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Preface

Most good texts arise from the desire to leave one’s stamp on a discipline
by training future generations of students, coupled with the recognition that
existing texts are inadequate in various respects. That was certainly the
motivation behind my earlier Elements of Forecasting (“Elements”), and El-
ements helped train so many students, going through four successful editions
during fifteen years.

But I have refused to do a fifth edition; instead, I feel that it’s time to begin
afresh. Two key reasons motivate the new start. The first is intellectual.
Forecasting has changed tremendously in recent decades, and continually
patching an old book only works for so long. This new book (“Forecasting”)
contains a wealth of new material and new visions, newly synthesized.

The second reason is technological. I want a book alive with color photos
and graphics, extensively hyperlinked, with audio and video. I want to be
able to update it continuously and distribute it instantly. And I want it to
be widely affordable, $29 (say), not $290, or better yet, free. In short, I want
my readers to escape the shackles of Middle Ages printing-press technology,
benefiting instead from the pedagogical wonders of modern e-technology.

Beyond new structure, new and more advanced material, and e-awareness,
a number of features distinguish Forecasting, many of which were shared by
the earlier Elements. First, Forecasting does not attempt to be exhaustive
in coverage. In fact, the coverage is intentionally selective, focusing on the
core techniques with the widest applicability. It is designed so that its ear-
lier chapters can be realistically covered in a one-semester course, with the
remaining chapters of use for more advanced courses and for independent
study. Core material appears in the main text of the various chapters, and
additional material that expands on the depth and breadth of coverage is
provided in the Exercises, Problems and Complements (EPC) at the end of

xxix
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each chapter.
Second, Forecasting is applications-oriented. It illustrates all methods with

detailed real-world applications that reflect typical forecasting situations. In
many chapters, the application is the centerpiece of the presentation. In
various places, it uses applications not simply to illustrate the methods but
also to drive home an important lesson via truly realistic examples: not
everything works perfectly in the real world!

Third, Forecasting is in touch with modern modeling and forecasting soft-
ware. I supply some code in EViews, R and Python. I like all of them, but
at the same time, nothing is wed to any particular software. Students and
instructors can use whatever computing environment they like best.

Drafts of Forecasting, like the many editions of the earlier Elements, have
found wide use among students in many fields, including economics, business,
finance, public policy, statistics, and even engineering. It is directly acces-
sible at the undergraduate and master’s levels; the only prerequisite is an
introductory statistics course that includes linear regression. Simultaneously
Forecasting will also be of interest to those with more advanced preparation,
because of the hard-to-find direct focus on forecasting – as opposed, for ex-
ample, to general statistics, econometrics, or time series analysis. I have used
the material successfully for many years as a background for various other
undergraduate and graduate courses (including Ph.D.), and as the primary
material for master’s-level Executive Education courses given to professionals
in business, finance, economics and government.

Many coauthors, colleagues and students contributed to the development
some explicitly, some implicitly. The National Science Foundation, the Whar-
ton Financial Institutions Center, and the Guggenheim Foundation provided
financial support for much of the underlying research. The University of
Pennsylvania provided an unparalleled 25-year intellectual home, the perfect
incubator for the ideas that have congealed here.

My hope is that if you liked Elements, you’ll love Forecasting, sharing
with me the excitement of the rapidly-evolving field. That rapid evolution is
related to the many errors of commission and omission that surely remain,
despite my ongoing efforts to eliminate them, for which I apologize in advance.

Francis X. Diebold
Philadelphia
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Chapter 1

Introduction

Figure 1.1: This is Not What This Book is About

1.1 Welcome

Forecasting is important — forecasts are constantly made in business, fi-

nance, economics, government, and many other fields, and they guide many

important decisions. As with anything else, there are good and bad ways to

forecast. This book is about the good ways: modern, rigorous, replicable,

largely-quantitative statistical/econometric methods – their strengths and

their limitations. That’s why I dislike the above picture of the crystal ball –

it bows to the common misconception among the uninitiated that forecasting

3
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is some sort of dubious mystical activity, like fortune telling or astrology. But

how could a forecasting book not begin with a picture like that? So I decided

to lighten up, if only for a moment.

1.2 Who Forecasts, and Why?

Forecasts are made and used in numerous fields. To develop a feel for the

tremendous diversity of forecasting applications, let’s sketch some of the ar-

eas where forecasts feature prominently, and the corresponding diversity of

decisions that they support.

One key field is economics, broadly defined. Governments, businesses,

policy organizations, central banks, financial services firms, and economic

consulting firms around the world routinely forecast major economic vari-

ables, such as gross domestic product (GDP), unemployment, consumption,

investment, the price level, and interest rates. Governments use such forecasts

to guide monetary and fiscal policy, and private firms use them for strate-

gic planning, because economy-wide economic fluctuations typically have

industry-level and firm-level effects. In addition to forecasting “standard”

variables such as GDP, economists sometimes make more exotic forecasts,

such as the stage of the business cycle that we’ll be in six months from now

(expansion or contraction), the state of future stock market activity (bull or

bear), or the state of future foreign exchange market activity (appreciation or

depreciation). Again, such forecasts are of obvious use to both governments

and firms – if they’re accurate!

Another key area is business and all its subfields. These include manage-

ment strategy of all types including operations management and control (hir-

ing, production, inventory, investment, ...), marketing (pricing distributing,

advertising, ...), and accounting (budgeting using revenue and expenditure

forecasts), etc. Sales forecasting is a good example. Firms routinely forecast



1.2. WHO FORECASTS, AND WHY? 5

Figure 1.2: Economics: World Economic Outlook

sales to help guide management decisions in inventory management, sales

force management, and production planning, as well as strategic planning

regarding product lines, new market entry, and so on.

