- Given a_1, the agent gets more convinced that $\theta = 0$ is more likely.

- Given a_2, the agent gets more convinced that $\theta = 1$ is more likely.
Unstable Mixed BNE

- Two pure-strategy BNE.
 - $a = a_1$ and a degenerate belief on $\theta = 0$.
 - $a = a_2$ and a degenerate belief on θ_1.

- Also a mixed BNE.
 - α mixes two actions equally. A degenerate belief on $\theta = 0.5$.

- This mixed BNE is unstable.
Unstable Mixed BNE

Proposition
For any initial prior with full support, for any myopically optimal strategy \(s \), and for any open set \(U \) containing \(\theta = 0 \) and \(\theta = 1 \),

\[
P^s \left(\lim_{t \to \infty} \mu^t(h)[U \cap \Theta] = 1 \right) = 1.
\]

\[\theta^t_{\text{max}} = 0 \quad \theta^t_{\text{max}} = 0.5 \quad \theta^t_{\text{max}} = 1\]

\(a_1 \) is optimal \(a_2 \) is optimal
General Analysis for Continuous Θ

- Previous two examples: $q^\theta(y|a)$ is linear w.r.t. θ.

- Belief concentration under a more general condition.

- Signal distributions are log-concave if
 - (i) Θ is convex and
 - (ii) $q^\theta(y|a)$ is log-concave w.r.t. θ.

- Many existing models satisfy this assumption.
 - Nyarko, He, Section 5 of HKS.
 - HKS’s general model does not satisfy this.
General Analysis for Continuous Θ

- Strong identifiability: $q^\theta(a) \neq q^{\tilde{\theta}}(a) \ \forall a \forall \theta \forall \tilde{\theta}$.

Proposition

Assume log concavity and strong identifiability. Then $d(f, p^\theta(\alpha))$ is convex with respect to θ for any α and $f \in \triangle(A \times Y)$.

- Given an observation f, there is a unique “best” model θ.

- Hence belief concentration.

- Also, any equilibrium belief is δ_θ for some θ.
General Analysis for Continuous Θ

- **Assume** $\Theta = [0, 1]$.

- θ is *absorbing* if there is $\varepsilon > 0$, a_1, and a_2 (possibly $a_1 = a_2$) s.t.
 - Unique optimal action is a_1 for any $\tilde{\theta} \in (\theta - \varepsilon, \theta)$.
 - $\Theta(a_1) > \theta$.
 - Unique optimal action is a_2 for any $\tilde{\theta} \in (\theta, \theta + \varepsilon)$.
 - $\Theta(a_2) < \theta$.

- μ is *absorbing* if $\mu = \delta_{\tilde{\theta}}$ for some absorbing θ.

General Analysis for Continuous Θ

Proposition

Assume...
- $\Theta = [0, 1]$
- Regularity, log concavity, strong identifiability.
- Optimal action is unique except for finite θ.

Then the belief converges almost surely to an equilibrium belief.

Proposition

In addition, if
- Optimal action is unique for $\Theta(a)$

then the belief converges to an absorbing belief.
General Analysis for Continuous Θ

- When $\Theta \subset \mathbb{R}^k$, θ_{max}^t can be cyclic.

- So the belief may not converge, even if there is a unique pure BNE.