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Brief Overview of the Course 
 
Economics suggests important relationships, often with policy 
implications, but virtually never suggests quantitative 
magnitudes of causal effects. 
 What is the quantitative effect of reducing class size on 

student achievement? 
 How does another year of education change earnings? 
 What is the price elasticity of cigarettes? 
 What is the effect on output growth of a 1 percentage 

point increase in interest rates by the Fed? 
 What is the effect on housing prices of environmental 

improvements? 
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This course is about using data to measure causal effects. 
 Ideally, we would like an experiment 

o What would be an experiment to estimate the effect of 
class size on standardized test scores? 

 But almost always we only have observational 
(nonexperimental) data. 

o returns to education 
o cigarette prices 
o monetary policy 

 Most of the course deals with difficulties arising from using 
observational to estimate causal effects 

o confounding effects (omitted factors) 
o simultaneous causality 
o “correlation does not imply causation”  



 1/2/3-5

In this course you will: 
 
 Learn methods for estimating causal effects using 

observational data 
 Learn some tools that can be used for other purposes; for 

example, forecasting using time series data; 
 Focus on applications – theory is used only as needed to 

understand the whys of the methods; 
 Learn to evaluate the regression analysis of others – this 

means you will be able to read/understand empirical 
economics papers in other econ courses; 

 Get some hands-on experience with regression analysis in 
your problem sets. 
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Review of Probability and Statistics 
(SW Chapters 2, 3) 

 
Empirical problem:  Class size and educational output 

 
 Policy question:  What is the effect on test scores (or some 

other outcome measure) of reducing class size by one 
student per class?  by 8 students/class? 

 We must use data to find out (is there any way to answer 
this without data?) 
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The California Test Score Data Set 
 
All K-6 and K-8 California school districts (n = 420) 
 
Variables: 

 5 PthP grade test scores (Stanford-9 achievement test, 
combined math and reading), district average 

 Student-teacher ratio (STR) = no. of students in the 
district divided by no. full-time equivalent teachers 
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Initial look at the data: 
(You should already know how to interpret this table) 

 
This table doesn’t tell us anything about the relationship 
between test scores and the STR.
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Do districts with smaller classes have higher test scores?  
Scatterplot of test score v. student-teacher ratio 

 
What does this figure show?
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 We need to get some numerical evidence on whether districts 
with low STRs have higher test scores – but how? 
 

1. Compare average test scores in districts with low STRs 
to those with high STRs (“estimation”) 

 
2. Test the “null” hypothesis that the mean test scores in 

the two types of districts are the same, against the 
“alternative” hypothesis that they differ (“hypothesis 
testing”) 

 
3. Estimate an interval for the difference in the mean test 

scores, high v. low STR districts (“confidence 
interval”) 
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Initial data analysis: Compare districts with “small” (STR < 
20) and “large” (STR ≥ 20) class sizes: 

 
Class 
Size 

Average score 
(Y ) 

Standard 
deviation (s BY

B

) 
n 

Small 657.4 19.4 238 
Large 650.0 17.9 182 

 
1. Estimation of  = difference between group means 
2. Test the hypothesis that   = 0 
3. Construct a confidence interval for  
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1.  Estimation 

small largeY Y  = 
small

1small

1 n

i
i

Y
n 

  – 
large

1large

1 n

i
i

Y
n 

  

= 657.4 – 650.0  
= 7.4 

 
Is this a large difference in a real-world sense? 
 Standard deviation across districts = 19.1 
 Difference between 60PthP and 75Pth P percentiles of test score 

distribution is 667.6 – 659.4 = 8.2 
 This is a big enough difference to be important for school 

reform discussions, for parents, or for a school 
committee? 
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2.  Hypothesis testing 
 
Difference-in-means test:  compute the t-statistic, 
 

2 2 ( )s l

s l

s l s l

s s s l
n n

Y Y Y Yt
SE Y Y

 
 


  (remember this?) 

 
where SE( sY  – lY ) is the “standard error” of sY  – lY , the 
subscripts s and l refer to “small” and “large” STR districts, 

and 2 2

1

1 ( )
1

sn

s i s
is

s Y Y
n 

 
   (etc.) 
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Compute the difference-of-means t-statistic: 
 

Size Y  s BY
B

 n 
small 657.4 19.4 238 
large 650.0 17.9 182 

 

2 2 2 219.4 17.9
238 182

657.4 650.0 7.4
1.83s l

s l

s l

s s
n n

Y Yt  
  

 
 = 4.05 

 
|t| > 1.96, so reject (at the 5% significance level) the null 
hypothesis that the two means are the same. 
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3.  Confidence interval 
 
A 95% confidence interval for the difference between the 
means is, 
 

( sY  – lY )  1.96SE( sY  – lY ) 

     = 7.4  1.961.83 = (3.8, 11.0) 
Two equivalent statements: 
1. The 95% confidence interval for  doesn’t include 0; 
2. The hypothesis that  = 0 is rejected at the 5% level.  
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What comes next… 
 
 The mechanics of estimation, hypothesis testing, and 

confidence intervals should be familiar 
 These concepts extend directly to regression and its 

variants 
 Before turning to regression, however, we will review 

some of the underlying theory of estimation, hypothesis 
testing, and confidence intervals: 
 Why do these procedures work, and why use these 

rather than others? 
 We will review the intellectual foundations of statistics 

and econometrics 
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Review of Statistical Theory 
 
1. The probability framework for statistical inference 
2. Estimation 
3. Testing 
4. Confidence Intervals 
 
The probability framework for statistical inference 
(a) Population, random variable, and distribution 
(b) Moments of a distribution (mean, variance, standard 

deviation, covariance, correlation) 
(c) Conditional distributions and conditional means 
(d) Distribution of a sample of data drawn randomly from a 

population: YB1
B

,…, YBn
B
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(a) Population, random variable, and distribution 
 
Population 
 The group or collection of all possible entities of interest 

(school districts) 
 We will think of populations as infinitely large ( is an 

approximation to “very big”) 
 
Random variable Y 
 Numerical summary of a random outcome (district 

average test score, district STR) 
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Population distribution of Y 
 
 The probabilities of different values of Y that occur in the 

population, for ex. Pr[Y = 650]  (when Y is discrete) 
 or: The probabilities of sets of these values, for ex. Pr[640 
 Y  660] (when Y is continuous). 
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(b) Moments of a population distribution: mean, variance, 
standard deviation, covariance, correlation 
 
mean  = expected value (expectation) of Y 

= E(Y)  
= BY

B

  
= long-run average value of Y over repeated 

       realizations of Y 
variance = E(Y – BY

B

)P2 P  
= 2

Y   
= measure of the squared spread of the 
   distribution 

standard deviation = variance  = BY
B
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Moments, ctd. 

skewness = 
 3

3

Y

Y

E Y 



    

   = measure of asymmetry of a distribution 
 skewness = 0: distribution is symmetric 
 skewness > (<) 0: distribution has long right (left) tail 

 

kurtosis =  
 4

4

Y

Y

E Y 



    

   = measure of mass in tails 
   = measure of probability of large values 

 kurtosis = 3: normal distribution 
 skewness > 3: heavy tails (“leptokurtotic”) 
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2 random variables: joint distributions and covariance 
 
 Random variables X and Z have a joint distribution 
 The covariance between X and Z is 

cov(X,Z) = E[(X – BX
B

)(Z – BZ
B

)] = BXZ
B

 

 
 The covariance is a measure of the linear association 

between X and Z; its units are units of X  units of Z 
 cov(X,Z) > 0 means a positive relation between X and Z 
 If X and Z are independently distributed, then cov(X,Z) = 0 

(but not vice versa!!) 
 The covariance of a r.v. with itself is its variance: 

 cov(X,X) = E[(X – BX
B

)(X – BX
B

)] = E[(X – BX
B

)P2 P] = 2
X  



 1/2/3-24

The covariance between Test Score and STR is negative: 
 

 
So is the correlation…
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The correlation coefficient is defined in terms of the 
covariance: 
 

corr(X,Z) = cov( , )
var( ) var( )

XZ

X Z

X Z
X Z


 

  = r BXZ
B

 

 
 –1  corr(X,Z)  1 
 corr(X,Z) = 1 mean perfect positive linear association 
 corr(X,Z) = –1 means perfect negative linear association 
 corr(X,Z) = 0 means no linear association 
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The correlation coefficient measures linear association 
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(c)  Conditional distributions and conditional means 
 
Conditional distributions 
 The distribution of Y, given value(s) of some other 

random variable, X 
 Ex: the distribution of test scores, given that STR < 20 

Conditional expectations and conditional moments 
 conditional mean = mean of conditional distribution  

= E(Y|X = x)  (important concept and notation) 
 conditional variance = variance of conditional distribution 
 Example:  E(Test scores|STR < 20) = the mean of test 

scores among districts with small class sizes 
The difference in means is the difference between the means 
of two conditional distributions: 
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Conditional mean, ctd. 
 
 = E(Test scores|STR < 20) – E(Test scores|STR ≥ 20) 
 
Other examples of conditional means: 
 Wages of all female workers (Y = wages, X = gender) 
 Mortality rate of those given an experimental treatment (Y 

= live/die; X = treated/not treated) 
 If E(X|Z) = const, then corr(X,Z) = 0 (not necessarily vice 

versa however) 
The conditional mean is a (possibly new) term for the 
familiar idea of the group mean 
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(d)  Distribution of a sample of data drawn randomly 
  from a population: YB1

B

,…, YBn
B

 

 
We will assume simple random sampling 
 Choose and individual (district, entity) at random from the 

population 
Randomness and data 
 Prior to sample selection, the value of Y is random 

because the individual selected is random 
 Once the individual is selected and the value of Y is 

observed, then Y is just a number – not random 
 The data set is (YB1

B

, YB2
B

,…, YBn
B

), where YBi
B

 = value of Y for the 
iPth P individual (district, entity) sampled 
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Distribution of YB1
B

,…, YBn
B

 under simple random sampling 
 Because individuals #1 and #2 are selected at random, the 

value of YB1
B

 has no information content for YB2
B

.  Thus: 
o YB1

B

 and YB2
B

 are independently distributed 
o YB1

B

 and YB2
B

 come from the same distribution, that is, YB1
B

, 
YB2

B

 are identically distributed 
o That is, under simple random sampling, YB1

B

 and YB2
B

 are 
independently and identically distributed (i.i.d.). 

o More generally, under simple random sampling, {YBi
B

}, i 
= 1,…, n, are i.i.d. 

 
This framework allows rigorous statistical inferences about 
moments of population distributions using a sample of data 
from that population … 
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1. The probability framework for statistical inference 
2. Estimation 
3. Testing 
4. Confidence Intervals 
 
Estimation 
Y  is the natural estimator of the mean.  But: 

(a) What are the properties of Y ? 
(b) Why should we use Y  rather than some other estimator? 

 YB1
B

 (the first observation) 
 maybe unequal weights – not simple average 
 median(YB1

B

,…, YBn
B

) 
The starting point is the sampling distribution of Y … 
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(a) The sampling distribution of Y  
Y  is a random variable, and its properties are determined by 
the sampling distribution of Y  
 The individuals in the sample are drawn at random. 
 Thus the values of (YB1

B

,…, YBn
B

) are random 
 Thus functions of (YB1

B

,…, YBn
B

), such as Y , are random:  had 
a different sample been drawn, they would have taken on 
a different value 

 The distribution of Y  over different possible samples of 
size n is called the sampling distribution of Y . 

 The mean and variance of Y  are the mean and variance of 
its sampling distribution, E(Y ) and var(Y ). 

 The concept of the sampling distribution underpins all of 
econometrics. 
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The sampling distribution of Y , ctd. 
Example:  Suppose Y takes on 0 or 1 (a Bernoulli random 
variable) with the probability distribution, 

Pr[Y = 0] = .22, Pr(Y =1) = .78 
Then  

E(Y) = p1 + (1 – p)0 = p = .78 
2
Y  = E[Y – E(Y)]2 = p(1 – p)  [remember this?] 

= .78(1–.78) = 0.1716 
The sampling distribution of Y  depends on n. 
Consider n = 2.  The sampling distribution of Y  is,  

Pr(Y  = 0) = .222 = .0484 
Pr(Y  = ½) =  2.22.78 = .3432 
Pr(Y  = 1) = .782 = .6084 
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The sampling distribution of Y  when Y is Bernoulli (p = .78): 
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Things we want to know about the sampling distribution: 
 
 What is the mean of Y ? 

o If E(Y ) = true  = .78, then Y  is an unbiased estimator 
of  

 What is the variance of Y ? 
o How does var(Y ) depend on n (famous 1/n formula) 

 Does Y  become close to  when n is large? 
o Law of large numbers: Y  is a consistent estimator of  

 Y  –  appears bell shaped for n large…is this generally 
true? 

o In fact, Y  –  is approximately normally distributed 
for n large (Central Limit Theorem) 
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The mean and variance of the sampling distribution of Y  
 
General case – that is, for Yi i.i.d. from any distribution, not 
just Bernoulli: 

mean:  E(Y ) = E(
1

1 n

i
i

Y
n 
 ) = 

1

1 ( )
n

i
i

E Y
n 
  = 

1

1 n

Y
in



  = Y 

 
Variance:     var(Y ) = E[Y  – E(Y )]2  

= E[Y  – Y]2 

      = E
2

1

1 n

i Y
i

Y
n




     
  
   

= E
2

1

1 ( )
n

i Y
i

Y
n
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so       var(Y ) = E
2

1

1 ( )
n

i Y
i

Y
n




   
  

= 
1 1

1 1( ) ( )
n n

i Y j Y
i j

E Y Y
n n

 
 

             
   

= 2
1 1

1 ( )( )
n n

i Y j Y
i j

E Y Y
n

 
 

     

= 2
1 1

1 cov( , )
n n

i j
i j

Y Y
n  
  

= 2
2

1

1 n

Y
in



  

= 
2
Y

n
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Mean and variance of sampling distribution of Y , ctd. 
 

       E(Y ) = Y  

 var(Y ) = 
2
Y

n
  

 
Implications: 

1. Y  is an unbiased estimator of Y (that is, E(Y ) = Y) 
2. var(Y ) is inversely proportional to n 

 the spread of the sampling distribution is 
proportional to 1/ n  

 Thus the sampling uncertainty associated with Y  is 
proportional to 1/ n  (larger samples, less 
uncertainty, but square-root law) 
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The sampling distribution of Y  when n is large 
 
For small sample sizes, the distribution of Y  is complicated, 
but if n is large, the sampling distribution is simple! 
1. As n increases, the distribution of Y  becomes more tightly 

centered around Y (the Law of Large Numbers) 
2. Moreover, the distribution of Y – Y becomes normal (the 

Central Limit Theorem) 
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The Law of Large Numbers: 
An estimator is consistent if the probability that its falls 
within an interval of the true population value tends to one 
as the sample size increases. 

If (Y1,…,Yn) are i.i.d. and 2
Y  < , then Y  is a consistent 

estimator of Y, that is, 
Pr[|Y  – Y| < ]  1 as n   

which can be written, Y  
p
 Y   

(“Y  
p
 Y”  means “Y  converges in probability to Y”). 

(the math:  as n  , var(Y ) = 
2
Y

n
   0, which implies that 

Pr[|Y  – Y| < ]  1.) 
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The Central Limit Theorem (CLT):  
If (Y1,…,Yn) are i.i.d. and 0 < 2

Y  < , then when n is large 
the distribution of Y  is well approximated by a normal 
distribution. 

 Y  is approximately distributed N(Y, 
2
Y

n
 ) (“normal 

distribution with mean Y and variance 2
Y /n”) 

 n (Y  – Y)/Y is approximately distributed N(0,1) 
(standard normal) 

 That is, “standardized” Y  = ( )
var( )

Y E Y
Y

  = 
/

Y

Y

Y
n



  is 

approximately distributed as N(0,1) 
 The larger is n, the better is the approximation. 

Sampling distribution of Y  when Y is Bernoulli, p = 0.78: 
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Same example:  sampling distribution of  ( )
var( )

Y E Y
Y

 : 
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Summary:  The Sampling Distribution of Y  
For Y1,…,Yn i.i.d. with 0 < 2

Y  < , 

 The exact (finite sample) sampling distribution of Y  has 
mean Y (“Y  is an unbiased estimator of Y”) and variance 

2
Y /n 

 Other than its mean and variance, the exact distribution of 
Y  is complicated and depends on the distribution of Y (the 
population distribution) 

 When n is large, the sampling distribution simplifies: 

o  Y  
p
 Y   (Law of large numbers) 

o   ( )
var( )

Y E Y
Y

  is approximately N(0,1)  (CLT) 
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(b) Why Use Y  To Estimate Y? 
 Y  is unbiased: E(Y ) = Y 

 Y  is consistent: Y  
p
 Y 

 Y  is the “least squares” estimator of Y; Y  solves, 

2

1

min ( )
n

m i
i

Y m


  

so, Y  minimizes the sum of squared “residuals” 
optional derivation (also see App. 3.2) 

2

1

( )
n

i
i

d Y m
dm 

  = 2

1

( )
n

i
i

d Y m
dm

  = 
1

2 ( )
n

i
i

Y m


  

Set derivative to zero and denote optimal value of m by m̂: 

1

n

i

Y

  = 

1

ˆ
n

i

m

  = ˆnm or m̂ = 

1

1 n

i
i

Y
n 
  = Y  
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Why Use Y  To Estimate Y, ctd. 
 