More generally, firms use forecasts to decide what to produce (What prod-

uct or mix of products should be produced?), when to produce (Should we

build up inventories now in anticipation of high future demand? How many

shifts should be run?), how much to produce and how much capacity to build

(What are the trends in market size and market share? Are there cyclical or

seasonal effects? How quickly and with what pattern will a newly-built plant

or a newly-installed technology depreciate?), and where to produce (Should

we have one plant or many? If many, where should we locate them?). Firms

http://www.imf.org/external/pubs/ft/weo/2013/update/01/index.htm
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Figure 1.3: Business: Sales Forecasting

also use forecasts of future prices and availability of inputs to guide produc-

tion decisions.

Forecasting is also crucial in financial services, including asset manage-

ment, asset pricing, mergers and acquisitions, investment banking, and in-

surance. Portfolio managers, for example, have keen interest in forecasting

asset returns (stock returns, interest rates, exchange rates, and commodity

prices) and such forecasts are made routinely. There is endless debate about

the success of forecasts of asset returns. On the one hand, asset returns

should be very hard to forecast; if they were easy to forecast, you could make

a fortune easily, and any such “get rich quick” opportunities should already

have been exploited. On the other hand, those who exploited them along the

way may well have gotten rich! Thus, we expect that simple, widely-available

methods for forecasting should have little success in financial markets, but

http://money.howstuffworks.com/sales-forecasting.htm
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Figure 1.4: Finance: A Trading Room

there may well be profits to be made from using new and sophisticated tech-

niques to uncover and exploit previously-unnoticed patterns in financial data

(at least for a short time, until other market participants catch on or your

own trading moves the market).

Forecasting is similarly central to financial risk management. The fore-

casting of asset return volatility is related to the forecasting of asset returns.

In recent decades, practical methods for volatility forecasting have been de-

veloped and widely applied. Volatility forecasts are crucial for evaluating

and insuring risks associated with asset portfolios. Volatility forecasts are

also crucial for firms and investors who need to price assets such as options

and other derivatives.

Finally, forecasting is central to a variety of consulting firms, many of

which support the business functions already mentioned. Litigation support

is a particularly active area. Forecasting is central to damage assessment

(e.g., lost earnings), “but for” analyses and event studies, etc.

The above examples are just the tip of the iceberg. To take another

example, demographers routinely forecast the populations of countries and

http://www2.blackrock.com/global/home/index.htm
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Figure 1.5: Consulting: Litigation Support

regions all over the world, often in disaggregated form, such as by age, sex,

and race. Population forecasts are crucial for planning government expendi-

ture on health care, infrastructure, social insurance, anti-poverty programs,

and so forth. Many private-sector decisions, such as strategic product line

decisions by businesses, are guided by demographic forecasts of particular tar-

geted population subgroups. Population in turn depends on births, deaths,

immigration and emigration, which also are forecasted routinely.

To take just one more example, many events corresponding to crises of

various sorts are frequently forecasted. Such forecasts are routinely issued

as probabilities. For example, in both consumer and commercial lending,

banks generate default probability forecasts and refuse loans if the probability

is deemed too high. Similarly, international investors of various sorts are

concerned with probabilities of default, currency devaluations, military coups,

etc., and use forecasts of such events to inform their portfolio allocation

decisions.

The variety of forecasting tasks that we’ve just sketched was selected to

help you begin to get a feel for the depth and breadth of the field. Surely you

can think of many more situations in which forecasts are made and used to

guide decisions. With so many different forecasting applications, you might

fear that a huge variety of forecasting techniques exists, and that you’ll have

to master all of them. Fortunately, that’s not the case. Instead, a rela-

http://www.bateswhite.com/home.php


1.3. USEFUL MATERIALS 9

tively small number of tools form the common core of almost all forecasting

methods. Needless to say, the details differ if one is forecasting Intel’s stock

price one day and the population of Scotland the next, but the underlying

forecasting principles are identical. We will focus on those underlying core

principles.

1.3 Useful Materials

As you begin your study of forecasting, it’s important that you begin to

develop an awareness of a variety of useful and well-known forecasting text-

books, forecasting journals where original research is published, forecasting

software, data sources, professional organizations, etc.

1.3.1 Books

A number of good books exist that complement this one; some are broader,

some are more advanced, and some are more specialized. Here we’ll discuss a

few that are more broad or more advanced. We’ll mention more specialized

books in subsequent chapters when appropriate.

Wonnacott and Wonnacott (1990) remains a time-honored classic statistics

text, which you may wish to consult to refresh your memory on statistical

distributions, estimation and hypothesis testing. Anderson et al. (2008)

is a well-written and more-recent statistics text, containing a very accessible

discussion of linear regression, which we use extensively throughout this book.

Pindyck and Rubinfeld (1997) remains one of the all-time great introductory

econometrics texts, and it has unusually-strong treatment of time-series and

forecasting. It’s a useful refresher for basic statistical topics, as well as a good

introduction to more advanced econometric models.

As a student of forecasting, you’ll also want to familiarize yourself with

the broader time series analysis literature. Most forecasting methods are
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concerned with forecasting time series – data recorded over time. The mod-

eling and forecasting of time series are so important that an entire field called

“time series analysis” has arisen. Forecasting is intimately related to time

series analysis, because quantitative time series forecasting techniques are

based on quantitative time series models. Thus, forecasting requires knowl-

edge of time series modeling techniques, and we therefore devote a substantial

portion of this book to time series modeling. Chatfield (2006) is a good intro-

ductory time series book, which you’ll find useful as a background reference.