 Y  has a smaller variance than all other linear unbiased 

estimators:  consider the estimator, 
1

1ˆ
n

Y i i
i

a Y
n




  , where 

{ai} are such that ˆY  is unbiased; then var(Y )  var( ˆY ) 
(proof: SW, Ch. 17) 

 Y  isn’t the only estimator of Y – can you think of a time 
you might want to use the median instead? 
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1. The probability framework for statistical inference 
2. Estimation 
3. Hypothesis Testing 
4. Confidence intervals 
 
Hypothesis Testing 
The hypothesis testing problem (for the mean):  make a 
provisional decision based on the evidence at hand whether a 
null hypothesis is true, or instead that some alternative 
hypothesis is true.  That is, test  

H0: E(Y) = Y,0 vs. H1: E(Y) > Y,0 (1-sided, >) 
H0: E(Y) = Y,0 vs. H1: E(Y) < Y,0 (1-sided, <) 
H0: E(Y) = Y,0 vs. H1: E(Y) Y,0 (2-sided) 
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Some terminology for testing statistical hypotheses: 
 
p-value = probability of drawing a statistic (e.g. Y ) at least as 
adverse to the null as the value actually computed with your 
data, assuming that the null hypothesis is true.  
 
The significance level of a test is a pre-specified probability 
of incorrectly rejecting the null, when the null is true. 
 
Calculating the p-value based on Y : 
 

 p-value = 
0 ,0 ,0Pr [| | | |]act

H Y YY Y        

 
where actY  is the value of Y  actually observed (nonrandom)  
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Calculating the p-value, ctd. 
 To compute the p-value, you need the to know the 

sampling distribution of Y , which is complicated if n is 
small. 

 If n is large, you can use the normal approximation (CLT): 
 

p-value = 
0 ,0 ,0Pr [| | | |]act

H Y YY Y    ,  

    = 
0

,0 ,0Pr [| | | |]
/ /

act
Y Y

H
Y Y

Y Y
n n

 
 
 

  

    = 
0

,0 ,0Pr [| | | |]
act

Y Y
H

Y Y

Y Y 
 
 

  

     probability under left+right N(0,1) tails 
where Y  = std. dev. of the distribution of Y  = Y/ n . 
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Calculating the p-value with Y known: 

 
 For large n, p-value = the probability that a N(0,1) random 

variable falls outside |( actY – Y,0)/ Y | 

 In practice, Y  is unknown – it must be estimated 



 1/2/3-51

Estimator of the variance of Y: 
 

2
Ys  = 2

1

1 ( )
1

n

i
i

Y Y
n 


   = “sample variance of Y” 

Fact:   

If (Y1,…,Yn) are i.i.d. and E(Y4) < , then 2
Ys  

p
 2

Y  
 
Why does the law of large numbers apply? 
 Because 2

Ys  is a sample average; see Appendix 3.3 
 Technical note: we assume E(Y4) <  because here the 

average is not of Yi, but of its square; see App. 3.3 
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Computing the p-value with 2
Y  estimated: 

 
p-value = 

0 ,0 ,0Pr [| | | |]act
H Y YY Y    ,  

      = 
0

,0 ,0Pr [| | | |]
/ /

act
Y Y

H
Y Y

Y Y
n n

 
 
 

  

       
0

,0 ,0Pr [| | | |]
/ /

act
Y Y

H
Y Y

Y Y
s n s n

  
   (large n) 

so  
      p-value = 

0
Pr [| | | |]act

H t t      ( 2
Y  estimated)    

    probability under normal tails outside |tact| 

where t = ,0

/
Y

Y

Y
s n


 (the usual t-statistic) 
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What is the link between the p-value and the significance 
level? 
 
The significance level is prespecified.  For example, if the 
prespecified significance level is 5%, 
 you reject the null hypothesis if |t|  1.96. 
 Equivalently, you reject if p  0.05. 
 The p-value is sometimes called the marginal 

significance level. 
 Often, it is better to communicate the p-value than simply 

whether a test rejects or not – the p-value contains more 
information than the “yes/no” statement about whether the 
test rejects. 
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At this point, you might be wondering,...  
What happened to the t-table and the degrees of freedom? 
 
Digression: the Student t distribution 
If Yi, i = 1,…, n is i.i.d. N(Y, 2

Y ), then the t-statistic has the 
Student t-distribution with n – 1 degrees of freedom. 
The critical values of the Student t-distribution is tabulated in 
the back of all statistics books.  Remember the recipe? 

1. Compute the t-statistic 
2. Compute the degrees of freedom, which is n – 1 
3. Look up the 5% critical value 
4. If the t-statistic exceeds (in absolute value) this 

critical value, reject the null hypothesis. 
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Comments on this recipe and the Student t-distribution 
 
1. The theory of the t-distribution was one of the early 

triumphs of mathematical statistics.  It is astounding, really:  
if Y is i.i.d. normal, then you can know the exact, finite-
sample distribution of the t-statistic – it is the Student t.  So, 
you can construct confidence intervals (using the Student t 
critical value) that have exactly the right coverage rate, no 
matter what the sample size.  This result was really useful in 
times when “computer” was a job title, data collection was 
expensive, and the number of observations was perhaps a 
dozen.  It is also a conceptually beautiful result, and the 
math is beautiful too – which is probably why stats profs 
love to teach the t-distribution.  But…. 
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Comments on Student t distribution, ctd. 
 
2. If the sample size is moderate (several dozen) or large 

(hundreds or more), the difference between the t-
distribution and N(0,1) critical values is negligible.  Here 
are some 5% critical values for 2-sided tests: 

 
degrees of freedom 

(n – 1) 
5% t-distribution 

critical value 
10 2.23 
20 2.09 
30 2.04 
60 2.00 
 1.96 
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Comments on Student t distribution, ctd. 
 
3. So, the Student-t distribution is only relevant when the 

sample size is very small; but in that case, for it to be 
correct, you must be sure that the population distribution of 
Y is normal.  In economic data, the normality assumption is 
rarely credible.  Here are the distributions of some 
economic data.  

 Do you think earnings are normally distributed? 
 Suppose you have a sample of n = 10 observations 

from one of these distributions – would you feel 
comfortable using the Student t distribution? 
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Comments on Student t distribution, ctd. 
4. You might not know this.  Consider the t-statistic testing 

the hypothesis that two means (groups s, l) are equal: 

2 2 ( )s l

s l

s l s l

s s s l
n n

Y Y Y Yt
SE Y Y

 
 


 

Even if the population distribution of Y in the two groups 
is normal, this statistic doesn’t have a Student t 
distribution! 

There is a statistic testing this hypothesis that has a 
normal distribution, the “pooled variance” t-statistic – see 
SW (Section 3.6) – however the pooled variance t-statistic 
is only valid if the variances of the normal distributions 
are the same in the two groups.  Would you expect this to 
be true, say, for men’s v. women’s wages? 
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The Student-t distribution – Summary 
 
 The assumption that Y is distributed N(Y, 2

Y ) is rarely 
plausible in practice (Income? Number of children?) 

 For n > 30, the t-distribution and N(0,1) are very close (as 
n grows large, the tn–1 distribution converges to N(0,1))  

 The t-distribution is an artifact from days when sample 
sizes were small and “computers” were people 

 For historical reasons, statistical software typically uses 
the t-distribution to compute p-values – but this is 
irrelevant when the sample size is moderate or large. 

 For these reasons, in this class we will focus on the large-
n approximation given by the CLT  
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1. The probability framework for statistical inference 
2. Estimation 
3. Testing 
4. Confidence intervals 
 
Confidence Intervals 
A 95% confidence interval for Y is an interval that contains 
the true value of Y in 95% of repeated samples. 
 
Digression: What is random here?  The values of Y1,…,Yn and 
thus any functions of them – including the confidence 
interval.  The confidence interval will differ from one sample 
to the next.  The population parameter, Y, is not random; we 
just don’t know it. 
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Confidence intervals, ctd. 
A 95% confidence interval can always be constructed as the 
set of values of Y not rejected by a hypothesis test with a 5% 
significance level. 
 

{Y:  
/

Y

Y

Y
s n

   1.96} = {Y: –1.96  
/

Y

Y

Y
s n

   1.96} 

= {Y: –1.96 Ys
n

  Y  – Y  1.96 Ys
n

} 

= {Y  (Y  – 1.96 Ys
n

 , Y  + 1.96 Ys
n

)} 

This confidence interval relies on the large-n results that Y  is 

approximately normally distributed and 2
Ys  

p
 2

Y .
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Summary: 
From the two assumptions of: 

(1) simple random sampling of a population, that is, 
{Yi, i =1,…,n} are i.i.d. 

(2) 0 < E(Y4) <  
we developed, for large samples (large n): 
 Theory of estimation (sampling distribution of Y )  
 Theory of hypothesis testing (large-n distribution of t-

statistic and computation of the p-value) 
 Theory of confidence intervals (constructed by inverting 

the test statistic) 
Are assumptions (1) & (2) plausible in practice?  Yes 
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Let’s go back to the original policy question: 
What is the effect on test scores of reducing STR by one 
student/class?   
Have we answered this question? 
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Linear Regression with One Regressor 
(Stock/Watson Chapter 4) 

 
Outline 

1. The population linear regression model 
2. The ordinary least squares (OLS) estimator and the 

sample regression line 
3. Measures of fit of the sample regression 
4. The least squares assumptions 
5. The sampling distribution of the OLS estimator 
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Linear regression lets us estimate the slope of the population 
regression line. 

 
 The slope of the population regression line is the expected 

effect on Y of a unit change in X. 
 

 Ultimately our aim is to estimate the causal effect on Y of 
a unit change in X – but for now, just think of the problem 
of fitting a straight line to data on two variables, Y and X. 
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The problem of statistical inference for linear regression is, at 
a general level, the same as for estimation of the mean or of 
the differences between two means.  Statistical, or 
econometric, inference about the slope entails: 
 

 Estimation: 
o How should we draw a line through the data to estimate 

the population slope?  
 Answer: ordinary least squares (OLS). 

o What are advantages and disadvantages of OLS? 
 Hypothesis testing: 

o How to test if the slope is zero? 
 Confidence intervals: 

o How to construct a confidence interval for the slope? 
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The Linear Regression Model 
(SW Section 4.1) 

 
The population regression line:  
  

Test Score = 0 + 1STR 
 
1 = slope of population regression line  

= Test score
STR




  

= change in test score for a unit change in STR 
 Why are 0 and 1 “population” parameters? 
 We would like to know the population value of 1. 
 We don’t know 1, so must estimate it using data. 
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The Population Linear Regression Model 
 
  Yi = 0 + 1Xi + ui, i = 1,…, n 
 
 We have n observations, (Xi, Yi), i = 1,.., n. 
 X is the independent variable or regressor 
 Y is the dependent variable 
 0 = intercept 
 1 = slope 
 ui = the regression error  
 The regression error consists of omitted factors.  In 

general, these omitted factors are other factors that 
influence Y, other than the variable X.  The regression 
error also includes error in the measurement of Y. 
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The population regression model in a picture: Observations 
on Y and X (n = 7); the population regression line; and the 
regression error (the “error term”): 
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The Ordinary Least Squares Estimator 
(SW Section 4.2) 

 
How can we estimate 0 and 1 from data? 
Recall that Y  was the least squares estimator of Y: Y  solves, 

2

1

min ( )
n

m i
i

Y m


  

 
By analogy, we will focus on the least squares (“ordinary 
least squares” or “OLS”) estimator of the unknown 
parameters 0 and 1.  The OLS estimator solves, 

0 1

2
, 0 1

1

min [ ( )]
n

b b i i
i

Y b b X
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Mechanics of OLS  
The population regression line:  Test Score = 0 + 1STR 

 

1 = Test score
STR




 = ?? 
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The OLS estimator solves:    
0 1

2
, 0 1

1

min [ ( )]
n

b b i i
i

Y b b X


   

 
 The OLS estimator minimizes the average squared 

difference between the actual values of Yi and the prediction 
(“predicted value”) based on the estimated line.  
 

 This minimization problem can be solved using calculus 
(App. 4.2). 
 

 The result is the OLS estimators of 0 and 1. 
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Application to the California Test Score – Class Size data 

 
Estimated slope  = 1̂  = – 2.28 
Estimated intercept = 0̂  = 698.9 
Estimated regression line: TestScore  = 698.9 – 2.28STR 
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Interpretation of the estimated slope and intercept 
 

TestScore  = 698.9 – 2.28STR 
 Districts with one more student per teacher on average 

have test scores that are 2.28 points lower. 

 That is, Test score
STR




 = –2.28 

 The intercept (taken literally) means that, according to this 
estimated line, districts with zero students per teacher 
would have a (predicted) test score of 698.9.  But this 
interpretation of the intercept makes no sense – it 
extrapolates the line outside the range of the data – here, 
the intercept is not economically meaningful. 
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 Predicted values & residuals: 

 
One of the districts in the data set is Antelope, CA, for which 
STR = 19.33 and Test Score = 657.8 
predicted value:  ˆ

AntelopeY  = 698.9 – 2.2819.33 = 654.8 
residual:    ˆAntelopeu  = 657.8 – 654.8 = 3.0
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OLS regression:  STATA output 
 

regress testscr str, robust 
 

Regression with robust standard errors            Number of obs =     420 
                                                  F(  1,   418) =   19.26 
                                                  Prob > F      =  0.0000 
                                                  R-squared     =  0.0512 
                                                  Root MSE      =  18.581 
 
------------------------------------------------------------------------- 
        |               Robust 
testscr |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
--------+---------------------------------------------------------------- 
    str |  -2.279808   .5194892    -4.39   0.000    -3.300945   -1.258671 
  _cons |    698.933   10.36436    67.44   0.000     678.5602    719.3057 
------------------------------------------------------------------------- 

 
TestScore  = 698.9 – 2.28STR  
 
(We’ll discuss the rest of this output later.) 
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Measures of Fit 
(Section 4.3) 

 
Two regression statistics provide complementary measures of 
how well the regression line “fits” or explains the data: 

 
 The regression R2 measures the fraction of the variance of 

Y that is explained by X; it is unitless and ranges between 
zero (no fit) and one (perfect fit) 
 

 The standard error of the regression (SER) measures the 
magnitude of a typical regression residual in the units of 
Y. 
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The regression R2 is the fraction of the sample variance of Yi 
“explained” by the regression. 

Yi = îY  + ˆiu   = OLS prediction + OLS residual 
 sample var (Y) = sample var( îY ) + sample var( ˆiu ) (why?) 
 total sum of squares = “explained” SS + “residual” SS 

Definition of R2:   R2 = ESS
TSS

 = 

2

1

2

1

ˆ ˆ( )

( )

n

i
i
n

i
i

Y Y

Y Y












 

 R2 = 0 means ESS = 0 
 R2 = 1 means ESS = TSS 
 0 ≤ R2 ≤ 1 
 For regression with a single X, R2 = the square of the 

correlation coefficient between X and Y 
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The Standard Error of the Regression (SER) 
 
The SER measures the spread of the distribution of u.  The 
SER is (almost) the sample standard deviation of the OLS 
residuals: 

SER = 2

1

1 ˆ ˆ( )
2

n

i
i

u u
n 


    

 

= 2

1

1 ˆ
2

n

i
i

u
n    

 

The second equality holds because û  = 
1

1 ˆ
n

i
i

u
n 
  = 0. 
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SER = 2

1

1 ˆ
2

n

i
i

u
n    

The SER: 
 has the units of u, which are the units of Y 
 measures the average “size” of the OLS residual (the 

average “mistake” made by the OLS regression line) 
 The root mean squared error (RMSE) is closely related to 

the SER: 

RMSE = 2

1

1 ˆ
n

i
i

u
n 
  

This measures the same thing as the SER – the minor 
difference is division by 1/n instead of 1/(n–2). 
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Technical note:  why divide by n–2 instead of n–1? 

SER = 2

1

1 ˆ
2

n

i
i

u
n    

 
 Division by n–2 is a “degrees of freedom” correction – just 

like division by n–1 in 2
Ys , except that for the SER, two 

parameters have been estimated (0 and 1, by 0̂  and 1̂ ), 
whereas in 2

Ys  only one has been estimated (Y, by Y ). 
 When n is large, it doesn’t matter whether n, n–1, or n–2 are 

used – although the conventional formula uses n–2 when 
there is a single regressor. 

 For details, see Section 17.4 
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Example of the R2 and the SER 

 
TestScore  = 698.9 – 2.28STR, R2 = .05, SER = 18.6 

  
STR explains only a small fraction of the variation in test 
scores.  Does this make sense?  Does this mean the STR is 
unimportant in a policy sense?  
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The Least Squares Assumptions  
(SW Section 4.4) 

 
What, in a precise sense, are the properties of the 

sampling distribution of the OLS estimator?  When will 1̂  be 
unbiased?  What is its variance? 

 
To answer these questions, we need to make some 

assumptions about how Y and X are related to each other, and 
about how they are collected (the sampling scheme) 

 
These assumptions – there are three – are known as the 

Least Squares Assumptions. 
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The Least Squares Assumptions 
 
     Yi = 0 + 1Xi + ui, i = 1,…, n 
 
1. The conditional distribution of u given X has mean zero, 

that is, E(u|X = x) = 0. 
 This implies that 1̂  is unbiased 

2. (Xi,Yi), i =1,…,n, are i.i.d. 
 This is true if (X, Y) are collected by simple random 

sampling 
 This delivers the sampling distribution of 0̂  and 1̂  

3. Large outliers in X and/or Y are rare. 
 Technically, X and Y have finite fourth moments 
 Outliers can result in meaningless values of 1̂  
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Least squares assumption #1:   E(u|X = x) = 0. 
For any given value of X, the mean of u is zero: 

 
Example: Test Scorei = 0 + 1STRi + ui, ui = other factors 
 What are some of these “other factors”? 
 Is E(u|X=x) = 0 plausible for these other factors? 
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Least squares assumption #1, ctd. 
A benchmark for thinking about this assumption is to 
consider an ideal randomized controlled experiment: 
 X is randomly assigned to people (students randomly 

assigned to different size classes; patients randomly 
assigned to medical treatments).  Randomization is done 
by computer – using no information about the individual. 