More advanced books, which you may want to consult later, include Granger

and Newbold (1986), a classic packed with insight and explicitly oriented

toward those areas of time series analysis relevant for forecasting. Finally,

Hamilton (1994) and Shumway and Stoffer (2011) are fine advanced texts

suitable for Ph.D.-level study.

1.3.2 Online Information and Data

A variety of information of interest to forecasters is available on the web.

The best way to learn about what’s out there is to spend a few hours search-

ing the web for whatever interests you. Here we mention just a few key

“must-know” sites. Resources for Economists, maintained by the Ameri-

can Economic Association, is a fine portal to almost anything of interest to

economists. It contains hundreds of links to data sources, journals, profes-

sional organizations, and so on. FRED (Federal Reserve Economic Data) at

the Federal Reserve Bank of St. Louis is a tremendously convenient source

for economic data, as is Quandl. Forecasting Principles has a wealth of data

well beyond economics, as well as extensive additional information of interest

to forecasters. The National Bureau of Economic Research site has data on

U.S. business cycles, and the Real-Time Data Research Center at the Federal

Reserve Bank of Philadelphia has real-time vintage macroeconomic data.

http://www.rfe.org
https://research.stlouisfed.org/fred2
https://www.quandl.com/
http://www.forecastingprinciples.com
http://www.nber.org
http://www.philadelphiafed.org/research-and-data/real-time-center/


1.3. USEFUL MATERIALS 11

Figure 1.6: Resources for Economists Web Page

1.3.3 Software (and a Tiny bit of Hardware)

Just as some journals specialize exclusively in forecasting, so too do some

software packages. But just as the most important forecasting articles often

appear in journals much broader than the specialized forecasting journals, so

too are forecasting tools scattered throughout econometric / statistical soft-

ware packages with capabilities much broader than forecasting alone. One of

the best such packages is Eviews, a modern object-oriented environment with

extensive time series, modeling and forecasting capabilities. It implements

almost all of the methods described in this book, and many more. Eviews

reflects a balance of generality and specialization that makes it ideal for the

sorts of tasks that will concern us, and most of the examples in this book are

http://www.rfe.org
http://www.eviews.com
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Figure 1.7: The R Homepage

done using it. If you feel more comfortable with another package, however,

that’s fine – none of our discussion is wed to Eviews in any way, and most of

our techniques can be implemented in a variety of packages.

Eviews is an example of a very high-level modeling environment. If you

go on to more advanced modeling and forecasting, you’ll probably want also

to have available slightly lower-level (“mid-level”) environments in which you

can quickly program, evaluate and apply new tools and techniques. R is

one very powerful and popular such environment, with special strengths in

modern statistical methods and graphical data analysis. It is available for

free as part of a major open-source project. In this author’s humble opinion,

R is the key mid-level environment for the foreseeable future.1

If you need real speed, such as for large simulations, you will likely need

1Python and Julia are also powerful mid-level environments.

http://www.r-project.org
http://www.r-project.org
https://www.python.org/
http://julialang.org
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a low-level environment like Fortran or C++. And in the limit (and on the

hardware side), if you need blazing-fast parallel computing for massive sim-

ulations etc., graphics cards (graphical processing units, or GPU’s) provide

stunning gains, as documented for example in Aldrich et al. (2011).

1.3.4 Journals and Professional Organizations

Forecasting cuts across many literatures, including statistics, econometrics,

machine learning, and many others.

A number of journals cater to the forecasting community. International

Journal of Forecasting , for example, is a leading academic forecasting journal,

which contains a mixture of newly-proposed methods, evaluation of existing

methods, practical applications, and book and software reviews. It is an

official journal of the International Institute of Forecasters, which also pub-

lishes Foresight (a super-applied journal for industry professionals) and The

Oracle (an online newsletter), and sponsors the Forecasting Principles site.

Other organizations with a strong focus on forecasting methods include the

Econometric Society and the Society for Financial Econometrics (SoFiE).

Although there are a number of journals devoted to forecasting, its inter-

disciplinary nature results in a rather ironic outcome: A substantial fraction

of the best forecasting research is published not in the forecasting journals,

but rather in the broader applied econometrics and statistics journals, such

as Journal of Econometrics , Journal of Business and Economic Statistics ,

and Journal of Applied Econometrics , among many others.

1.4 Final Thoughts

Forecasts guide decisions, and good forecasts help to produce good decisions.

In the remainder of this book, we’ll motivate, describe, and compare modern

forecasting methods. You’ll learn how to build and evaluate forecasts and

http://www.fortran.com
http://msdn.microsoft.com/en-us/vstudio/hh386302
http://forecasters.org/ijf/index.php
http://forecasters.org/ijf/index.php
http://forecasters.org
http://forecasters.org/foresight/
http://forecasters.org/publications/oracle/
http://forecasters.org/publications/oracle/
http://www.forecastingprinciples.com
http://www.econometricsociety.org/
http://sofie.stern.nyu.edu/
http://www.journals.elsevier.com/journal-of-econometrics/
http://www.amstat.org/publications/jbes.cfm
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1255
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forecasting models, and you’ll be able to use them to improve your decisions.

Forecasting is inextricably linked to the building of statistical models.