 Because X is assigned randomly, all other individual 
characteristics – the things that make up u – are 
distributed independently of X, so u and X are independent 

 Thus, in an ideal randomized controlled experiment, 
E(u|X = x) = 0 (that is, LSA #1 holds) 

 In actual experiments, or with observational data, we will 
need to think hard about whether E(u|X = x) = 0 holds. 
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Least squares assumption #2: (Xi,Yi), i = 1,…,n are i.i.d. 
 

This arises automatically if the entity (individual, district) 
is sampled by simple random sampling: 

 The entities are selected from the same population, so 
(Xi, Yi) are identically distributed for all i = 1,…, n. 

 The entities are selected at random, so the values of (X, 
Y) for different entities are independently distributed. 
  

The main place we will encounter non-i.i.d. sampling is 
when data are recorded over time for the same entity (panel 
data and time series data) – we will deal with that 
complication when we cover panel data. 
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Least squares assumption #3: Large outliers are rare 
Technical statement: E(X4) <  and E(Y4) <  

 
 A large outlier is an extreme value of X or Y 
 On a technical level, if X and Y are bounded, then they 

have finite fourth moments.  (Standardized test scores 
automatically satisfy this; STR, family income, etc. satisfy 
this too.) 

 The substance of this assumption is that a large outlier can 
strongly influence the results – so we need to rule out 
large outliers. 

 Look at your data! If you have a large outlier, is it a typo? 
Does it belong in your data set?  Why is it an outlier? 
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OLS can be sensitive to an outlier: 

 
 Is the lone point an outlier in X or Y? 
 In practice, outliers are often data glitches (coding or 

recording problems). Sometimes they are observations 
that really shouldn’t be in your data set.  Plot your data! 
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The Sampling Distribution of the OLS Estimator 
(SW Section 4.5) 

 
The OLS estimator is computed from a sample of data.  A 
different sample yields a different value of 1̂ .  This is the 
source of the “sampling uncertainty” of 1̂ .  We want to: 
 quantify the sampling uncertainty associated with 1̂  
 use 1̂  to test hypotheses such as 1 = 0 
 construct a confidence interval for 1 
 All these require figuring out the sampling distribution of 

the OLS estimator.  Two steps to get there… 
o Probability framework for linear regression 
o Distribution of the OLS estimator
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Probability Framework for Linear Regression 
 
The probability framework for linear regression is 
summarized by the three least squares assumptions. 
Population 

 The group of interest (ex:  all possible school districts) 
Random variables: Y, X 

 Ex:  (Test Score, STR) 
Joint distribution of (Y, X).  We assume: 

 The population regression function is linear 
 E(u|X) = 0 (1st Least Squares Assumption) 
 X, Y have nonzero finite fourth moments (3rd L.S.A.) 

Data Collection by simple random sampling implies: 
 {(Xi, Yi)}, i = 1,…, n, are i.i.d. (2nd L.S.A.)  
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The Sampling Distribution of 1̂  
 

Like Y , 1̂  has a sampling distribution. 
 What is E( 1̂ )? 

o If E( 1̂ ) = 1, then OLS is unbiased – a good thing! 
 What is var( 1̂ )?  (measure of sampling uncertainty) 

o We need to derive a formula so we can compute the 
standard error of 1̂ . 

 What is the distribution of 1̂  in small samples? 
o It is very complicated in general 

 What is the distribution of 1̂  in large samples? 
o In large samples, 1̂  is normally distributed. 
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The mean and variance of the sampling distribution of 1̂   
Some preliminary algebra: 

Yi = 0 + 1Xi + ui 
Y  = 0 + 1 X  + u  

so   Yi – Y  = 1(Xi – X ) + (ui – u ) 
Thus, 

1̂  = 1

2

1

( )( )

( )

n

i i
i

n

i
i

X X Y Y

X X





 






  

= 
1

1
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1

( )[ ( ) ( )]

( )
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i i i
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i
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X X X X u u

X X
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     1̂  = 1 1
1

2 2

1 1
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Substitute 
1

( )( )
n

i i
i

X X u u


   = 
1

( )
n

i i
i

X X u


  into the 

expression for 1̂  – 1: 

   1̂  – 1 = 1
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( )( )
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i
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Now we can calculate E( 1̂ ) and var( 1̂ ): 

  E( 1̂ ) – 1 =  1

2

1

( )

( )

n

i i
i

n

i
i

X X u
E

X X
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= 0   because E(ui|Xi=x) = 0 by LSA #1 
 Thus LSA #1 implies that E( 1̂ ) = 1 
 That is, 1̂  is an unbiased estimator of 1. 
 For details see App. 4.3 
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Next calculate var( 1̂ ):  
write 

1̂  – 1 =  1

2

1

( )

( )

n

i i
i

n

i
i

X X u

X X












 =  1
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v
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n s
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where vi = (Xi – X )ui.  If n is large, 2
Xs   2

X  and 1n
n
   1, so 

1̂  – 1  1
2

1 n

i
i

X

v
n




, 

 
where vi = (Xi – X )ui (see App. 4.3).  Thus, 
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1̂  – 1  1
2

1 n

i
i

X

v
n




 

so     var( 1̂  – 1) = var( 1̂ )   

= 2 2

1

1var ( )
n

i X
i

v
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  = 2 2

var( ) /
( )

i

X

v n


  

where the final equality uses assumption 2.  Thus, 
 

 var( 1̂ ) = 2 2

var[( ) ]1
( )

i x i

X

X u
n





    . 

Summary so far 
1. 1̂  is unbiased: E( 1̂ ) = 1 – just like Y ! 
2. var( 1̂ ) is inversely proportional to n – just like Y ! 
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What is the sampling distribution of 1̂ ? 
 
The exact sampling distribution is complicated – it 

depends on the population distribution of (Y, X) – but when n 
is large we get some simple (and good) approximations: 

(1) Because var( 1̂ )  1/n and E( 1̂ ) = 1, 1̂   
p
 1 

(2) When n is large, the sampling distribution of 1̂  is 
 well approximated by a normal distribution (CLT) 

 
Recall the CLT:  suppose {vi}, i = 1,…, n is i.i.d. with E(v) = 

0 and var(v) = 2.  Then, when n is large, 
1

1 n

i
i

v
n 
  is 

approximately distributed N(0, 2 /v n ).
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Large-n approximation to the distribution of 1̂ : 

1̂  – 1 =   1

2

1

1

n

i
i

X

v
n
n s

n



 
 
 


  1
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1 n

i
i

X
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, where vi = (Xi – X )ui 

 When n is large, vi = (Xi – X )ui  (Xi – X)ui, which is 
i.i.d. (why?) and var(vi) <  (why?).  So, by the CLT, 

1

1 n

i
i

v
n 
  is approximately distributed N(0, 2 /v n ). 

 Thus, for n large, 1̂  is approximately distributed  

 1̂   ~ 
2

1 2 2,
( )

v

X

N
n



 
 
 

, where vi = (Xi – X)ui 

 
The larger the variance of X, the smaller the variance of 1̂  
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The math 

var( 1̂  – 1) = 2 2

var[( ) ]1
( )

i x i

X

X u
n





  

where 2
X  = var(Xi).  The variance of X appears (squared) in 

the denominator – so increasing the spread of X decreases the 
variance of 1. 
 
The intuition 

If there is more variation in X, then there is more 
information in the data that you can use to fit the regression 
line.  This is most easily seen in a figure… 
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The larger the variance of X, the smaller the variance of 1̂  

 
The number of black and blue dots is the same.  Using which 
would you get a more accurate regression line?
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Summary of the sampling distribution of 1̂ : 
If the three Least Squares Assumptions hold, then 
 The exact (finite sample) sampling distribution of 1̂  has: 

o  E( 1̂ ) = 1   (that is, 1̂  is unbiased)  

o var( 1̂ ) = 4

var[( ) ]1 i x i

X

X u
n





   1
n

. 

 Other than its mean and variance, the exact distribution of 

1̂  is complicated and depends on the distribution of (X, u) 

 1̂  
p
 1 (that is, 1̂  is consistent) 

 When n is large, 1 1

1

ˆ ˆ( )
ˆvar( )

E 



  ~ N(0,1) (CLT) 

 This parallels the sampling distribution of Y . 
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We are now ready to turn to hypothesis tests & confidence 
intervals… 
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Regression with a Single Regressor: 
Hypothesis Tests and Confidence Intervals 

(SW Chapter 5) 
 
Outline 
1. The standard error of  1̂  
2. Hypothesis tests concerning β1 
3. Confidence intervals for β1 
4. Regression when X is binary 
5. Heteroskedasticity and homoskedasticity 
6. Efficiency of OLS and the Student t distribution 
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A big picture review of where we are going… 
 
We want to learn about the slope of the population regression 
line. We have data from a sample, so there is sampling 
uncertainty. There are five steps towards this goal: 

1. State the population object of interest  
2. Provide an estimator of this population object 
3. Derive the sampling distribution of the estimator (this 

requires certain assumptions). In large samples this 
sampling distribution will be normal by the CLT. 

4. The square root of the estimated variance of the 
sampling distribution is the standard error (SE) of the 
estimator 

5. Use the SE to construct t-statistics (for hypothesis 
tests) and confidence intervals. 
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Object of interest:  1 in, 
    Yi = 0 + 1Xi + ui, i = 1,…, n 
1 = Y/X, for an autonomous change in X (causal effect) 
 
Estimator: the OLS estimator 1̂ . 

 
The Sampling Distribution of 1̂ : 
 To derive the large-sample distribution of 1̂ , we make the 
following assumptions: 
 
The Least Squares Assumptions: 
1. E(u|X = x) = 0. 
2. (Xi,Yi), i =1,…,n, are i.i.d. 
3. Large outliers are rare (E(X4) < , E(Y4) < . 
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The Sampling Distribution of 1̂ , ctd. 
 
Under the Least Squares Assumptions, for n large, 1̂  is 
approximately distributed, 
 

 1̂   ~ 
2

1 2 2,
( )

v

X

N
n



 
 
 

, where vi = (Xi – X)ui  
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Hypothesis Testing and the Standard Error of 1̂  
(Section 5.1) 

 
The objective is to test a hypothesis, like 1 = 0, using data – 
to reach a tentative conclusion whether the (null) hypothesis 
is correct or incorrect. 
General setup 

Null hypothesis and two-sided alternative: 
H0:  1 = 1,0  vs. H1:  1  1,0 

where 1,0 is the hypothesized value under the null. 
 

Null hypothesis and one-sided alternative: 
H0:  1 = 1,0  vs. H1:  1 < 1,0 
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General approach: construct t-statistic, and compute p-value 
(or compare to the N(0,1) critical value) 
 

 In general:    t = estimator - hypothesized value
standard error of the estimator

   

 
where the SE of the estimator is the square root of an 
estimator of the variance of the estimator. 

 For testing the mean of Y:   t = ,0

/
Y

Y

Y
s n


 

 For testing 1,         t = 1 1,0

1

ˆ
ˆ( )SE

 



  ,  

where SE( 1̂ ) = the square root of an estimator of the 
variance of the sampling distribution of 1̂  
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Formula for SE( 1̂ ) 
Recall the expression for the variance of 1̂  (large n): 
 

var( 1̂ ) = 2 2

var[( ) ]
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i x i

X

X u
n
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v

Xn



, where vi = (Xi – X)ui.   

The estimator of the variance of 1̂  replaces the unknown 
population values of 2

  and 2
X  by estimators constructed 

from the data: 

1

2
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where ˆiv  = ˆ( )i iX X u . 
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, where ˆiv  = ˆ( )i iX X u . 

SE( 1̂ ) = 
1

2
ˆˆ


  = the standard error of 1̂  

This is a bit nasty, but: 
 It is less complicated than it seems.  The numerator 

estimates var(v), the denominator estimates [var(X)]2. 
 Why the degrees-of-freedom adjustment n – 2?  Because 

two coefficients have been estimated (0 and 1). 
 SE( 1̂ ) is computed by regression software 
 Your regression software has memorized this formula so 

you don’t need to. 
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Summary:  To test H0: 1 = 1,0 v.  H1: 1  1,0, 
 Construct the t-statistic 

t = 1 1,0

1

ˆ
ˆ( )SE

 



 = 

1

1 1,0

2
ˆ

ˆ

ˆ


 




   

 Reject at 5% significance level if |t| > 1.96 
 The p-value is p = Pr[|t| > |tact|] = probability in tails of 

normal outside |tact|; you reject at the 5% significance level 
if the p-value is < 5%. 

 This procedure relies on the large-n approximation that 1̂  
is normally distributed; typically n = 50 is large enough 
for the approximation to be excellent. 
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Example:  Test Scores and STR, California data 
 
Estimated regression line:  TestScore  = 698.9 – 2.28STR 
 
Regression software reports the standard errors: 

 
SE( 0̂ ) = 10.4   SE( 1̂ ) = 0.52 

 

t-statistic testing 1,0 = 0 = 1 1,0

1

ˆ
ˆ( )SE

 



 = 2.28 0

0.52
   = –4.38 

 
 The 1% 2-sided significance level is 2.58, so we reject the 

null at the 1% significance level. 
 Alternatively, we can compute the p-value… 
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The p-value based on the large-n standard normal 
approximation to the t-statistic is 0.00001 (10–5) 



SW Ch 5 12/46

Confidence Intervals for 1 
(Section 5.2) 

 
Recall that a 95% confidence is, equivalently: 
 The set of points that cannot be rejected at the 5% 

significance level; 
 A set-valued function of the data (an interval that is a 

function of the data) that contains the true parameter value 
95% of the time in repeated samples. 

 
Because the t-statistic for 1 is N(0,1) in large samples, 
construction of a 95% confidence for 1 is just like the case of 
the sample mean:  
      95% confidence interval for 1 = { 1̂   1.96SE( 1̂ )} 
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Confidence interval example:  Test Scores and STR 
Estimated regression line:  TestScore  = 698.9 – 2.28STR 

 
SE( 0̂ ) = 10.4   SE( 1̂ ) = 0.52 

 
95% confidence interval for 1̂ : 
 

{ 1̂   1.96SE( 1̂ )} = {–2.28  1.960.52} 
        = (–3.30, –1.26) 
 
The following two statements are equivalent (why?) 
 The 95% confidence interval does not include zero; 
 The hypothesis 1 = 0 is rejected at the 5% level 
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A concise (and conventional) way to report regressions: 
Put standard errors in parentheses below the estimated 
coefficients to which they apply. 
 

 TestScore  = 698.9 – 2.28STR, R2 = .05, SER = 18.6 
(10.4)  (0.52) 

 
This expression gives a lot of information 
 The estimated regression line is  

TestScore  = 698.9 – 2.28STR 
 The standard error of 0̂  is 10.4 
 The standard error of 1̂  is 0.52 
 The R2 is .05; the standard error of the regression is 18.6 
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OLS regression:  reading STATA output 
 
regress testscr str, robust 

 
Regression with robust standard errors            Number of obs =     420 
                                                  F(  1,   418) =   19.26 
                                                  Prob > F      =  0.0000 
                                                  R-squared     =  0.0512 
                                                  Root MSE      =  18.581 
------------------------------------------------------------------------- 
        |               Robust 
testscr |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
--------+---------------------------------------------------------------- 
    str |  -2.279808   .5194892    -4.38   0.000    -3.300945   -1.258671 
  _cons |    698.933   10.36436    67.44   0.000     678.5602    719.3057 
------------------------------------------------------------------------- 

so: 
  TestScore  = 698.9 – 2.28STR, , R2 = .05, SER = 18.6 

 (10.4) (0.52) 
t (1 = 0) = –4.38,    p-value = 0.000 (2-sided) 
95% 2-sided conf. interval for 1 is (–3.30, –1.26) 
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Summary of statistical inference about 0 and 1 
Estimation: 
 OLS estimators 0̂  and 1̂  
 0̂  and 1̂  have approximately normal sampling 

distributions in large samples 
Testing: 
 H0: 1 = 1,0 v. 1  1,0 (1,0 is the value of 1 under H0) 
 t = ( 1̂  – 1,0)/SE( 1̂ ) 
 p-value = area under standard normal outside tact (large n) 

Confidence Intervals: 
 95% confidence interval for 1 is { 1̂   1.96SE( 1̂ )} 
 This is the set of 1 that is not rejected at the 5% level 
 The 95% CI contains the true 1 in 95% of all samples. 
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Regression when X is Binary 
(Section 5.3) 

 
Sometimes a regressor is binary: 
 X = 1 if small class size, = 0 if not  
 X = 1 if female, = 0 if male 
 X = 1 if treated (experimental drug), = 0 if not 
 
Binary regressors are sometimes called “dummy” variables. 
  
So far, 1 has been called a “slope,” but that doesn’t make 
sense if X is binary. 
 
How do we interpret regression with a binary regressor? 
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Interpreting regressions with a binary regressor 
Yi = 0 + 1Xi + ui, where X is binary (Xi = 0 or 1): 

 
When Xi = 0, Yi = 0 + ui  

 the mean of Yi is 0 
 that is, E(Yi|Xi=0) = 0 

 
When Xi = 1, Yi = 0 + 1 + ui  

 the mean of Yi is 0 + 1 
 that is, E(Yi|Xi=1) = 0 + 1 

 
so:  

 1 = E(Yi|Xi=1) – E(Yi|Xi=0)  
= population difference in group means 
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Example:   Let  Di = 
1 if 20
0 if 20

i

i

STR
STR


 

 

 
OLS regression:  TestScore  = 650.0 + 7.4D 

(1.3)   (1.8) 
Tabulation of group means: 
Class Size Average score (Y ) Std. dev. (sY) N 

Small (STR > 20) 657.4 19.4 238 
Large (STR ≥ 20) 650.0 17.9 182 

 
Difference in means: small largeY Y  = 657.4 – 650.0 = 7.4 

Standard error:  SE =
2 2
s l

s l

s s
n n

  = 
2 219.4 17.9

238 182
  = 1.8 
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Summary:  regression when Xi is binary (0/1) 
 

Yi = 0 + 1Xi + ui 
 
 0 = mean of Y when X = 0 
 0 + 1 = mean of Y when X = 1 
 1 = difference in group means, X =1 minus X = 0 
 SE( 1̂ ) has the usual interpretation 
 t-statistics, confidence intervals constructed as usual 
 This is another way (an easy way) to do difference-in-

means analysis 
 The regression formulation is especially useful when we 

have additional regressors (as we will very soon) 
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Heteroskedasticity and Homoskedasticity, and 
Homoskedasticity-Only Standard Errors  

(Section 5.4) 
 
1. What…? 
2. Consequences of homoskedasticity 
3. Implication for computing standard errors 
 
What do these two terms mean? 

If var(u|X=x) is constant – that is, if the variance of the 
conditional distribution of u given X does not depend on X 
– then u is said to be homoskedastic. Otherwise, u is 
heteroskedastic. 
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Example: hetero/homoskedasticity in the case of a binary 
regressor (that is, the comparison of means) 
 Standard error when group variances are unequal: 

SE =
2 2
s l

s l

s s
n n

   

 Standard error when group variances are equal: 

SE = 1 1
p

s l

s
n n

  

where  2
ps  = 

2 2( 1) ( 1)
2

s s l l

s l

n s n s
n n

  
 

  (SW, Sect 3.6) 

sp = “pooled estimator of 2” when 2
l  = 2

s  
 Equal group variances = homoskedasticity 
 Unequal group variances = heteroskedasticity 
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Homoskedasticity in a picture: 

 
 E(u|X=x) = 0 (u satisfies Least Squares Assumption #1) 
 The variance of u does not depend on x  
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Heteroskedasticity in a picture: 

 
 E(u|X=x) = 0 (u satisfies Least Squares Assumption #1) 
 The variance of u does depend on x: u is heteroskedastic. 
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A real-data example from labor economics:  average hourly 
earnings vs. years of education (data source: Current 
Population Survey): 

 
Heteroskedastic or homoskedastic? 
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The class size data: 
 

 
 

Heteroskedastic or homoskedastic? 
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So far we have (without saying so) assumed that u might be 
heteroskedastic. 
 
Recall the three least squares assumptions: 

1. E(u|X = x) = 0 
2. (Xi,Yi), i =1,…,n, are i.i.d. 
3. Large outliers are rare 

 
Heteroskedasticity and homoskedasticity concern var(u|X=x).  
Because we have not explicitly assumed homoskedastic 
errors, we have implicitly allowed for heteroskedasticity. 
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What if the errors are in fact homoskedastic? 
 You can prove that OLS has the lowest variance among 

estimators that are linear in Y… a result called the Gauss-
Markov theorem that we will return to shortly. 

 The formula for the variance of 1̂  and the OLS standard 
error simplifies:  If var(ui|Xi=x) = 2

u , then 

var( 1̂ ) = 2 2

var[( ) ]
( )

i x i

X

X u
n



   (general formula) 

= 
2

2
u

Xn



 (simplification if u is homoscedastic) 

Note: var( 1̂ ) is inversely proportional to var(X):  more 
spread in X means more information about 1̂  – we 
discussed this earlier but it is clearer from this formula. 
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 Along with this homoskedasticity-only formula for the 
variance of 1̂ , we have homoskedasticity-only standard 
errors: 
Homoskedasticity-only standard error formula: 

 

SE( 1̂  ) =   

2

1

2

1

1 ˆ
1 2

1 ( )

n

i
i

n

i
i

u
n

n X X
n











. 

 
Some people (e.g. Excel programmers) find the 
homoskedasticity-only formula simpler – but it is wrong 
unless the errors really are homoskedastic. 
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We now have two formulas for standard errors for 1̂ .  
 Homoskedasticity-only standard errors – these are valid 

only if the errors are homoskedastic. 
 The usual standard errors – to differentiate the two, it is 

conventional to call these heteroskedasticity – robust 
standard errors, because they are valid whether or not the 
errors are heteroskedastic. 

 The main advantage of the homoskedasticity-only 
standard errors is that the formula is simpler.  But the 
disadvantage is that the formula is only correct if the 
errors are homoskedastic. 
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Practical implications…  
 The homoskedasticity-only formula for the standard error 

of 1̂  and the “heteroskedasticity-robust” formula differ – 
so in general, you get different standard errors using the 
different formulas. 

 Homoskedasticity-only standard errors are the default 
setting in regression software – sometimes the only setting 
(e.g. Excel).  To get the general “heteroskedasticity-
robust” standard errors you must override the default. 

 If you don’t override the default and there is in fact 
heteroskedasticity, your standard errors (and t-
statistics and confidence intervals) will be wrong – 
typically, homoskedasticity-only SEs are too small. 
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Heteroskedasticity-robust standard errors in STATA  
 
regress testscr str, robust 

 
Regression with robust standard errors            Number of obs =     420 
                                                  F(  1,   418) =   19.26 
                                                  Prob > F      =  0.0000 
                                                  R-squared     =  0.0512 
                                                  Root MSE      =  18.581 
------------------------------------------------------------------------- 
        |               Robust 
testscr |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
--------+---------------------------------------------------------------- 
    str |  -2.279808   .5194892    -4.39   0.000    -3.300945   -1.258671 
  _cons |    698.933   10.36436    67.44   0.000     678.5602    719.3057 
------------------------------------------------------------------------- 

 
 If you use the “, robust” option, STATA computes 

heteroskedasticity-robust standard errors 
 Otherwise, STATA computes homoskedasticity-only 

standard errors 
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The bottom line: 
 If the errors are either homoskedastic or heteroskedastic 

and you use heteroskedastic-robust standard errors, you 
are OK 

 If the errors are heteroskedastic and you use the 
homoskedasticity-only formula for standard errors, your 
standard errors will be wrong (the homoskedasticity-only 
estimator of the variance of 1̂  is inconsistent if there is 
heteroskedasticity). 

 The two formulas coincide (when n is large) in the special 
case of homoskedasticity 

 So, you should always use heteroskedasticity-robust 
standard errors. 
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Some Additional Theoretical Foundations of OLS 
(Section 5.5) 

 
We have already learned a very great deal about OLS: 

OLS is unbiased and consistent; we have a formula for 
heteroskedasticity-robust standard errors; and we can 
construct confidence intervals and test statistics. 

 
Also, a very good reason to use OLS is that everyone else 

does – so by using it, others will understand what you are 
doing.  In effect, OLS is the language of regression analysis, 
and if you use a different estimator, you will be speaking a 
different language. 
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Still, you may wonder… 
 Is this really a good reason to use OLS?  Aren’t there 

other estimators that might be better – in particular, ones 
that might have a smaller variance? 

 Also, what happened to our old friend, the Student t 
distribution? 

 
So we will now answer these questions – but to do so we will 
need to make some stronger assumptions than the three least 
squares assumptions already presented. 
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The Extended Least Squares Assumptions 
These consist of the three LS assumptions, plus two more: 

1. E(u|X = x) = 0. 
2. (Xi,Yi), i =1,…,n, are i.i.d. 
3. Large outliers are rare (E(Y4) < , E(X4) < ). 
4. u is homoskedastic 
5. u is distributed N(0,2) 

 
 Assumptions 4 and 5 are more restrictive – so they apply 

to fewer cases in practice.  However, if you make these 
assumptions, then certain mathematical calculations 
simplify and you can prove strong results – results that 
hold if these additional assumptions are true. 

 We start with a discussion of the efficiency of OLS 
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Efficiency of OLS, part I:  The Gauss-Markov Theorem 
 

Under extended LS assumptions 1-4 (the basic three, plus 
homoskedasticity), 1̂  has the smallest variance among all 
linear estimators (estimators that are linear functions of 
Y1,…, Yn).  This is the Gauss-Markov theorem. 
 
Comments 
 The GM theorem is proven in SW Appendix 5.2 
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The Gauss-Markov Theorem, ctd. 
 
 1̂  is a linear estimator, that is, it can be written as a linear 

function of Y1,…, Yn: 

1̂  – 1 =  1

2
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. 

 The G-M theorem says that among all possible choices of 
{wi}, the OLS weights yield the smallest var( 1̂ ) 
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Efficiency of OLS, part II: 
 
 Under all five extended LS assumptions – including 

normally distributed errors – 1̂  has the smallest variance of 
all consistent estimators (linear or nonlinear functions of 
Y1,…,Yn), as n . 

 This is a pretty amazing result – it says that, if (in addition 
to LSA 1-3) the errors are homoskedastic and normally 
distributed, then OLS is a better choice than any other 
consistent estimator.  And because an estimator that isn’t 
consistent is a poor choice, this says that OLS really is the 
best you can do – if all five extended LS assumptions hold.  
(The proof of this result is beyond the scope of this course 
and isn’t in SW – it is typically done in graduate courses.) 
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Some not-so-good thing about OLS 
The foregoing results are impressive, but these results – and 
the OLS estimator – have important limitations. 
 
1. The GM theorem really isn’t that compelling: 

 The condition of homoskedasticity often doesn’t hold 
(homoskedasticity is special) 

 The result is only for linear estimators – only a small 
subset of estimators (more on this in a moment)   

 
2. The strongest optimality result (“part II” above) requires 

homoskedastic normal errors – not plausible in applications 
(think about the hourly earnings data!) 
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Limitations of OLS, ctd. 
3. OLS is more sensitive to outliers than some other 

estimators.  In the case of estimating the population mean, if 
there are big outliers, then the median is preferred to the 
mean because the median is less sensitive to outliers – it has 
a smaller variance than OLS when there are outliers.  
Similarly, in regression, OLS can be sensitive to outliers, 
and if there are big outliers other estimators can be more 
efficient (have a smaller variance).  One such estimator is 
the least absolute deviations (LAD) estimator: 

0 1, 0 1
1

min ( )
n

b b i i
i

Y b b X


 
 

In virtually all applied regression analysis, OLS is used – and 
that is what we will do in this course too. 
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Inference if u is homoskedastic and normally distributed: 
the Student t distribution (Section 5.6) 

 
Recall the five extended LS assumptions: 

1. E(u|X = x) = 0. 
2. (Xi,Yi), i =1,…,n, are i.i.d. 
3. Large outliers are rare (E(Y4) < , E(X4) < ). 
4. u is homoskedastic 
5. u is distributed N(0,2) 

 
If all five assumptions hold, then: 
 0̂  and 1̂  are normally distributed for all n (!) 
 the t-statistic has a Student t distribution with n – 2 

degrees of freedom – this holds exactly  for all n (!) 
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Normality of the sampling distribution of 1̂  under 1–5: 

1̂  – 1 =  1
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What is the distribution of a weighted average of normals? 
Under assumptions 1 – 5: 

1̂  – 1 ~ 2 2
2

1

10,
n

i u
i

N w
n




  
  

  
      (*) 

Substituting wi into (*) yields the homoskedasticity-only 
variance formula. 
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In addition, under assumptions 1 – 5, under the null 
hypothesis the t statistic has a Student t distribution with n – 2 
degrees of freedom 
 Why n – 2? because we estimated 2 parameters, 0 and 1 
 For n < 30, the t critical values can be a fair bit larger than 

the N(0,1) critical values 
 For n > 50 or so, the difference in tn–2 and N(0,1) 

distributions is negligible.  Recall the Student t table: 
 

degrees of freedom 5% t-distribution critical value 
10 2.23 
20 2.09 
30 2.04 
60 2.00 
 1.96 
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Practical implication: 
 If n < 50 and you really believe that, for your application, u 

is homoskedastic and normally distributed, then use the tn–2 
instead of the N(0,1) critical values for hypothesis tests and 
confidence intervals. 

 In most econometric applications, there is no reason to 
believe that u is homoskedastic and normal – usually, there 
are good reasons to believe that neither assumption holds. 

 Fortunately, in modern applications, n > 50, so we can rely 
on the large-n results presented earlier, based on the CLT, to 
perform hypothesis tests and construct confidence intervals 
using the large-n normal approximation. 
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Summary and Assessment (Section 5.7) 
 The initial policy question: 

Suppose new teachers are hired so the student-teacher 
ratio falls by one student per class.  What is the effect of 
this policy intervention (“treatment”) on test scores? 

 Does our regression analysis using the California data set 
answer this convincingly? 

Not really – districts with low STR tend to be ones with 
lots of other resources and higher income families, which 
provide kids with more learning opportunities outside 
school…this suggests that corr(ui, STRi) > 0, so E(ui|Xi)0. 

 It seems that we have omitted some factors, or variables, 
from our analysis, and this has biased our results... 
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Linear Regression with Multiple Regressors 
(SW Chapter 6) 

 
 
Outline 
1. Omitted variable bias 
2. Causality and regression analysis 
3. Multiple regression and OLS 
4. Measures of fit 
5. Sampling distribution of the OLS estimator 
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Omitted Variable Bias  
(SW Section 6.1) 

 
The error u arises because of factors, or variables, that 
influence Y but are not included in the regression function.  
There are always omitted variables. 
 
Sometimes, the omission of those variables can lead to bias in 
the OLS estimator. 
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Omitted variable bias, ctd. 
The bias in the OLS estimator that occurs as a result of an 
omitted factor, or variable, is called omitted variable bias. For 
omitted variable bias to occur, the omitted variable “Z” must 
satisfy two conditions: 
 
The two conditions for omitted variable bias 

(1) Z is a determinant of Y (i.e. Z is part of u); and 
(2) Z is correlated with the regressor X (i.e. corr(Z,X)  0) 

 
Both conditions must hold for the omission of Z to result in 
omitted variable bias. 
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Omitted variable bias, ctd. 
 
In the test score example: 

1. English language ability (whether the student has 
English as a second language) plausibly affects 
standardized test scores:  Z is a determinant of Y. 

2. Immigrant communities tend to be less affluent and thus 
have smaller school budgets and higher STR:  Z is 
correlated with X. 

 
Accordingly, 1̂  is biased.  What is the direction of this bias? 

 What does common sense suggest? 
 If common sense fails you, there is a formula… 



SW Ch 5 5/40

Omitted variable bias, ctd. 
 
A formula for omitted variable bias:  recall the equation, 

1̂  – 1 =  1
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where vi = (Xi – X )ui  (Xi – X)ui.  Under Least Squares 
Assumption #1,  

E[(Xi – X)ui] = cov(Xi,ui) = 0. 
 
But what if E[(Xi – X)ui] = cov(Xi,ui) =  Xu  0? 
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Omitted variable bias, ctd. 
 
Under LSA #2 and #3 (that is, even if LSA #1 is not true), 

   1̂  – 1 =  1
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, 

 
where Xu = corr(X,u).  If assumption #1 is correct, then Xu = 
0, but if not we have…. 
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The omitted variable bias formula:  

 1̂  
p
 1 + u

Xu
X

 

 
 
 

  

 If an omitted variable Z is both: 
(1) a determinant of Y (that is, it is contained in u); and 
(2) correlated with X, 

then Xu  0 and the OLS estimator 1̂  is biased and is not 
consistent. 
 

 For example, districts with few ESL students (1) do better 
on standardized tests and (2) have smaller classes (bigger 
budgets), so ignoring the effect of having many ESL 
students factor would result in overstating the class size 
effect.  Is this is actually going on in the CA data? 
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 Districts with fewer English Learners have higher test scores 
 Districts with lower percent EL (PctEL) have smaller classes 
 Among districts with comparable PctEL, the effect of class size 

is small (recall overall “test score gap” = 7.4) 
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Causality and regression analysis 
 
The test score/STR/fraction English Learners example shows 
that, if an omitted variable satisfies the two conditions for 
omitted variable bias, then the OLS estimator in the 
regression omitting that variable is biased and inconsistent.  
So, even if n is large, 1̂  will not be close to β1. 
 
This raises a deeper question:  how do we define β1?  That is, 
what precisely do we want to estimate when we run a 
regression?   
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What precisely do we want to estimate when we run a 
regression?  
 
There are (at least) three possible answers to this question: 
 

1. We want to estimate the slope of a line through a 
scatterplot as a simple summary of the data to which 
we attach no substantive meaning. 

 
This can be useful at times, but isn’t very 
interesting intellectually and isn’t what this course 
is about. 
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2. We want to make forecasts, or predictions, of the value 
of Y for an entity not in the data set, for which we 
know the value of X. 

 
Forecasting is an important job for economists, 
and excellent forecasts are possible using 
regression methods without needing to know causal 
effects.  We will return to forecasting later in the 
course. 
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3. We want to estimate the causal effect on Y of a change 
in X. 

 
This is why we are interested in the class size 
effect.  Suppose the school board decided to cut 
class size by 2 students per class.  What would be 
the effect on test scores?  This is a causal question 
(what is the causal effect on test scores of STR?) so 
we need to estimate this causal effect.  Except when 
we discuss forecasting, the aim of this course is the 
estimation of causal effects using regression 
methods. 
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What, precisely, is a causal effect? 
 

 “Causality” is a complex concept! 
 