Before we can forecast a variable of interest, we typically build a model for

it and estimate the model’s parameters using observed historical data. Typ-

ically, the estimated model summarizes dynamic patterns in the data; that

is, the estimated model provides a statistical characterization of the links

between the present and the past. More formally, an estimated forecasting

model provides a characterization of what we expect in the present, con-

ditional upon the past, from which we infer what to expect in the future,

conditional upon the present and past. Quite simply, we use the estimated

forecasting model to extrapolate the observed historical data.

In this book we focus on core modeling and forecasting methods that

are very widely applicable. We begin by introducing several fundamental

issues relevant to any forecasting exercise, and then we treat the construction,

use, and evaluation of modern forecasting models. We give special attention

to basic methods for forecasting trend, seasonality and cycles, as well as

methods for evaluating and combining forecasts. Most chapters contain a

detailed application; examples include forecasting retail sales, housing starts,

employment, liquor sales, exchange rates, shipping volume, and stock market

volatility.

1.5 Tips on How to use this book

As you navigate through the book, keep the following in mind.

• Hyperlinks to internal items (table of contents, index, footnotes, etc.)

appear in red.

• Hyperlinks to bibliographical references appear in green.

• Hyperlinks to external items (web pages, video, etc.) appear in cyan.2

2Obviously web links sometimes go dead. I make every effort to keep them updated in the latest edition
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• Hyperlinks to external files appear in blue.

• Many graphics are clickable to reach related material, as are, for example,

all pictures in this chapter.

• Key concepts appear in bold. They also appear in the (hyperlinked)

index and so can be referenced instantly.

• Additional course-related materials (slides, code, data) appear on the

book’s website at http://www.ssc.upenn.edu/~fdiebold/Textbooks.

html.

• Datasets appear in Appendix C, from which they may be copied and

pasted directly.

• The examples that appear throughout should not be taken as definitive

or complete treatments – there is no such thing! A good idea is to think

of the implicit “Problem 0” in each chapter’s Exercises, Problems and

Complements (EPC) section as “Critique the modeling and forecasting

in this chapter’s empirical example, obtain the relevant data, and pro-

duce a superior modeling and forecasting analysis.”

• All data used in examples are fictitious. Sometimes they are based on

real data for various real countries, firms, etc., and sometimes they are

artificially constructed. Ultimately, however, any resemblance to partic-

ular countries, firms, etc. should be viewed as coincidental and irrele-

vant.

• The end-of-chapter EPC’s are of central importance and should be stud-

ied carefully. Exercises are generally straightforward checks of your un-

derstanding. Problems, in contrast, are generally significantly more in-

(but no guarantees of course!). If you’re encountering an unusual number of dead links, you’re probably
using an outdated edition.

http://www.ssc.upenn.edu/~fdiebold/Textbooks.html
http://www.ssc.upenn.edu/~fdiebold/Textbooks.html
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volved, whether analytically or computationally. Complements generally

introduce important auxiliary material not covered in the main text.
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1.6 Exercises, Problems and Complements

1. The basic forecasting framework.

True or false:

a. The underlying principles of time-series forecasting differ radically

depending on the time series being forecast.

b. Ongoing improvements in forecasting methods will eventually enable

perfect prediction.

c. There is no way to learn from a forecast’s historical performance

whether and how it could be improved.

2. Data and forecast timing conventions.

Suppose that, in a particular monthly data set, time t = 10 corresponds

to September 1960.

a. Name the month and year of each of the following times: t+5, t+10,

t+ 12, t+ 60.

b. Suppose that a series of interest follows the simple process yt = yt−1 + 1

, for t = 1, 2, 3, ..., meaning that each successive month’s value is one

higher than the previous month’s. Suppose that y0 = 0, and suppose

that at present t = 10. Calculate the forecasts yt+5,t, yt+10,t, yt+12,t, yt+60,t,

where, for example, yt+5,t denotes a forecast made at time t for future

time t+ 5, assuming that t = 10 at present.

3. Degrees of forecastability.

Which of the following can be forecast perfectly? Which can not be

forecast at all? Which are somewhere in between? Explain your answers,

and be careful!

a. The direction of change tomorrow in a country’s stock market;
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b. The eventual lifetime sales of a newly-introduced automobile model;

c. The outcome of a coin flip;

d. The date of the next full moon;

e. The outcome of a (fair) lottery.

4. Forecasting in daily life.

We all forecast, all the time, implicitly if not explicitly.

a. Sketch in detail three forecasts that you make routinely, and probably

informally, in your daily life. What makes you believe that the things

your forecast are in fact forecastable? What does that even mean?

What factors might introduce error into your forecasts?

b. What decisions are aided by your three forecasts? How might the

degree of predictability of the forecast object affect your decisions?

c. For each of your forecasts, what is the value to you of a “good” as

opposed to a “bad” forecast?

d. How might you measure the “goodness” of your three forecasts?

5. Forecasting in business, finance, economics, and government.

What sorts of forecasts would be useful in the following decision-making

situations? Why? What sorts of data might you need to produce such

forecasts?

a. Shop-All-The-Time Network (SATTN) needs to schedule operators to

receive incoming calls. The volume of calls varies depending on the

time of day, the quality of the TV advertisement, and the price of the

good being sold. SATTN must schedule staff to minimize the loss of

sales (too few operators leads to long hold times, and people hang up

if put on hold) while also considering the loss associated with hiring

excess employees.
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b. You’re a U.S. investor holding a portfolio of Japanese, British, French

and German stocks and government bonds. You’re considering broad-

ening your portfolio to include corporate stocks of Tambia, a develop-

ing economy with a risky emerging stock market. You’re only willing

to do so if the Tambian stocks produce higher portfolio returns suffi-

cient to compensate you for the higher risk. There are rumors of an

impending military coup, in which case your Tambian stocks would

likely become worthless. There is also a chance of a major Tambian

currency depreciation, in which case the dollar value of your Tambian

stock returns would be greatly reduced.

c. You are an executive with Grainworld, a huge corporate farming con-

glomerate with grain sales both domestically and abroad. You have no

control over the price of your grain, which is determined in the com-

petitive market, but you must decide what to plant and how much,

over the next two years. You are paid in foreign currency for all grain

sold abroad, which you subsequently convert to dollars. Until now

the government has bought all unsold grain to keep the price you

receive stable, but the agricultural lobby is weakening, and you are

concerned that the government subsidy may be reduced or eliminated

in the next decade. Meanwhile, the price of fertilizer has risen because

the government has restricted production of ammonium nitrate, a key

ingredient in both fertilizer and terrorist bombs.

d. You run BUCO, a British utility supplying electricity to the London

metropolitan area. You need to decide how much capacity to have

on line, and two conflicting goals must be resolved in order to make

an appropriate decision. You obviously want to have enough capacity

to meet average demand, but that’s not enough, because demand is

uneven throughout the year. In particular, demand skyrockets during

summer heat waves – which occur randomly – as more and more peo-
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ple run their air conditioners constantly. If you don’t have sufficient

capacity to meet peak demand, you get bad press. On the other hand,

if you have a large amount of excess capacity over most of the year,

you also get bad press.

6. Finding and using data on the web.

Search the web for information on U.S. retail sales, U.K. stock prices,

German GDP, and Japanese federal government expenditures. Using

graphical methods, compare and contrast the movements of each series.

7. Software differences and bugs: caveat emptor.

Be warned: no software is perfect. In fact, all software is highly im-

perfect! The results obtained when modeling or forecasting in different

software environments may differ – sometimes a little and sometimes a

lot – for a variety of reasons. The details of implementation may differ

across packages, for example, and small differences in details can some-

times produce large differences in results. Hence, it is important that

you understand precisely what your software is doing (insofar as pos-

sible, as some software documentation is more complete than others).

And of course, quite apart from correctly-implemented differences in de-

tails, deficient implementations can and do occur: there is no such thing

as bug-free software.

8. Forecasting vs. prediction.

We will use the terms prediction and forecasting interchangeably, using

either term in all environments (time-series environments), cross-section

environments, etc.)



Chapter 2

Universal Considerations

In Chapter 1 we sketched a variety of areas where forecasts are used routinely.

Here we begin by highlighting, in no particular order, a number of considera-

tions relevant for any forecasting task. We introduce the those considerations

as questions.

1. (Forecast Object) What is the object that we want to forecast? Is it a

time series, such as sales of a firm recorded over time, or an event, such

as devaluation of a currency, or something else? Appropriate forecasting

strategies depend on the nature of the object being forecast.

2. (Information Set) On what information will the forecast be based? In

a time series environment, for example, are we forecasting one series,

several, or thousands? And what is the quantity and quality of the

data? Appropriate forecasting strategies depend on the information set,

broadly interpreted to not only quantitative data but also expert opinion,

judgment, and accumulated wisdom.

3. (Model Uncertainty and Improvement) Does our forecasting model

match the true DGP? Of course not. One must never, ever, be so foolish

as to be lulled into such a naive belief. All models are false: they are

intentional abstractions of a much more complex reality. A model might

be useful for certain purposes and poor for others. Models that once

21
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worked well may stop working well. One must continually diagnose and

assess both empirical performance and consistency with theory. The key

is to work continuously toward model improvement.

4. (Forecast Horizon) What is the forecast horizon of interest, and what

determines it? Are we interested, for example, in forecasting one month

ahead, one year ahead, or ten years ahead (called h-step-ahead fore-

casts, in this case for h = 1, h = 12 and h = 120 months)? Appropriate

forecasting strategies likely vary with the horizon.

5. (Structural Change)

Are the approximations to reality that we use for forecasting (i.e., our

models) stable over time? Generally not. Things can change for a variety

of reasons, gradually or abruptly, with obviously important implications

for forecasting. Hence we need methods of detecting and adapting to

structural change.

6. (Forecast Statement) How will our forecasts be stated? If, for exam-

ple, the object to be forecast is a time series, are we interested in a single

“best guess” forecast, a “reasonable range” of possible future values that

reflects the underlying uncertainty associated with the forecasting prob-

lem, or a full probability distribution of possible future values? What

are the associated costs and benefits?

7. (Forecast Presentation)

How best to present forecasts? Except in the simplest cases, like a single

h-step-ahead point forecast, graphical methods are valuable, not only for

forecast presentation but also for forecast construction and evaluation.

8. (Decision Environment and Loss Function) What is the decision

environment in which the forecast will be used? In particular, what

decision will the forecast guide? How do we quantify what we mean
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by a “good” forecast, and in particular, the cost or loss associated with

forecast errors of various signs and sizes?

9. (Model Complexity and the Parsimony Principle) What sorts

of models, in terms of complexity, tend to do best for forecasting in

business, finance, economics, and government? The phenomena that

we model and forecast are often tremendously complex, but it does not

necessarily follow that our forecasting models should be complex. Bigger

forecasting models are not necessarily better, and indeed, all else equal,

smaller models are generally preferable (the “parsimony principle”).