 In this course, we take a practical approach to defining 
causality:  

 
A causal effect is defined to be the effect measured 
in an ideal randomized controlled experiment. 
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Ideal Randomized Controlled Experiment  
 
 Ideal: subjects all follow the treatment protocol – perfect 

compliance, no errors in reporting, etc.! 
 Randomized:  subjects from the population of interest are 

randomly assigned to a treatment or control group (so 
there are no confounding factors) 

 Controlled:  having a control group permits measuring the 
differential effect of the treatment 

 Experiment:  the treatment is assigned as part of the 
experiment:  the subjects have no choice, so there is no 
“reverse causality” in which subjects choose the treatment 
they think will work best. 
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Back to class size: 
 
Imagine an ideal randomized controlled experiment for 
measuring the effect on Test Score of reducing STR… 

 
 In that experiment, students would be randomly assigned 

to classes, which would have different sizes. 
 

 Because they are randomly assigned, all student 
characteristics (and thus ui) would be distributed 
independently of STRi. 
 

 Thus, E(ui|STRi) = 0 – that is, LSA #1 holds in a 
randomized controlled experiment.  
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How does our observational data differ from this ideal? 
 
 The treatment is not randomly assigned 

 
 Consider PctEL – percent English learners – in the district.  

It plausibly satisfies the two criteria for omitted variable 
bias:  Z = PctEL is: 

(1) a determinant of Y; and 
(2) correlated with the regressor X. 

 
 Thus, the “control” and “treatment” groups differ in a 

systematic way, so corr(STR,PctEL)  0 



SW Ch 5 17/40

 Randomization + control group means that any differences 
between the treatment and control groups are random – not 
systematically related to the treatment 
 

 We can eliminate the difference in PctEL between the large 
(control) and small (treatment) groups by examining the 
effect of class size among districts with the same PctEL. 

o If the only systematic difference between the large and 
small class size groups is in PctEL, then we are back to 
the randomized controlled experiment – within each 
PctEL group. 

o This is one way to “control” for the effect of PctEL 
when estimating the effect of STR. 
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Return to omitted variable bias 
Three ways to overcome omitted variable bias 
1. Run a randomized controlled experiment in which 

treatment (STR) is randomly assigned:  then PctEL is still 
a determinant of TestScore, but PctEL is uncorrelated with 
STR.  (This solution to OV bias is rarely feasible.) 

2. Adopt the “cross tabulation” approach, with finer 
gradations of STR and PctEL – within each group, all 
classes have the same PctEL, so we control for PctEL (But 
soon you will run out of data, and what about other 
determinants like family income and parental education?) 

3. Use a regression in which the omitted variable (PctEL) is 
no longer omitted: include PctEL as an additional 
regressor in a multiple regression. 
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The Population Multiple Regression Model 
(SW Section 6.2) 

 
Consider the case of two regressors: 

Yi = 0 + 1X1i + 2X2i + ui,  i = 1,…,n 
 
 Y is the dependent variable 
 X1, X2 are the two independent variables (regressors) 
 (Yi, X1i, X2i) denote the ith observation on Y, X1, and X2. 
 0 = unknown population intercept 
 1 = effect on Y of a change in X1, holding X2 constant 
 2 = effect on Y of a change in X2, holding X1 constant 
 ui = the regression error (omitted factors) 
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Interpretation of coefficients in multiple regression 
 

Yi = 0 + 1X1i + 2X2i + ui,  i = 1,…,n 
 
Consider changing X1 by X1 while holding X2 constant: 
Population regression line before the change: 
 

Y = 0 + 1X1 + 2X2 
 
Population regression line, after the change: 
 

Y + Y = 0 + 1(X1 + X1) + 2X2  
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Before:        Y = 0 + 1(X1 + X1) + 2X2  
 
After:    Y + Y = 0 + 1(X1 + X1) + 2X2 
 
Difference:   Y = 1X1 

So: 

    1 = 
1

Y
X



, holding X2 constant          

 

    2 = 
2

Y
X



, holding X1 constant 

 
         0 = predicted value of Y when X1 = X2 = 0. 
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The OLS Estimator in Multiple Regression 
(SW Section 6.3) 

 
With two regressors, the OLS estimator solves: 
 

0 1 2

2
, , 0 1 1 2 2

1

min [ ( )]
n

b b b i i i
i

Y b b X b X


    

 
 The OLS estimator minimizes the average squared 

difference between the actual values of Yi and the prediction 
(predicted value) based on the estimated line. 

 This minimization problem is solved using calculus 
 This yields the OLS estimators of 0 and 1. 
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Example:  the California test score data 
 
Regression of TestScore against STR: 
 

TestScore  = 698.9 – 2.28STR 
 
Now include percent English Learners in the district (PctEL): 
 

TestScore  = 686.0 – 1.10STR – 0.65PctEL 
 
 What happens to the coefficient on STR? 
 Why? (Note: corr(STR, PctEL) = 0.19) 
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Multiple regression in STATA 
 
reg testscr str pctel, robust; 

 
Regression with robust standard errors                 Number of obs =     420 
                                                       F(  2,   417) =  223.82 
                                                       Prob > F      =  0.0000 
                                                       R-squared     =  0.4264 
                                                       Root MSE      =  14.464 
 
------------------------------------------------------------------------------ 
             |               Robust 
     testscr |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         str |  -1.101296   .4328472    -2.54   0.011     -1.95213   -.2504616 
       pctel |  -.6497768   .0310318   -20.94   0.000     -.710775   -.5887786 
       _cons |   686.0322   8.728224    78.60   0.000     668.8754     703.189 
------------------------------------------------------------------------------ 

 
TestScore  = 686.0 – 1.10STR – 0.65PctEL 

 
More on this printout later… 
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Measures of Fit for Multiple Regression 
(SW Section 6.4) 

 
Actual = predicted + residual:   Yi = îY  + ˆiu  
 
SER = std. deviation of ˆiu  (with d.f. correction) 
 
RMSE = std. deviation of ˆiu  (without d.f. correction) 
 
R2 = fraction of variance of Y explained by X 
 

2R  = “adjusted R2” = R2 with a degrees-of-freedom correction 
that adjusts for estimation uncertainty; 2R  < R2 
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SER and RMSE 
 
As in regression with a single regressor, the SER and the 
RMSE are measures of the spread of the Ys around the 
regression line: 
 

SER = 2

1

1 ˆ
1

n

i
i

u
n k     

 

RMSE = 2

1

1 ˆ
n

i
i

u
n 
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R2 and 2R  (adjusted R2) 
 
The R2 is the fraction of the variance explained – same 
definition as in regression with a single regressor: 

 

R2 = ESS
TSS

 = 1 SSR
TSS

 , 

 

where ESS = 2

1

ˆ ˆ( )
n

i
i

Y Y


 , SSR = 2

1

ˆ
n

i
i

u

 ,  TSS = 2

1

( )
n

i
i

Y Y


 . 

 The R2 always increases when you add another regressor 
(why?) – a bit of a problem for a measure of “fit” 
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R2 and 2R , ctd. 
 
The 2R  (the “adjusted R2”) corrects this problem by 
“penalizing” you for including another regressor – the 2R  
does not necessarily increase when you add another regressor. 
 

Adjusted R2:  2R  = 11
1

n SSR
n k TSS

     
    

 
Note that 2R  < R2, however if n is large the two will be very 
close. 
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Measures of fit, ctd. 
 
Test score example: 
 
(1)  TestScore  = 698.9 – 2.28STR, 

R2 = .05, SER = 18.6 
 
(2)  TestScore  = 686.0 – 1.10STR – 0.65PctEL, 

R2 = .426, 2R  = .424, SER = 14.5 
 
 What – precisely – does this tell you about the fit of 

regression (2) compared with regression (1)? 
 Why are the R2 and the 2R so close in (2)? 
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 The Least Squares Assumptions for Multiple Regression 
(SW Section 6.5) 

 
Yi = 0 + 1X1i + 2X2i + … + kXki + ui,  i = 1,…,n 

 
1. The conditional distribution of u given the X’s has mean 

zero, that is, E(ui|X1i = x1,…, Xki = xk) = 0. 
2. (X1i,…,Xki,Yi), i =1,…,n, are i.i.d. 
3. Large outliers are unlikely: X1,…, Xk, and Y have four 

moments: E( 4
1iX ) < ,…, E( 4

kiX ) < , E( 4
iY ) < . 

4. There is no perfect multicollinearity. 
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Assumption #1: the conditional mean of u given the 
included Xs is zero. 
  E(u|X1 = x1,…, Xk = xk) = 0 
 
 This has the same interpretation as in regression with a 

single regressor. 
 Failure of this condition leads to omitted variable bias, 

specifically, if an omitted variable  
(1) belongs in the equation (so is in u) and  
(2) is correlated with an included X 
then this condition fails and there is OV bias. 

 The best solution, if possible, is to include the omitted 
variable in the regression. 

 A second, related solution is to include a variable that 
controls for the omitted variable (discussed in Ch. 7) 
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Assumption #2:  (X1i,…,Xki,Yi), i =1,…,n, are i.i.d. 

This is satisfied automatically if the data are collected by 
simple random sampling. 

 
 
Assumption #3:  large outliers are rare (finite fourth 
moments) 

This is the same assumption as we had before for a single 
regressor.  As in the case of a single regressor, OLS can 
be sensitive to large outliers, so you need to check your 
data (scatterplots!) to make sure there are no crazy values 
(typos or coding errors). 
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Assumption #4:  There is no perfect multicollinearity 
Perfect multicollinearity is when one of the regressors is 
an exact linear function of the other regressors. 

 
Example: Suppose you accidentally include STR twice: 

 
regress testscr str str, robust 
Regression with robust standard errors            Number of obs =     420 
                                                  F(  1,   418) =   19.26 
                                                  Prob > F      =  0.0000 
                                                  R-squared     =  0.0512 
                                                  Root MSE      =  18.581 
------------------------------------------------------------------------- 
        |               Robust 
testscr |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
--------+---------------------------------------------------------------- 
    str |  -2.279808   .5194892    -4.39   0.000    -3.300945   -1.258671 
    str |  (dropped) 
  _cons |    698.933   10.36436    67.44   0.000     678.5602    719.3057 
------------------------------------------------------------------------- 
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Perfect multicollinearity is when one of the regressors is an 
exact linear function of the other regressors. 
 In the previous regression, 1 is the effect on TestScore of a 

unit change in STR, holding STR constant (???) 
 We will return to perfect (and imperfect) multicollinearity 

shortly, with more examples… 
 
With these least squares assumptions in hand, we now can 
derive the sampling distribution of 1̂ , 2̂ ,…, ˆ

k . 
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 The Sampling Distribution of the OLS Estimator 
 (SW Section 6.6) 

Under the four Least Squares Assumptions, 
 The sampling distribution of 1̂  has mean 1 
 var( 1̂ ) is inversely proportional to n. 
 Other than its mean and variance, the exact (finite-n) 

distribution of 1̂  is very complicated; but for large n… 

o 1̂  is consistent: 1̂  
p
 1 (law of large numbers) 

o  1 1

1

ˆ ˆ( )
ˆvar( )

E 



  is approximately distributed N(0,1) (CLT) 

o These statements hold for 1̂ ,…, ˆ
k  

Conceptually, there is nothing new here! 
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Multicollinearity, Perfect and Imperfect 
(SW Section 6.7) 

 
Perfect multicollinearity is when one of the regressors is an 
exact linear function of the other regressors. 
 
Some more examples of perfect multicollinearity 

1. The example from before: you include STR twice, 
2. Regress TestScore on a constant, D, and B, where: Di = 

1 if STR ≤ 20, = 0 otherwise; Bi = 1 if STR >20, = 0 
otherwise, so Bi = 1 – Di and there is perfect 
multicollinearity. 

3. Would there be perfect multicollinearity if the 
intercept (constant) were excluded from this 
regression?  This example is a special case of… 



SW Ch 5 37/40

The dummy variable trap 
Suppose you have a set of multiple binary (dummy) 

variables, which are mutually exclusive and exhaustive – that 
is, there are multiple categories and every observation falls in 
one and only one category (Freshmen, Sophomores, Juniors, 
Seniors, Other).  If you include all these dummy variables 
and a constant, you will have perfect multicollinearity – this 
is sometimes called the dummy variable trap. 

 Why is there perfect multicollinearity here? 
 Solutions to the dummy variable trap: 

1. Omit one of the groups (e.g. Senior), or 
2. Omit the intercept 

 What are the implications of (1) or (2) for the 
interpretation of the coefficients? 
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Perfect multicollinearity, ctd. 
 
 Perfect multicollinearity usually reflects a mistake in the 

definitions of the regressors, or an oddity in the data 
 If you have perfect multicollinearity, your statistical 

software will let you know – either by crashing or giving an 
error message or by “dropping” one of the variables 
arbitrarily 

 The solution to perfect multicollinearity is to modify your 
list of regressors so that you no longer have perfect 
multicollinearity. 



SW Ch 5 39/40

Imperfect multicollinearity 
 
Imperfect and perfect multicollinearity are quite different 
despite the similarity of the names. 
 
Imperfect multicollinearity occurs when two or more 
regressors are very highly correlated. 

 Why the term “multicollinearity”?  If two regressors are 
very highly correlated, then their scatterplot will pretty 
much look like a straight line – they are “co-linear” – 
but unless the correlation is exactly 1, that collinearity 
is imperfect. 
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Imperfect multicollinearity, ctd. 
Imperfect multicollinearity implies that one or more of the 
regression coefficients will be imprecisely estimated. 
 The idea: the coefficient on X1 is the effect of X1 holding 

X2 constant; but if X1 and X2 are highly correlated, there is 
very little variation in X1 once X2 is held constant – so the 
data don’t contain much information about what happens 
when X1 changes but X2 doesn’t.  If so, the variance of the 
OLS estimator of the coefficient on X1 will be large. 

 Imperfect multicollinearity (correctly) results in large 
standard errors for one or more of the OLS coefficients. 

 The math?  See SW, App. 6.2 
 
Next topic: hypothesis tests and confidence intervals… 
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Hypothesis Tests and Confidence Intervals 

in Multiple Regression 
(SW Chapter 7) 

 
Outline 
1. Hypothesis tests and confidence intervals for one coefficient 
2. Joint hypothesis tests on multiple coefficients 
3. Other types of hypotheses involving multiple coefficients 
4. Variables of interest, control variables, and how to decide 

which variables to include in a regression model 
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 Hypothesis Tests and Confidence Intervals for a Single 
Coefficient  

(SW Section 7.1) 
 
Hypothesis tests and confidence intervals for a single 
coefficient in multiple regression follow the same logic and 
recipe as for the slope coefficient in a single-regressor model. 

 1 1

1

ˆ ˆ( )
ˆvar( )

E 



  is approximately distributed N(0,1) (CLT). 

 Thus hypotheses on 1 can be tested using the usual t-
statistic, and confidence intervals are constructed as { 1̂   
1.96SE( 1̂ )}. 

 So too for 2,…, k. 
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Example:  The California class size data 
(1)    TestScore  = 698.9 – 2.28STR 

(10.4)  (0.52) 
(2)  TestScore  = 686.0 – 1.10STR – 0.650PctEL 
       (8.7)  (0.43)    (0.031) 
 The coefficient on STR in (2) is the effect on TestScores of a 

unit change in STR, holding constant the percentage of 
English Learners in the district 

 The coefficient on STR falls by one-half 
 The 95% confidence interval for coefficient on STR in (2) is 

{–1.10  1.960.43} = (–1.95, –0.26) 
 The t-statistic testing STR = 0 is t = –1.10/0.43 = –2.54, so 

we reject the hypothesis at the 5% significance level 
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Standard errors in multiple regression in STATA 
 
reg testscr str pctel, robust; 

 
Regression with robust standard errors                 Number of obs =     420 
                                                       F(  2,   417) =  223.82 
                                                       Prob > F      =  0.0000 
                                                       R-squared     =  0.4264 
                                                       Root MSE      =  14.464 
 
------------------------------------------------------------------------------ 
             |               Robust 
     testscr |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         str |  -1.101296   .4328472    -2.54   0.011     -1.95213   -.2504616 
       pctel |  -.6497768   .0310318   -20.94   0.000     -.710775   -.5887786 
       _cons |   686.0322   8.728224    78.60   0.000     668.8754     703.189 
------------------------------------------------------------------------------ 

 

  TestScore  = 686.0 – 1.10STR – 0.650PctEL 
       (8.7)  (0.43)    (0.031) 
We use heteroskedasticity-robust standard errors – for exactly 
the same reason as in the case of a single regressor. 
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Tests of Joint Hypotheses 
(SW Section 7.2) 

 
Let Expn = expenditures per pupil and consider the 
population regression model: 

TestScorei = 0 + 1STRi + 2Expni + 3PctELi + ui 
 
The null hypothesis that “school resources don’t matter,” and 
the alternative that they do, corresponds to: 
 

H0: 1 = 0 and 2 = 0  
vs. H1: either 1  0 or 2  0 or both 

TestScorei = 0 + 1STRi + 2Expni + 3PctELi + ui 
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Tests of joint hypotheses, ctd. 
H0: 1 = 0 and 2 = 0  

vs. H1: either 1  0 or 2  0 or both 
 A joint hypothesis specifies a value for two or more 

coefficients, that is, it imposes a restriction on two or more 
coefficients. 

 In general, a joint hypothesis will involve q restrictions.  In 
the example above, q = 2, and the two restrictions are 1 = 0 
and 2 = 0. 

 A “common sense” idea is to reject if either of the 
individual t-statistics exceeds 1.96 in absolute value. 