10. (Unobserved Components) In the leading time case of time series,

have we successfully modeled trend? Seasonality? Cycles? Some se-

ries have all such components, and some not. They are driven by very

different factors, and each should be given serious attention.

2.1 The Forecast Object

There are many objects that we might want to forecast. In business and eco-

nomics, the forecast object is typically one of three types: event outcome,

event timing, or time series.

Event outcome forecasts are relevant to situations in which an event is

certain to take place at a given time but the outcome is uncertain. For

example, many people are interested in whether the current chairman of the

Board of Governors of the U.S. Federal Reserve System will eventually be

reappointed. The “event” is the reappointment decision; the decision will

occur at the end of the term. The outcome of this decision is confirmation

or denial of the reappointment.

Event timing forecasts are relevant when an event is certain to take place

and the outcome is known, but the timing is uncertain. A classic example

of an event timing forecast concerns business cycle turning points. There are
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two types of turning points: peaks and troughs. A peak occurs when the

economy moves from expansion into recession, and a trough occurs when the

economy moves from recession into expansion. If, for example, the economy

is currently in an expansion, then there is no doubt that the next turning

point will be a peak, but there is substantial uncertainty as to its timing .

Will the peak occur this quarter, this year, or ten years from now?

Time series forecasts are relevant when the future value of a time series is

of interest and must be projected. As we’ll see, there are many ways to make

such forecasts, but the basic forecasting setup doesn’t change much. Based

upon the history of the time series (and possibly a variety of other types of

information as well, such as the histories of related time series, or subjective

considerations), we want to project future values of the series. For example,

we may have data on the number of Apple computers sold in Germany in

each of the last 60 months, and we may want to use that data to forecast

the number of Apple computers to be sold in Germany in each month of the

next year.

There are at least two reasons why time series forecasts are by far the most

frequently encountered in practice. First, most business, economic and finan-

cial data are time series; thus, the general scenario of projecting the future of

a series for which we have historical data arises constantly. Second, the tech-

nology for making and evaluating time-series forecasts is well-developed and

the typical time series forecasting scenario is precise, so time series forecasts

can be made and evaluated routinely. In contrast, the situations associated

with event outcome and event timing forecasts arise less frequently and are

often less amenable to quantitative treatment.
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2.2 The Information Set

The quality of our forecasts is limited by the quality and quantity of in-

formation available when forecasts are made. Any forecast we produce is

conditional upon the information used to produce it, whether explicitly or

implicitly.

2.2.1 Univariate vs. Multivariate

The idea of an information set is fundamental to constructing good forecasts.

In forecasting a series, y, using historical data from time 1 to time T , some-

times we use the univariate information set, which is the set of historical

values of y up to and including the present,

ΩT = {yT , yT−1, ..., y1}.

In a univariate environment, then, a single variable is modeled and forecast

solely on the basis of its own past. Univariate approaches to forecasting may

seem simplistic, and in some situations they are, but they are tremendously

important and worth studying for at least two reasons. First, although they

are simple, they are not necessarily simplistic, and a large amount of accu-

mulated experience suggests that they often perform admirably. Second, it’s

necessary to understand univariate forecasting models before tackling more

complicated multivariate models.

Alternatively, sometimes we use the multivariate information set

ΩT = {yT , xT , yT−1, xT−1, ..., y1, x1},

where the x’s are a set of additional variables potentially related to y. In a

multivariate environment, a variable (or each member of a set of variables)

is modeled on the basis of its own past, as well as the past of other variables,

thereby accounting for and exploiting cross-variable interactions. Multivari-
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ate models have the potential to produce forecast improvements relative to

univariate models, because they exploit more information to produce fore-

casts.

2.2.2 Expert Opinion and Judgment

Regardless of whether the information set is univariate or multivariate, it’s

always important to think hard about what information is available, what

additional information could be collected or made available, the form of the

information (e.g., quantitative or qualitative), and so on. A holistic view of

an information involves far more than just the past history of one or a few

quantitative variables; instead, it involves theoretical perspectives, expert

judgment, contextual knowledge, and so on.

So you should take a broad view of what’s meant by a “model.” Try to

incorporate views of experts and even non-experts. (Sometimes the alleged

experts are not so expert, and the alleged non-experts are quite insightful.)

Surveys, Bayesian priors and shrinkage, forecast combination, and prediction

markets, which we’ll discuss in due course, all attempt to do that.

2.2.3 Information Sets in Forecast Evaluation

The idea of an information set is also fundamental for evaluating forecasts:

the basic principle of forecast evaluation is that a “good” forecast has cor-

responding errors that are unforecastable using using information available

when the forecast is made. When evaluating a forecast, we’re sometimes in-

terested in whether the forecast could be improved by using a given set of

information more efficiently, and we’re sometimes interested in whether the

forecast could be improved by using more information. Either way, the ideas

of information and information sets play crucial roles in forecast evaluation.
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2.3 Model Uncertainty and Improvement

One must never, ever, be so foolish as to be lulled into believing that one’s

model coincides with the true DGP. Indeed all models are false. Does that

mean that models and modeling are somehow discredited, or worthless? Not

at all, and their use continues to expand. The uninitiated are sometimes

suspicious, because their lack of understanding of models and modeling leads

them to have unreasonable expectations of models, but there’s no other way

forward. As George Box (1979) famously and correctly noted, “All models

are false, but some are useful.”

Related, a model might be useful for certain purposes and poor for others.