 But this “one at a time” test isn’t valid: the resulting test 
rejects too often under the null hypothesis (more than 5%)! 
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Why can’t we just test the coefficients one at a time? 
Because the rejection rate under the null isn’t 5%.  We’ll 

calculate the probability of incorrectly rejecting the null using 
the “common sense” test based on the two individual t-
statistics.  To simplify the calculation, suppose that 1̂  and 2̂  
are independently distributed (this isn’t true in general – just 
in this example).  Let t1 and t2 be the t-statistics: 

t1 = 1

1

ˆ 0
ˆ( )SE



  and t2 = 2

2

ˆ 0
ˆ( )SE



  

The “one at time” test is: 
 reject H0: 1 = 2 = 0 if |t1| > 1.96 and/or |t2| > 1.96 
 
What is the probability that this “one at a time” test  rejects 
H0, when H0 is actually true? (It should be 5%.) 
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Suppose t1 and t2 are independent (for this example). 
 
The probability of incorrectly rejecting the null hypothesis 
using the “one at a time” test  

= 
0

PrH [|t1| > 1.96 and/or |t2| > 1.96] 
= 1 – 

0
PrH [|t1| ≤ 1.96 and |t2| ≤ 1.96] 

= 1 – 
0

PrH [|t1| ≤ 1.96]  
0

PrH [|t2| ≤ 1.96]  
(because t1 and t2 are independent by assumption) 

 = 1 – (.95)2 
 = .0975 = 9.75% – which is not the desired 5%!! 
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The size of a test is the actual rejection rate under the null 
hypothesis. 
 The size of the “common sense” test isn’t 5%! 
 In fact, its size depends on the correlation between t1 and 

t2 (and thus on the correlation between 1̂  and 2̂ ). 
 
Two Solutions: 
 Use a different critical value in this procedure – not 1.96 

(this is the “Bonferroni method – see SW App. 7.1) (this 
method is rarely used in practice however) 

 Use a different test statistic designed to test both 1 and 2 
at once: the F-statistic (this is common practice) 
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The F-statistic 
The F-statistic tests all parts of a joint hypothesis at once. 
 
Formula for the special case of the joint hypothesis 1 = 1,0 
and 2 = 2,0 in a regression with two regressors: 
 

F = 1 2

1 2

2 2
1 2 , 1 2

2
,

ˆ21
ˆ2 1

t t

t t

t t t t


  
   

 

 
where 

1 2,ˆt t  estimates the correlation between t1 and t2. 
 
Reject when F is large (how large?) 
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The F-statistic testing 1 and 2: 
 

F = 1 2

1 2

2 2
1 2 , 1 2

2
,

ˆ21
ˆ2 1

t t

t t

t t t t


  
   

 

 
 The F-statistic is large when t1 and/or t2 is large 
 The F-statistic corrects (in just the right way) for the 

correlation between t1 and t2. 
 The formula for more than two ’s is nasty unless you use 

matrix algebra. 
 This gives the F-statistic a nice large-sample approximate 

distribution, which is… 
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Large-sample distribution of the F-statistic 
Consider the special case that t1 and t2 are independent, so 

1 2,ˆt t  
p
 0; in large samples the formula becomes 

 

F = 1 2

1 2

2 2
1 2 , 1 2

2
,

ˆ21
ˆ2 1

t t

t t

t t t t


  
   

  2 2
1 2

1 ( )
2

t t  

 
 Under the null, t1 and t2 have standard normal distributions 

that, in this special case, are independent 
 The large-sample distribution of the F-statistic is the 

distribution of the average of two independently 
distributed squared standard normal random variables. 
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The chi-squared distribution 
The chi-squared distribution with q degrees of freedom ( 2

q ) 
is defined to be the distribution of the sum of q independent 
squared standard normal random variables. 
 
In large samples, F is distributed as 2

q /q. 
 

Selected large-sample critical values of 2
q /q 

q   5% critical value 
1     3.84  (why?) 
2     3.00  (the case q=2 above) 
3     2.60 
4     2.37 
5     2.21   
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Computing the p-value using the F-statistic: 
 
p-value = tail probability of the 2

q /q distribution  
beyond the F-statistic actually computed. 

 
Implementation in STATA 

Use the “test” command after the regression 
 
Example:  Test the joint hypothesis that the population 
coefficients on STR and expenditures per pupil (expn_stu) are 
both zero, against the alternative that at least one of the 
population coefficients is nonzero.
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F-test example, California class size data: 
 
reg testscr str expn_stu pctel, r; 
 
Regression with robust standard errors                 Number of obs =     420 
                                                       F(  3,   416) =  147.20 
                                                       Prob > F      =  0.0000 
                                                       R-squared     =  0.4366 
                                                       Root MSE      =  14.353 
 
------------------------------------------------------------------------------ 
             |               Robust 
     testscr |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         str |  -.2863992   .4820728    -0.59   0.553    -1.234001     .661203 
    expn_stu |   .0038679   .0015807     2.45   0.015     .0007607    .0069751 
       pctel |  -.6560227   .0317844   -20.64   0.000    -.7185008   -.5935446 
       _cons |   649.5779   15.45834    42.02   0.000     619.1917    679.9641 
------------------------------------------------------------------------------ 
         NOTE 
test str expn_stu;    The test command follows the regression 
 
 ( 1)  str = 0.0     There are q=2 restrictions being tested 
 ( 2)  expn_stu = 0.0 
 
       F(  2,   416) =    5.43 The 5% critical value for q=2 is 3.00 

Prob > F =    0.0047    Stata computes the p-value for you 
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More on F-statistics. 
There is a simple formula for the F-statistic that holds only 
under homoskedasticity (so it isn’t very useful) but which 
nevertheless might help you understand what the F-statistic is 
doing. 
 
The homoskedasticity-only F-statistic 
When the errors are homoskedastic, there is a simple formula 
for computing the “homoskedasticity-only” F-statistic: 
 Run two regressions, one under the null hypothesis (the 

“restricted” regression) and one under the alternative 
hypothesis (the “unrestricted” regression). 

 Compare the fits of the regressions – the R2s – if the 
“unrestricted” model fits sufficiently better, reject the null 
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The “restricted” and “unrestricted” regressions 
Example: are the coefficients on STR and Expn zero? 

 
Unrestricted population regression (under H1): 

TestScorei = 0 + 1STRi + 2Expni + 3PctELi + ui 
 
Restricted population regression (that is, under H0): 

TestScorei = 0 + 3PctELi + ui     (why?) 
 
 The number of restrictions under H0 is q = 2 (why?). 
 The fit will be better (R2 will be higher) in the unrestricted 

regression (why?) 
By how much must the R2 increase for the coefficients on 
Expn and PctEL to be judged statistically significant? 
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Simple formula for the homoskedasticity-only F-statistic: 
 

F = 
2 2

2

( ) /
(1 ) /( 1)

unrestricted restricted

unrestricted unrestricted

R R q
R n k


  

  

where:  
2
restrictedR = the R2 for the restricted regression  
2
unrestrictedR  = the R2 for the unrestricted regression 

q = the number of restrictions under the null 
kunrestricted = the number of regressors in the 

   unrestricted regression. 
 The bigger the difference between the restricted and 

unrestricted R2s – the greater the improvement in fit by 
adding the variables in question – the larger is the 
homoskedasticity-only F. 
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Example: 
Restricted regression: 
TestScore  = 644.7 –0.671PctEL,  2

restrictedR  = 0.4149 
          (1.0)  (0.032) 
Unrestricted regression: 
TestScore  = 649.6 – 0.29STR + 3.87Expn – 0.656PctEL 
       (15.5)  (0.48)      (1.59)    (0.032) 
 2

unrestrictedR  = 0.4366, kunrestricted = 3,  q = 2 
 

So     F = 
2 2

2

( ) /
(1 ) /( 1)

unrestricted restricted

unrestricted unrestricted

R R q
R n k


  

 

   = (.4366 .4149) / 2
(1 .4366) /(420 3 1)


  

 = 8.01 

Note: Heteroskedasticity-robust F = 5.43… 
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The homoskedasticity-only F-statistic – summary 

F = 
2 2

2

( ) /
(1 ) /( 1)

unrestricted restricted

unrestricted unrestricted

R R q
R n k


  

 

 
 The homoskedasticity-only F-statistic rejects when adding 

the two variables increased the R2 by “enough” – that is, 
when adding the two variables improves the fit of the 
regression by “enough” 

 If the errors are homoskedastic, then the 
homoskedasticity-only F-statistic has a large-sample 
distribution that is 2

q /q. 
 But if the errors are heteroskedastic, the large-sample 

distribution of the homoskedasticity-only F-statistic is not 
2
q /q 
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The F distribution  
Your regression printouts might refer to the “F” distribution. 
 
If the four multiple regression LS assumptions hold and if: 

5. ui is homoskedastic, that is, var(u|X1,…,Xk) does not 
depend on X’s 

6. u1,…,un are normally distributed 
 
then the homoskedasticity-only F-statistic has the  
“Fq,n-k–1” distribution, where q = the number of restrictions 
and k = the number of regressors under the alternative (the 
unrestricted model). 
 The F distribution is to the 2

q /q distribution what the 
tn–1 distribution is to the N(0,1) distribution 
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The Fq,n–k–1 distribution: 
 The F distribution is tabulated many places 
 As n  , the Fq,n-k–1 distribution asymptotes to the 2

q /q  
distribution: 

The Fq, and 2
q /q distributions are the same. 

 For q not too big and n≥100, the Fq,n–k–1 distribution and 
the 2

q /q distribution are essentially identical. 
 Many regression packages (including STATA) compute 

p-values of F-statistics using the F distribution 
 You will encounter the F distribution in published 

empirical work. 
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Another digression:  A little history of statistics… 
 
 The theory of the homoskedasticity-only F-statistic and 

the Fq,n–k–1 distributions rests on implausibly strong 
assumptions (are earnings normally distributed?) 

 These statistics date to the early 20th century… the days 
when data sets were small and computers were people…  

 The F-statistic and Fq,n–k–1 distribution were major 
breakthroughs: an easily computed formula; a single set of 
tables that could be published once, then applied in many 
settings; and a precise, mathematically elegant 
justification. 
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A little history of statistics, ctd… 
 
 The strong assumptions were a minor price for this 

breakthrough. 
 But with modern computers and large samples we can use 

the heteroskedasticity-robust F-statistic and the Fq, 
distribution, which only require the four least squares 
assumptions (not assumptions #5 and #6) 

 This historical legacy persists in modern software, in 
which homoskedasticity-only standard errors (and F-
statistics) are the default, and in which p-values are 
computed using the Fq,n–k–1 distribution. 
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Summary: the homoskedasticity-only F-statistic and the F 
distribution 
 
 These are justified only under very strong conditions – 

stronger than are realistic in practice. 
 You should use the heteroskedasticity-robust F-statistic, 

with 2
q /q (that is, Fq,) critical values. 

 For n ≥ 100, the F-distribution essentially is the 2
q /q 

distribution. 
 For small n, sometimes researchers use the F distribution 

because it has larger critical values and in this sense is 
more conservative. 
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Summary:  testing joint hypotheses 
 
 The “one at a time” approach of rejecting if either of the t-

statistics exceeds 1.96 rejects more than 5% of the time 
under the null (the size exceeds the desired significance 
level) 

 The heteroskedasticity-robust F-statistic is built in to 
STATA (“test” command); this tests all q restrictions at 
once. 

 For n large, the F-statistic is distributed 2
q /q (= Fq,) 

 The homoskedasticity-only F-statistic is important 
historically (and thus in practice), and can help intuition, 
but isn’t valid when there is heteroskedasticity 
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Testing Single Restrictions on Multiple Coefficients 
(SW Section 7.3) 

 
Yi = 0 + 1X1i + 2X2i + ui,  i = 1,…,n 

 
Consider the null and alternative hypothesis, 
 
  H0: 1 = 2    vs.  H1: 1  2 
 
This null imposes a single restriction (q = 1) on multiple 
coefficients – it is not a joint hypothesis with multiple 
restrictions (compare with 1 = 0 and 2 = 0). 
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Testing single restrictions on multiple coefficients, ctd.  
 
Here are two methods for testing single restrictions on 
multiple coefficients: 
 

1. Rearrange (“transform”) the regression 
Rearrange the regressors so that the restriction 
becomes a restriction on a single coefficient in an 
equivalent regression; or, 

 
2. Perform the test directly 

Some software, including STATA, lets you test 
restrictions using multiple coefficients directly  
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Method 1:  Rearrange (“transform”) the regression 
    
   Yi = 0 + 1X1i + 2X2i + ui  

H0: 1 = 2    vs.  H1: 1  2 
 
Add and subtract 2X1i: 
 

Yi = 0 + (1 – 2) X1i + 2(X1i + X2i) + ui 
or 

Yi = 0 + 1 X1i + 2Wi + ui 
where 
   1 = 1 – 2 
   Wi = X1i + X2i 
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Rearrange the regression, ctd. 
(a) Original equation: 

Yi = 0 + 1X1i + 2X2i + ui  
H0: 1 = 2   vs.  H1: 1  2 

 (b) Rearranged (“transformed”) equation: 
Yi = 0 + 1 X1i + 2Wi + ui 

where 1 = 1 – 2 and Wi = X1i + X2i 
so 
  H0: 1 = 0  vs.  H1: 1  0 
 These two regressions ((a) and (b)) have the same R2, the 

same predicted values, and the same residuals. 
 The testing problem is now a simple one: test whether 1 = 0 

in regression (b). 
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Method 2: Perform the test directly 
 

Yi = 0 + 1X1i + 2X2i + ui  
H0: 1 = 2     vs.  H1: 1  2 

Example:  
TestScorei = 0 + 1STRi + 2Expni + 3PctELi + ui 
 
In STATA, to test 1 = 2 vs. 1  2 (two-sided): 

 
regress testscore str expn pctel, r 
test str=expn 

 
The details of implementing this method are software-
specific. 



SW Ch 7 33/61

Confidence Sets for Multiple Coefficients  
(SW Section 7.4) 

 
Yi = 0 + 1X1i + 2X2i + … + kXki + ui,  i = 1,…,n 

 
What is a joint confidence set for 1 and 2? 
A 95% joint confidence set is: 
 A set-valued function of the data that contains the true 

coefficient(s) in 95% of hypothetical repeated samples. 
 Equivalently, the set of coefficient values that cannot be 

rejected at the 5% significance level. 
You can find a 95% confidence set as the set of (1, 2) that 
cannot be rejected at the 5% level using an F-test (why not 
just combine the two 95% confidence intervals?). 
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Joint confidence sets ctd. 
Let F(1,0, 2,0) be the (heteroskedasticity-robust) F-statistic 
testing the hypothesis that 1 = 1,0 and 2 = 2,0: 
 
95% confidence set = {1,0, 2,0:  F(1,0, 2,0) < 3.00} 
 3.00 is the 5% critical value of the F2, distribution 
 This set has coverage rate 95% because the test on which 

it is based (the test it “inverts”) has size of 5% 
5% of the time, the test incorrectly rejects the null 
when the null is true, so 95% of the time it does not; 
therefore the confidence set constructed as the 
nonrejected values contains the true value 95% of the 
time (in 95% of all samples). 
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The confidence set based on the F-statistic is an ellipse: 

{1, 2:  F = 1 2

1 2

2 2
1 2 , 1 2

2
,
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t t t t
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This is a quadratic form in 1,0 and 2,0 – thus the 
boundary of the set F = 3.00 is an ellipse. 
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Confidence set based on inverting the F-statistic 
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Regression Specification: variables of interest, control 
variables, and conditional mean independence 

(SW Section 7.5) 
 

We want to get an unbiased estimate of the effect on test 
scores of changing class size, holding constant factors outside 
the school committee’s control – such as outside learning 
opportunities (museums, etc), parental involvement in 
education (reading with mom at home?), etc. 

If we could run an experiment, we would randomly assign 
students (and teachers) to different sized classes.  Then STRi 
would be independent of all the things that go into ui, so 
E(ui|STRi) = 0 and the OLS slope estimator in the regression 
of TestScorei on STRi will be an unbiased estimator of the 
desired causal effect. 
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But with observational data, ui depends on additional 
factors (museums, parental involvement, knowledge of 
English etc). 

 If you can observe those factors (e.g. PctEL), then 
include them in the regression. 

 But usually you can’t observe all these omitted causal 
factors (e.g. parental involvement in homework).  In this 
case, you can include “control variables” which are 
correlated with these omitted causal factors, but which 
themselves are not causal. 
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Control variables in multiple regression 
 
A control variable W is a variable that is correlated with, 

and controls for, an omitted causal factor in the regression of 
Y on X, but which itself does not necessarily have a causal 
effect on Y. 
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Control variables: an example from the California test 
score data 
 

TestScore  = 700.2 – 1.00STR – 0.122PctEL – 0.547LchPct, 2R =0.773 
            (5.6)  (0.27)  (.033)          (.024) 

 
PctEL = percent English Learners in the school district 
LchPct = percent of students receiving a free/subsidized lunch 

   (only students from low-income families are eligible) 
 
 Which variable is the variable of interest? 
 Which variables are control variables?  Do they have 

causal components?  What do they control for? 
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Control variables example, ctd. 
TestScore  = 700.2 – 1.00STR – 0.122PctEL – 0.547LchPct, 2R =0.773 
            (5.6)  (0.27)  (.033)          (.024) 

 STR is the variable of interest 
 PctEL probably has a direct causal effect (school is 

tougher if you are learning English!).  But it is also a 
control variable: immigrant communities tend to be less 
affluent and often have fewer outside learning 
opportunities, and PctEL is correlated with those omitted 
causal variables.  PctEL is both a possible causal 
variable and a control variable. 

 LchPct might have a causal effect (eating lunch helps 
learning); it also is correlated with and controls for 
income-related outside learning opportunities.  LchPct is 
both a possible causal variable and a control variable. 
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Control variables, ctd. 
 
1.  Three interchangeable statements about what makes 

an effective control variable: 
i. An effective control variable is one which, when 

included in the regression, makes the error term 
uncorrelated with the variable of interest. 

ii. Holding constant the control variable(s), the variable 
of interest is “as if” randomly assigned. 

iii. Among individuals (entities) with the same value of 
the control variable(s), the variable of interest is 
uncorrelated with the omitted determinants of Y 
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Control variables, ctd. 
 
2.  Control variables need not be causal, and their 

coefficients generally do not have a causal 
interpretation.  For example: 

 
TestScore  = 700.2 – 1.00STR – 0.122PctEL – 0.547LchPct, 2R 0.773 
            (5.6)  (0.27)  (.033)          (.024) 

 Does the coefficient on LchPct have a causal 
interpretation?  If so, then we should be able to boost test 
scores (by a lot! Do the math!) by simply eliminating the 
school lunch program, so that LchPct = 0!  (Eliminating 
the school lunch program has a well-defined causal effect: 
we could construct a randomized experiment to measure 
the causal effect of this intervention.) 
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The math of control variables: conditional mean 
independence. 
 Because the coefficient on a control variable can be 

biased, LSA #1 (E(ui|X1i,…,Xki) = 0) must not hold.  For 
example, the coefficient on LchPct is correlated with 
unmeasured determinants of test scores such as outside 
learning opportunities, so is subject to OV bias.  But the 
fact that LchPct is correlated with these omitted variables 
is precisely what makes it a good control variable! 

 If LSA #1 doesn’t hold, then what does? 
 We need a mathematical statement of what makes an 

effective control variable.  This condition is conditional 
mean independence:  given the control variable, the 
mean of ui doesn’t depend on the variable of interest 
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Conditional mean independence, ctd. 
 
Let Xi denote the variable of interest and Wi denote the 
control variable(s).  W is an effective control variable if 
conditional mean independence holds: 
 

E(ui|Xi, Wi) = E(ui|Wi)  (conditional mean independence) 
 
If W is a control variable, then conditional mean 
independence replaces LSA #1 – it is the version of LSA #1 
which is relevant for control variables. 
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Conditional mean independence, ctd. 
 
Consider the regression model, 

Y = β0 + β1X + β2W + u 
where X is the variable of interest and W is an effective 
control variable so that conditional mean independence holds: 

E(ui|Xi, Wi) = E(ui|Wi). 
In addition, suppose that LSA #2, #3, and #4 hold.  Then: 

 
1. β1 has a causal interpretation.   
2. 1̂  is unbiased  
3. The coefficient on the control variable, 2̂ , is in 

general biased. 
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The math of conditional mean independence 
Under conditional mean independence: 
1. β1 has a causal interpretation.   
 

The math:  The expected change in Y resulting from a 
change in X, holding (a single) W constant, is: 

E(Y|X = x+Δx, W=w) – E(Y|X = x, W=w) 
= [β0 + β1(x+Δx) + β2w + E(u|X = x+Δx, W=w)] 

– [β0 + β1x + β2w + E(u|X = x, W=w)] 
= β1Δx + [E(u|X = x+Δx, W=w) – E(u|X = x, W=w)] 
= β1Δx  

where the final line follows from conditional mean 
independence: under conditional mean independence, 
E(u|X = x+Δx, W=w) = E(u|X = x, W=w) = E(u|W=w). 
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The math of conditional mean independence, ctd. 
 
Under conditional mean independence: 
2. 1̂  is unbiased  
3. 2̂  is in general biased 
 

The math:  Consider the regression model, 
 

Y = β0 + β1X + β2W + u 
 
where u satisfies the conditional mean independence 
assumption.  For convenience, suppose that E(u|W) = γ0 + 
γ2W (that is, that E(u|W) is linear in W).  Thus, under 
conditional mean independence,  
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The math of conditional mean independence, ctd. 
 
E(u|X, W) = E(u|W) = γ0 + γ2W.      (*) 

Let  
v = u – E(u|X, W)        (**) 

 
so that E(v|X, W) = 0. Combining (*) and (**) yields, 

 
u = E(u|X, W) + v 

       = γ0 + γ2W + v, where E(v|X, W) = 0   (***) 
 
Now substitute (***) into the regression, 

 
Y = β0 + β1X + β2W + u       (+) 
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So that 
Y = β0 + β1X + β2W + u       (+) 
  = β0 + β1X + β2W + γ0 + γ2W + v   from (***) 
  = (β0+ γ0) + β1X + (β2+γ2)W + v  
  = δ0+ β1X + δ2W + v       (++) 

 
 Because E(v|X, W) = 0, equation (++) satisfies LSA#1 

so the OLS estimators of δ0,  β1, and δ2 in (++) are 
unbiased.   

 Because the regressors in (+) and (++) are the same, 
the OLS coefficients in regression (+) satisfy, E( 1̂ ) = 
β1 and E( 2̂ ) = δ2 = β2+ γ2 ≠ β2 in general. 
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E( 1̂ ) = β1  
and  

E( 2̂ ) = δ2 = β2+ γ2 ≠ β2  
 
In summary, if W is such that conditional mean independence 
is satisfied, then: 
 The OLS estimator of the effect of interest, 1̂ , is 

unbiased. 
 The OLS estimator of the coefficient on the control 

variable, 2̂ , is biased.  This bias stems from the fact that 
the control variable is correlated with omitted variables in 
the error term, so that 2̂  is subject to omitted variable 
bias. 
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Implications for variable selection and “model 
specification” 

 
1. Identify the variable of interest 

 
2. Think of the omitted causal effects that could result in 

omitted variable bias 
 

3. Include those omitted causal effects if you can or, if you 
can’t, include variables correlated with them that serve as 
control variables.  The control variables are effective if the 
conditional mean independence assumption plausibly 
holds (if u is uncorrelated with STR once the control 
variables are included).  This results in a “base” or 
“benchmark” model. 
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Model specification, ctd. 
 

4. Also specify a range of plausible alternative models, 
which include additional candidate variables. 
 

5. Estimate your base model and plausible alternative 
specifications (“sensitivity checks”). 

o Does a candidate variable change the coefficient of 
interest (1)? 

o Is a candidate variable statistically significant? 
o Use judgment, not a mechanical recipe… 
o Don’t just try to maximize R2! 
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Digression about measures of fit… 
 
It is easy to fall into the trap of maximizing the R2 and 2R , but 
this loses sight of our real objective, an unbiased estimator of 
the class size effect. 
 A high R2 (or 2R ) means that the regressors explain the 

variation in Y. 
 A high R2 (or 2R ) does not mean that you have eliminated 

omitted variable bias. 
 A high R2 (or 2R ) does not mean that you have an 

unbiased estimator of a causal effect (1). 
 A high R2 (or 2R ) does not mean that the included 

variables are statistically significant – this must be 
determined using hypotheses tests. 
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 Analysis of the Test Score Data Set 
 (SW Section 7.6) 

 
1. Identify the variable of interest: 

 STR 
 

2. Think of the omitted causal effects that could result in 
omitted variable bias 

Whether the students know English; outside learning 
opportunities; parental involvement; teacher quality (if 
teacher salary is correlated with district wealth) – 
there is a long list! 
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3. Include those omitted causal effects if you can or, if you 
can’t, include variables correlated with them that serve as 
control variables.  The control variables are effective if the 
conditional mean independence assumption plausibly 
holds (if u is uncorrelated with STR once the control 
variables are included).  This results in a “base” or 
“benchmark” model. 

Many of the omitted causal variables are hard to 
measure, so we need to find control variables.  These 
include PctEL (both a control variable and an omitted 
causal factor) and measures of district wealth. 
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4. Also specify a range of plausible alternative models, 

which include additional candidate variables. 
It isn’t clear which of the income-related variables will 
best control for the many omitted causal factors such 
as outside learning opportunities, so the alternative 
specifications include regressions with different 
income variables.  The alternative specifications 
considered here are just a starting point, not the final 
word! 

 
5. Estimate your base model and plausible alternative 

specifications (“sensitivity checks”). 
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Test scores and California socioeconomic data… 
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Digression on presentation of regression results 
 
 We have a number of regressions and we want to report 

them.  It is awkward and difficult to read regressions 
written out in equation form, so instead it is conventional 
to report them in a table. 

 A table of regression results should include: 
o estimated regression coefficients 
o standard errors 
o measures of fit 
o number of observations 
o relevant F-statistics, if any 
o Any other pertinent information. 

Find this information in the following table: 
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Summary:  Multiple Regression 
 
 Multiple regression allows you to estimate the effect on Y 

of a change in X1, holding other included variables 
constant. 

 If you can measure a variable, you can avoid omitted 
variable bias from that variable by including it. 

 If you can’t measure the omitted variable, you still might 
be able to control for its effect by including a control 
variable. 

 There is no simple recipe for deciding which variables 
belong in a regression – you must exercise judgment. 

 One approach is to specify a base model – relying on a-
priori reasoning – then explore the sensitivity of the key 
estimate(s) in alternative specifications. 
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Nonlinear Regression Functions 
(SW Chapter 8) 

 
 
 
Outline 

1. Nonlinear regression functions – general comments 
2. Nonlinear functions of one variable 
3. Nonlinear functions of two variables: interactions 
4. Application to the California Test Score data set 
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Nonlinear regression functions 
 
 The regression functions so far have been linear in the X’s 
 But the linear approximation is not always a good one 
 The multiple regression model can handle regression 

functions that are nonlinear in one or more X. 
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The TestScore – STR relation looks linear (maybe)… 
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But the TestScore – Income relation looks nonlinear... 
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 Nonlinear Regression Population Regression Functions – 
General Ideas 

(SW Section 8.1) 
 
If a relation between Y and X is nonlinear: 
 
 The effect on Y of a change in X depends on the value of X 

– that is, the marginal effect of X is not constant 
 A linear regression is mis-specified:  the functional form 

is wrong 
 The estimator of the effect on Y of X is biased:  in general 

it isn’t even right on average. 
 The solution is to estimate a regression function that is 

nonlinear in X 
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The general nonlinear population regression function 
 

Yi = f(X1i, X2i,…, Xki) + ui, i = 1,…, n 
Assumptions 
1. E(ui| X1i, X2i,…, Xki) = 0  (same); implies that f is the 

conditional expectation of Y given the X’s. 
2. (X1i,…, Xki, Yi) are i.i.d. (same). 
3. Big outliers are rare (same idea; the precise mathematical 

condition depends on the specific f). 
4. No perfect multicollinearity (same idea; the precise 

statement depends on the specific f). 
 
The change in Y associated with a change in X1, holding 
X2,…, Xk constant is: 

Y = f(X1 + X1, X2,…, Xk) – f(X1, X2,…, Xk) 
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Nonlinear Functions of a Single Independent Variable 
(SW Section 8.2) 

 
We’ll look at two complementary approaches: 
 
1.  Polynomials in X 

The population regression function is approximated by a 
quadratic, cubic, or higher-degree polynomial 
 

2.  Logarithmic transformations 
 Y and/or X is transformed by taking its logarithm 
 this gives a “percentages” interpretation that makes 

sense in many applications 



SW Ch 8 9/60/

1.  Polynomials in X 
Approximate the population regression function by a 
polynomial: 
 

Yi = 0 + 1Xi + 2
2
iX  +…+ r

r
iX  + ui 

 
 This is just the linear multiple regression model – except 

that the regressors are powers of X! 
 Estimation, hypothesis testing, etc. proceeds as in the 

multiple regression model using OLS 
 The coefficients are difficult to interpret, but the 

regression function itself is interpretable 
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Example:  the TestScore – Income relation 
 
Incomei = average district income in the ith district 

 (thousands of dollars per capita) 
 
Quadratic specification: 
 

TestScorei = 0 + 1Incomei + 2(Incomei)2 + ui 
 
Cubic specification: 
 

TestScorei = 0 + 1Incomei + 2(Incomei)2  
+ 3(Incomei)3 + ui 
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Estimation of the quadratic specification in STATA 
 

generate avginc2 = avginc*avginc;       Create a new regressor  
reg testscr avginc avginc2, r; 
 
Regression with robust standard errors                 Number of obs =     420 
                                                       F(  2,   417) =  428.52 
                                                       Prob > F      =  0.0000 
                                                       R-squared     =  0.5562 
                                                       Root MSE      =  12.724 
 
------------------------------------------------------------------------------ 
             |               Robust 
     testscr |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      avginc |   3.850995   .2680941    14.36   0.000      3.32401    4.377979 
     avginc2 |  -.0423085   .0047803    -8.85   0.000     -.051705   -.0329119 
       _cons |   607.3017   2.901754   209.29   0.000     601.5978    613.0056 
------------------------------------------------------------------------------ 

 
Test the null hypothesis of linearity against the alternative 
that the regression function is a quadratic…. 



SW Ch 8 12/60/

Interpreting the estimated regression function: 
(a)  Plot the predicted values 

TestScore  = 607.3 + 3.85Incomei – 0.0423(Incomei)2 
(2.9)  (0.27)              (0.0048) 
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Interpreting the estimated regression function, ctd: 
(b)  Compute “effects” for different values of X 
 
TestScore  = 607.3 + 3.85Incomei – 0.0423(Incomei)2 

 (2.9)  (0.27)              (0.0048) 
 
Predicted change in TestScore for a change in income from 
$5,000 per capita to $6,000 per capita: 
 
TestScore  = 607.3 + 3.856 – 0.042362 
     – (607.3 + 3.855 – 0.042352) 
    = 3.4 



SW Ch 8 14/60/

TestScore  = 607.3 + 3.85Incomei – 0.0423(Incomei)2 
 

Predicted “effects” for different values of X: 
 

Change in Income ($1000 per capita) TestScore  
from 5 to 6 3.4 

from 25 to 26 1.7 
from 45 to 46 0.0 

 
The “effect” of a change in income is greater at low than high 
income levels (perhaps, a declining marginal benefit of an 
increase in school budgets?) 
Caution!  What is the effect of a change from 65 to 66?   

Don’t extrapolate outside the range of the data! 
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Estimation of a cubic specification in STATA 
 

gen avginc3 = avginc*avginc2;    Create the cubic regressor 
reg testscr avginc avginc2 avginc3, r; 
 
Regression with robust standard errors                 Number of obs =     420 
                                                       F(  3,   416) =  270.18 
                                                       Prob > F      =  0.0000 
                                                       R-squared     =  0.5584 
                                                       Root MSE      =  12.707 
 
------------------------------------------------------------------------------ 
             |               Robust 
 
     testscr |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      avginc |   5.018677   .7073505     7.10   0.000     3.628251    6.409104 
     avginc2 |  -.0958052   .0289537    -3.31   0.001    -.1527191   -.0388913 
     avginc3 |   .0006855   .0003471     1.98   0.049     3.27e-06    .0013677 
       _cons |    600.079   5.102062   117.61   0.000     590.0499     610.108 
------------------------------------------------------------------------------ 
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Testing the null hypothesis of linearity, against the alternative 
that the population regression is quadratic and/or cubic, that 
is, it is a polynomial of degree up to 3: 
 

H0:  population coefficients on Income2 and Income3 = 0 
H1: at least one of these coefficients is nonzero. 

 
test avginc2 avginc3;  Execute the test command after running the regression 
 
 ( 1)  avginc2 = 0.0 
 ( 2)  avginc3 = 0.0 
 

F(  2,   416) =   37.69 
Prob > F =    0.0000 

 

The hypothesis that the population regression is linear is 
rejected at the 1% significance level against the alternative 
that it is a polynomial of degree up to 3. 
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Summary: polynomial regression functions 
 

Yi = 0 + 1Xi + 2 2
iX  +…+ r

r
iX  + ui 

 Estimation: by OLS after defining new regressors 
 Coefficients have complicated interpretations 
 To interpret the estimated regression function: 

o plot predicted values as a function of x 
o compute predicted Y/X at different values of x 

 Hypotheses concerning degree r can be tested by t- and F-
tests on the appropriate (blocks of) variable(s). 

 Choice of degree r 
o plot the data; t- and F-tests, check sensitivity of 

estimated effects; judgment. 
o Or use model selection criteria (later) 
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2.  Logarithmic functions of Y and/or X 
 

 ln(X) = the natural logarithm of X 
 Logarithmic transforms permit modeling relations in 

“percentage” terms (like elasticities), rather than linearly. 
 

Here’s why:  ln(x+x) – ln(x) = ln 1 x
x
  

 
  x

x
  

(calculus: ln( ) 1d x
dx x

 ) 

Numerically: 
      ln(1.01) = .00995  .01;  

ln(1.10) = .0953  .10 (sort of) 
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The three log regression specifications: 
 

Case Population regression function 
I.    linear-log Yi = 0 + 1ln(Xi) + ui 
II.   log-linear ln(Yi) = 0 + 1Xi + ui 
III.  log-log ln(Yi) = 0 + 1ln(Xi) + ui 

 
 The interpretation of the slope coefficient differs in each 

case. 
 The interpretation is found by applying the general 

“before and after” rule: “figure out the change in Y for a 
given change in X.” 