Models that once worked well may stop working well. One must continually

diagnose and assess both empirical performance and consistency with theory.

That is, the key is to think continually about how to improve models. And

always remember: It takes a model to beat a model.

2.4 The Forecast Horizon

2.4.1 h-Step-Ahead Forecasts

The forecast horizon is defined as the number of periods between today and

the date of the forecast we make. For example, if we have annual data, and

it’s now year T , then a forecast of GDP for year T + 2 has a forecast horizon

of 2 steps. The meaning of a step depends on the frequency of observation of

the data. For monthly data a step is one month, for quarterly data a step is

one quarter (three months), and so forth. In general, we speak of an h-step

ahead forecast, where the horizon h is at the discretion of the user.1

The horizon is important for at least two reasons. First, of course, the

forecast changes with the forecast horizon. Second, the best forecasting model

1The choice of h depends on the decision that the forecast will guide. The nature of the decision envi-
ronment typically dictates whether “short-term”, “medium-term”, or “long-term” forecasts are needed.
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will often change with the forecasting horizon as well. All of our forecasting

models are approximations to the underlying dynamic patterns in the series

we forecast; there’s no reason why the best approximation for one purpose

(e.g., short-term forecasting) should be the same as the best approximation

for another purpose (e.g., long-term forecasting).

2.4.2 h− Step Ahead Path Forecasts

Let’s distinguish between what we’ve called h-step-ahead forecasts and what

we’ll call h-step-ahead path forecasts, sometimes also called h-step-

ahead extrapolation forecasts. In h-step-ahead forecasts, the horizon

is always fixed at the same value, h. For example, every month we might

make a 4-month-ahead forecast. Alternatively, in path forecasts, the horizon

includes all steps from 1-step-ahead to h-steps-ahead. There’s nothing par-

ticularly deep or difficult about the distinction, but it’s useful to make it, and

we’ll use it subsequently.

Suppose, for example, that you observe a series from some initial time 1

to some final time T , and you plan to forecast the series.2 We illustrate the

difference between h-step-ahead and h-step-ahead path forecasts in Figures

2.1 and 2.2. In Figure 2.1 we show a 4-step-ahead point forecast, and in

Figure 2.2 we show a 4-step-ahead path point forecast. The path forecast is

nothing more than a set consisting of 1-, 2-, 3-, and 4-step-ahead forecasts.

2.4.3 Nowcasting and Backcasting

Quite apart from making informative and useful guesses about the future

(forecasting), often we’re interested in the present (“nowcasting”) – which is

also subject to lots of uncertainty – or even the past (“backcasting”). Many

2For a sample of data on a series y, we’ll typically write {yt}Tt=1. This notation means “we observe the
series y from some beginning time t = 1 to some ending time t = T”.
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Figure 2.1: 4-Step-Ahead Point Forecast

Figure 2.2: 4-Step-Ahead Path Forecast
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of our models and methods will be relevant there as well.3

2.5 Structural Change

In time series, we rely on the future being like the present/past in terms of

dynamic relationships (e.g., the next twenty years vs. the last twenty years).

But that’s not always true. Structural change can be gradual or abrupt.

In cross sections, we rely on fitted relationships being relevant for new

cases from the original population, and often even for new populations. But

again, that’s not always true. For example, the effect of class size on test

scores may differ for 10-year olds in California vs. 6-year olds in Maine.

Structural change can affect any or all parameters of a model, and the

breaks can be large or small.

Structural change is a type of non-linearity; indeed abrupt structural

change is often handled with dummy variable models, and gradual structural

change is often handled with smoothly-time-varying parameter models.

2.6 The Forecast Statement

2.6.1 Time Series

When we make a forecast, we must decide if the forecast will be (1) a single

number (a “best guess”), (2) a range of numbers, into which the future value

can be expected to fall a certain percentage of the time, or (3) an entire

probability distribution for the future value. In short, we need to decide

upon the forecast type.

More precisely, we must decide if the forecast will be (1) a point forecast,

(2) an interval forecast, or (3) a density forecast. A point forecast is a

single number. For example, one possible point forecast of the growth rate of

3For an example of nowcasting see the ADS Index at FRB Philadelphia, and for an example of backcasting
see GDPplus, also at FRB Philadelphia.

https://www.philadelphiafed.org/research-and-data/real-time-center/business-conditions-index
https://www.philadelphiafed.org/research-and-data/real-time-center/gdpplus


2.6. THE FORECAST STATEMENT 31

the total number of web pages over the next year might be +23.3%; likewise,

a point forecast of the growth rate of U.S. real GDP over the next year might

be +1.3%. Point forecasts are made routinely in numerous applications,

and the methods used to construct them vary in difficulty from simple to

sophisticated. The defining characteristic of a point forecast is simply that

it is a single number.

A good point forecast provides a simple and easily-digested guide to the

future of a time series. However, random and unpredictable “shocks” af-

fect all of the series that we forecast. As a result of such shocks, we expect

nonzero forecast errors, even from very good forecasts. Thus, we may want to

know the degree of confidence we have in a particular point forecast. Stated

differently, we may want to know how much uncertainty is associated with a

particular point forecast. The uncertainty surrounding point forecasts sug-

gests the usefulness of an interval forecast.