 Each case has a natural interpretation (for small changes 
in X) 
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I. Linear-log population regression function 
 
Compute Y “before” and “after” changing X: 

Y = 0 + 1ln(X)       (“before”) 
 
Now change X:  Y + Y = 0 + 1ln(X + X)      (“after”) 
 
Subtract (“after”) – (“before”):     Y = 1[ln(X + X) – ln(X)] 
 

now    ln(X + X) – ln(X)  X
X
 , 

so       Y  1
X

X
  

or      1  
/
Y

X X



  (small X) 
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Linear-log case, continued 
 

Yi = 0 + 1ln(Xi) + ui 
 
for small X, 

1  
/
Y

X X



 

 

Now 100 X
X
  = percentage change in X, so a 1% increase in 

X (multiplying X by 1.01) is associated with a .011 change 
in Y. 

(1% increase in X  .01 increase in ln(X)  
   .011 increase in Y) 
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Example:  TestScore vs. ln(Income) 
 First defining the new regressor, ln(Income) 
 The model is now linear in ln(Income), so the linear-log 

model can be estimated by OLS: 
 

TestScore  = 557.8 + 36.42ln(Incomei) 
 (3.8)    (1.40)  

 
so a 1% increase in Income is associated with an increase 
in TestScore of 0.36 points on the test. 

 Standard errors, confidence intervals, R2 – all the usual 
tools of regression apply here. 

 How does this compare to the cubic model? 
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The linear-log and cubic regression functions 
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II. Log-linear population regression function 
 

ln(Y) = 0 + 1X    (b) 
 
Now change X:   ln(Y + Y) = 0 + 1(X + X)   (a) 
 
Subtract (a) – (b):     ln(Y + Y) – ln(Y) = 1X 
 

so     Y
Y
   1X  

or      1  /Y Y
X




 (small X) 
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Log-linear case, continued 
ln(Yi) = 0 + 1Xi + ui 

 

for small X,  1  /Y Y
X




 

 Now 100 Y
Y
  = percentage change in Y, so a change in X 

by one unit (X = 1) is associated with a 1001% change 
in Y. 

 1 unit increase in X  1 increase in ln(Y)  
   1001% increase in Y 

 Note:  What are the units of ui and the SER?  
o fractional (proportional) deviations 
o for example, SER = .2 means… 
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III. Log-log population regression function 
 

ln(Yi) = 0 + 1ln(Xi) + ui   (b) 
 
Now change X:  ln(Y + Y) = 0 + 1ln(X + X)  (a) 

  
Subtract:  ln(Y + Y) – ln(Y) = 1[ln(X + X) – ln(X)] 
 

so     Y
Y
   1

X
X
   

or      1  /
/

Y Y
X X



 (small X) 



SW Ch 8 27/60/

Log-log case, continued 
 

ln(Yi) = 0 + 1ln(Xi) + ui 
 
for small X, 

1  /
/

Y Y
X X



 

Now 100 Y
Y
  = percentage change in Y, and 100 X

X
  = 

percentage change in X, so a 1% change in X is associated 
with a 1% change in Y. 
 In the log-log specification, 1 has the interpretation of 

an elasticity. 
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Example: ln(TestScore) vs. ln( Income) 
 First defining a new dependent variable, ln(TestScore), and 

the new regressor, ln(Income) 
 The model is now a linear regression of ln(TestScore) 

against ln(Income), which can be estimated by OLS: 
 

ln( )TestScore  = 6.336 + 0.0554ln(Incomei) 
   (0.006)  (0.0021)  

 
An 1% increase in Income is associated with an increase 
of .0554% in TestScore (Income up by a factor of 1.01, 
TestScore up by a factor of 1.000554) 
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Example: ln( TestScore) vs. ln( Income), ctd. 
 
ln( )TestScore  = 6.336 + 0.0554ln(Incomei) 

   (0.006)  (0.0021)  
 
 For example, suppose income increases from $10,000 to 

$11,000, or by 10%.  Then TestScore increases by 
approximately .055410% = .554%.  If TestScore = 650, 
this corresponds to an increase of .00554650 = 3.6 
points. 

 How does this compare to the log-linear model? 
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The log-linear and log-log specifications: 

 
 Note vertical axis 
 Neither seems to fit as well as the cubic or linear-log, at 

least based on visual inspection (formal comparison is 
difficult because the dependent variables differ)
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Summary:  Logarithmic transformations 
 
 Three cases, differing in whether Y and/or X is 

transformed by taking logarithms. 
 The regression is linear in the new variable(s) ln(Y) and/or 

ln(X), and the coefficients can be estimated by OLS. 
 Hypothesis tests and confidence intervals are now 

implemented and interpreted “as usual.” 
 The interpretation of 1 differs from case to case. 
 
The choice of specification (functional form) should be 
guided by judgment (which interpretation makes the most 
sense in your application?), tests, and plotting predicted 
values 
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Other nonlinear functions (and nonlinear least squares) 
(SW Appendix 8.1) 

The foregoing regression functions have limitations… 
 Polynomial: test score can decrease with income 
 Linear-log: test score increases with income, but without 

bound 
 Here is a nonlinear function in which Y always increases 

with X and there is a maximum (asymptote) value of Y: 
 

Y = 1
0

Xe     
 

0, 1, and  are unknown parameters.  This is called a 
negative exponential growth curve.  The asymptote as X 
→ ∞ is 0. 
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Negative exponential growth 
We want to estimate the parameters of, 

Yi = 1
0

iX
ie u     

or 
Yi = 1 2( )

0 1 iX
ie u            (*) 

 
where  = 2

0e
  (why would you do this???)  

 
Compare model (*) to linear-log or cubic models: 

Yi = 0 + 1ln(Xi) + ui 
Yi = 0 + 1Xi + 2

2
iX  + 2

3
iX  + ui 

The linear-log and polynomial models are linear in the 
parameters 0 and 1 – but the model (*) is not. 
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Nonlinear Least Squares  
 Models that are linear in the parameters can be estimated by 

OLS. 
 Models that are nonlinear in one or more parameters can be 

estimated by nonlinear least squares (NLS) (but not by 
OLS) 

 The NLS problem for the proposed specification: 

 1 2

0 1 2

2( )
, , 0

1

min 1 i

n
X

i
i

Y e  
     



     

This is a nonlinear minimization problem (a “hill-climbing” 
problem).  How could you solve this? 
o Guess and check 
o There are better ways… 

o Implementation in STATA… 
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. nl (testscr = {b0=720}*(1 - exp(-1*{b1}*(avginc-{b2})))), r 
 
(obs = 420) 
Iteration 0:  residual SS =  1.80e+08     . 
Iteration 1:  residual SS =  3.84e+07     . 
Iteration 2:  residual SS =   4637400     . 
Iteration 3:  residual SS =  300290.9  STATA is “climbing the hill” 
Iteration 4:  residual SS =  70672.13  (actually, minimizing the SSR) 
Iteration 5:  residual SS =  66990.31     . 
Iteration 6:  residual SS =   66988.4     . 
Iteration 7:  residual SS =   66988.4     . 
Iteration 8:  residual SS =   66988.4 
 
Nonlinear regression with robust standard errors     Number of obs =       420 
                                                     F(  3,   417) = 687015.55 
                                                     Prob > F      =    0.0000 
                                                     R-squared     =    0.9996 
                                                     Root MSE      =  12.67453 
                                                     Res. dev.     =  3322.157 
------------------------------------------------------------------------------ 
             |               Robust 
     testscr |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
          b0 |   703.2222   4.438003   158.45   0.000     694.4986    711.9459 
          b1 |   .0552339   .0068214     8.10   0.000     .0418253    .0686425 
          b2 |  -34.00364    4.47778    -7.59   0.000    -42.80547    -25.2018 
------------------------------------------------------------------------------ 
 (SEs, P values, CIs, and correlations are asymptotic approximations) 
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Negative exponential growth; RMSE = 12.675 
Linear-log; RMSE = 12.618  (oh well…) 
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Interactions Between Independent Variables 
(SW Section 8.3) 

 
 Perhaps a class size reduction is more effective in some 

circumstances than in others… 
 Perhaps smaller classes help more if there are many English 

learners, who need individual attention 

 That is, TestScore
STR




  might depend on PctEL 

 More generally, 
1

Y
X



 might depend on X2 

 How to model such “interactions” between X1 and X2? 
 We first consider binary X’s, then continuous X’s 
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(a) Interactions between two binary variables 
 

Yi = 0 + 1D1i + 2D2i + ui 
 
 D1i, D2i are binary 
 1 is the effect of changing D1=0 to D1=1.  In this 

specification, this effect doesn’t depend on the value of D2. 
 To allow the effect of changing D1 to depend on D2, include 

the “interaction term” D1iD2i as a regressor: 
 

Yi = 0 + 1D1i + 2D2i + 3(D1iD2i) + ui 
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Interpreting the coefficients  
Yi = 0 + 1D1i + 2D2i + 3(D1iD2i) + ui 

 
General rule:  compare the various cases 

E(Yi|D1i=0, D2i=d2) = 0 + 2d2      (b) 
E(Yi|D1i=1, D2i=d2) = 0 + 1 + 2d2 + 3d2  (a) 

 
subtract (a) – (b): 

E(Yi|D1i=1, D2i=d2) – E(Yi|D1i=0, D2i=d2) = 1 + 3d2 
 
 The effect of D1 depends on d2 (what we wanted)  
 3 = increment to the effect of D1, when D2 = 1 
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Example: TestScore, STR, English learners 
Let 

HiSTR = 
1 if 20
0 if 20

STR
STR


 

   and   HiEL = 
1 if l0
0 if 10

PctEL
PctEL


 

 

 
TestScore  = 664.1 – 18.2HiEL – 1.9HiSTR – 3.5(HiSTRHiEL) 

    (1.4) (2.3)    (1.9)       (3.1) 
 
 “Effect” of HiSTR when HiEL = 0 is –1.9 
 “Effect” of HiSTR when HiEL = 1 is –1.9 – 3.5 = –5.4 
 Class size reduction is estimated to have a bigger effect 

when the percent of English learners is large 
 This interaction isn’t statistically significant: t = 3.5/3.1 
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Example: TestScore, STR, English learners, ctd. 
Let 

HiSTR = 
1 if 20
0 if 20

STR
STR


 

   and   HiEL = 
1 if l0
0 if 10

PctEL
PctEL


 

 

 
TestScore  = 664.1 – 18.2HiEL – 1.9HiSTR – 3.5(HiSTRHiEL) 

    (1.4) (2.3)    (1.9)       (3.1) 
 
 Can you relate these coefficients to the following table of 

group (“cell”) means? 
 

 Low STR High STR 
Low EL 664.1 662.2 
High EL 645.9 640.5 
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(b) Interactions between continuous and binary variables 
 
Yi = 0 + 1Di + 2Xi + ui 

 
 Di is binary, X is continuous 
 As specified above, the effect on Y of X (holding constant 

D) = 2, which does not depend on D  
 To allow the effect of X to depend on D, include the 

“interaction term” DiXi as a regressor: 
 
Yi = 0 + 1Di + 2Xi + 3(DiXi) + ui 
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Binary-continuous interactions: the two regression lines 
 
Yi = 0 + 1Di + 2Xi + 3(DiXi) + ui 

 
Observations with Di= 0 (the “D = 0” group): 

 
Yi = 0 + 2Xi + ui  The D=0 regression line 

 
Observations with Di= 1 (the “D = 1” group): 

 
Yi = 0 + 1 + 2Xi + 3Xi + ui 
    = (0+1) + (2+3)Xi + ui   The D=1 regression line 
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Binary-continuous interactions, ctd. 
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Interpreting the coefficients 
Yi = 0 + 1Di + 2Xi + 3(DiXi) +  ui 

 
General rule:  compare the various cases 

Y = 0 + 1D + 2X + 3(DX)      (b) 
Now change X: 

Y + Y = 0 + 1D + 2(X+X) + 3[D(X+X)] (a) 
subtract (a) – (b): 

Y = 2X + 3DX  or Y
X




 = 2 + 3D 

 The effect of X depends on D (what we wanted)  
 3 = increment to the effect of X, when D = 1 
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Example: TestScore, STR, HiEL (=1 if PctEL  10) 
 
TestScore  = 682.2 – 0.97STR + 5.6HiEL – 1.28(STRHiEL) 

      (11.9) (0.59)  (19.5)   (0.97) 
 
 When HiEL = 0: 

TestScore  = 682.2 – 0.97STR 
 When HiEL = 1, 

TestScore  = 682.2 – 0.97STR + 5.6 – 1.28STR 
   = 687.8 – 2.25STR 

 Two regression lines: one for each HiSTR group. 
 Class size reduction is estimated to have a larger effect 

when the percent of English learners is large. 
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Example, ctd: Testing hypotheses 
TestScore  = 682.2 – 0.97STR + 5.6HiEL – 1.28(STRHiEL) 

      (11.9)  (0.59)  (19.5)   (0.97) 
 The two regression lines have the same slope  the 

coefficient on STRHiEL is zero: t = –1.28/0.97 = –1.32 
 The two regression lines have the same intercept  the 

coefficient on HiEL is zero: t = –5.6/19.5 = 0.29  
 The two regression lines are the same  population 

coefficient on HiEL = 0 and population coefficient on 
STRHiEL = 0: F = 89.94 (p-value < .001) !! 

 We reject the joint hypothesis but neither individual 
hypothesis (how can this be?) 
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 (c) Interactions between two continuous variables 
 
Yi = 0 + 1X1i + 2X2i + ui 

 
 X1, X2 are continuous 
 As specified, the effect of X1 doesn’t depend on X2 
 As specified, the effect of X2 doesn’t depend on X1 
 To allow the effect of X1 to depend on X2, include the 

“interaction term” X1iX2i as a regressor: 
 

Yi = 0 + 1X1i + 2X2i + 3(X1iX2i) + ui 
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Interpreting the coefficients:  
Yi = 0 + 1X1i + 2X2i + 3(X1iX2i) + ui 

 
General rule:  compare the various cases 

Y = 0 + 1X1 + 2X2 + 3(X1X2)       (b) 
Now change X1: 
  Y + Y = 0 + 1(X1+X1) + 2X2 + 3[(X1+X1)X2]   (a) 
subtract (a) – (b): 

Y = 1X1 + 3X2X1  or 
1

Y
X



 = 1 + 3X2 

 The effect of X1 depends on X2 (what we wanted)  
 3 = increment to the effect of X1 from a unit change in X2 
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Example: TestScore, STR, PctEL 
 
TestScore  = 686.3 – 1.12STR – 0.67PctEL + .0012(STRPctEL), 

      (11.8) (0.59)    (0.37)   (0.019) 
 
The estimated effect of class size reduction is nonlinear 
because the size of the effect itself depends on PctEL: 

TestScore
STR




 = –1.12 + .0012PctEL 

PctEL TestScore
STR




 

0 –1.12 
20% –1.12+.001220 = –1.10 
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Example, ctd: hypothesis tests 
TestScore  = 686.3 – 1.12STR – 0.67PctEL + .0012(STRPctEL), 

      (11.8) (0.59)    (0.37)   (0.019) 
 
 Does population coefficient on STRPctEL = 0? 

t = .0012/.019 = .06  can’t reject null at 5% level 
 Does population coefficient on STR = 0? 

t = –1.12/0.59 = –1.90  can’t reject null at 5% level 
 Do the coefficients on both STR and STRPctEL = 0? 

F = 3.89 (p-value = .021)  reject null at 5% level(!!) 
(Why? high but imperfect multicollinearity) 



SW Ch 8 52/60/

Application:  Nonlinear Effects on Test Scores 
of the Student-Teacher Ratio 

(SW Section 8.4) 
 
Nonlinear specifications let us examine more nuanced 
questions about the Test score – STR relation, such as: 
 
1. Are there nonlinear effects of class size reduction on test 

scores?  (Does a reduction from 35 to 30 have same effect 
as a reduction from 20 to 15?) 

2. Are there nonlinear interactions between PctEL and STR? 
(Are small classes more effective when there are many 
English learners?) 
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Strategy for Question #1 (different effects for different STR?) 
 
 Estimate linear and nonlinear functions of STR, holding 

constant relevant demographic variables 
o PctEL 
o Income (remember the nonlinear TestScore-Income 

relation!) 
o LunchPCT (fraction on free/subsidized lunch) 

 See whether adding the nonlinear terms makes an 
“economically important” quantitative difference (“economic” 
or “real-world” importance is different than statistically 
significant) 

 Test for whether the nonlinear terms are significant 
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Strategy for Question #2 (interactions between PctEL and STR?) 
 

 Estimate linear and nonlinear functions of STR, interacted 
with PctEL. 

 If the specification is nonlinear (with STR, STR2, STR3), then 
you need to add interactions with all the terms so that the 
entire functional form can be different, depending on the 
level of PctEL.   

 We will use a binary-continuous interaction specification by 
adding HiELSTR, HiELSTR2, and HiELSTR3. 
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What is a good “base” specification? 
The TestScore – Income relation: 

 
The logarithmic specification is better behaved near the 
extremes of the sample, especially for large values of income. 
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Tests of joint hypotheses: 
 

 
 
What can you conclude about question #1?  
About question #2?
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Interpreting the regression functions via plots: 
 
First, compare the linear and nonlinear specifications: 
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Next, compare the regressions with interactions: 
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Summary:  Nonlinear Regression Functions 
 Using functions of the independent variables such as ln(X) 

or X1X2, allows recasting a large family of nonlinear 
regression functions as multiple regression. 

 Estimation and inference proceed in the same way as in the 
linear multiple regression model. 

 Interpretation of the coefficients is model-specific, but the 
general rule is to compute effects by comparing different 
cases (different value of the original X’s) 

 Many nonlinear specifications are possible, so you must use 
judgment: 

o What nonlinear effect you want to analyze?  
o What makes sense in your application? 


	SW2e_ch1_2_3_slides
	SW3e_ch4_slides
	SW3e_ch5_slides
	SW3e_ch6_slides