An interval forecast is not a single number; rather, it is a range of values

in which we expect the realized value of the series to fall with some (pre-

specified) probability.4 Continuing with our examples, a 90% interval forecast

for the growth rate of web pages might be the interval [11.3%, 35.3%] (23.3%

± 12%). That is, the forecast states that with probability 90% the future

growth rate of web pages will be in the interval [11.3%, 35.3%]. Similarly, a

90% interval forecast for the growth rate of U.S. real GDP might be [-2.3%,

4.3%] (1.3% ± 3%); that is, the forecast states that with probability 90% the

future growth rate of U.S. real GDP will be in the interval [-2.3%, 4.3%].

A number of remarks are in order regarding interval forecasts. First, the

length (size) of the intervals conveys information regarding forecast uncer-

tainty. The GDP growth rate interval is much shorter then the web page

4An interval forecast is very similar to the more general idea of a confidence interval that you studied in
statistics. An interval forecast is simply a confidence interval for the true (but unknown) future value of a
series, computed using a sample of historical data. We’ll say that [a, b] is a 100(1 − α)% interval forecast
if the probability of the future value being less than a is α/2 and the probability of the future value being
greater than b is also α/2.
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growth rate interval; this reflects the fact that there is less uncertainty as-

sociated with the real GDP growth rate forecast than the web page growth

rate forecast. Second, interval forecasts convey more information than point

forecasts: given an interval forecast, you can construct a point forecast by

using the midpoint of the interval.5 Conversely, given only a point forecast,

there is no way to infer an interval forecast.

Finally, we consider density forecasts. A density forecast gives the entire

density (or probability distribution) of the future value of the series of in-

terest. For example, the density forecast of future web page growth might

be normally distributed with a mean of 23.3% and a standard deviation of

7.32%. Likewise, the density forecast of future real GDP growth might be

normally distributed with a mean of 1.3% and a standard deviation of 1.83%.

As with interval forecasts, density forecasts convey more information than

point forecasts. Density forecasts also convey more information than interval

forecasts, because given a density, interval forecasts at any desired confidence

level are readily constructed. For example, if the future value of a series x

is distributed as N(µ, σ2), then a 95% interval forecast of x is µ± 1.96σ, a

90% interval forecast of x is µ± 1.64σ, and so forth. Continuing with our

example, the relationships between density, interval, and point forecasts are

made clear in Figures 2.3 (web page growth) and 2.4 (GDP growth).

To recap, there are three time series forecast types: point, interval, and

density. Density forecasts convey more information than interval forecasts,

which in turn convey more information than point forecasts. This may seem

to suggest that density forecasts are always the preferred forecast, that den-

sity forecasts are the most commonly used forecasts in practice, and that we

should focus most of our attention in this book on density forecasts.

In fact, the opposite is true. Point forecasts are the most commonly used

5An interval forecast doesn’t have to be symmetric around the point forecast, so that we wouldn’t nec-
essarily infer a point forecast as the midpoint of the interval forecast, but in many cases such a procedure is
appropriate.
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Figure 2.3: Web Page Growth Forecasts

Figure 2.4: GDP Growth Forecasts
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forecasts in practice, interval forecasts are a rather distant second, and den-

sity forecasts are rarely made. There are at least two reasons. First, the con-

struction of interval and density forecasts requires either (a) additional and

possibly incorrect assumptions relative to those required for construction of

point forecasts, or (b) advanced and computer-intensive methods involving,

for example, extensive simulation. Second, point forecasts are often easier

to understand and act upon than interval or density forecasts. That is, the

extra information provided by interval and density forecasts is not necessarily

an advantage when information processing is costly.

2.6.2 Events

Thus far we have focused exclusively on types of time series forecasts, because

time series are so prevalent and important in numerous fields. It is worth

mentioning another forecast type of particular relevance to event outcome

and event timing forecasting, the probability forecast. To understand the

idea of a probability forecast, consider forecasting which of two politicians, X

or Y, will win an election. (This is an event-outcome forecasting situation.)

If our calculations tell us that the odds favor X, we might issue the forecast

simply as “X will win.” This is roughly analogous to the time series point

forecasts discussed earlier, in the sense that we’re not reporting any measure

of the uncertainty associated with out forecast. Alternatively, we could report

the probabilities associated with each of the possible outcomes; for example,

“X will win with probability .6, and Y will win with probability .4.” This

is roughly analogous to the time series interval or density forecasts discussed

earlier, in the sense that it explicitly quantifies the uncertainty associated

with the future event with a probability distribution.

Event outcome and timing forecasts, although not as common as time se-

ries forecasts, do nevertheless arise in certain important situations and are

often stated as probabilities. For example, when a bank assesses the proba-
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bility of default on a new loan or a macroeconomist assesses the probability

that a business cycle turning point will occur in the next six months, the

banker or macroeconomist will often use a probability forecast.

2.6.3 Probability Forecasts as Point and/or Density Forecasts

2.7 Forecast Presentation

2.7.1 Graphics for Forecasts

2.7.2 Graphics for Forecast Evaluation

2.8 The Decision Environment and Loss Function

Forecasts are not made in a vacuum. The key to generating good and useful

forecasts, which we will stress now and throughout, is recognizing that fore-

casts are made to guide decisions. The link between forecasts and decisions

sounds obvious – and it is – but it’s worth thinking about in some depth.

Forecasts are made in a wide variety of situations, but in every case fore-

casts are of value because they aid in decision making. Quite simply, good

forecasts help to produce good decisions. Recognition and awareness of the

decision making environment is the key to effective design, use and evaluation

of forecasting models.

2.8.1 Loss Functions

Let y denote a series and ŷ its forecast. The corresponding forecast error,

e, is the difference between the realization and the previously-made forecast,

e = y − ŷ.

We consider loss functions of the form L(e). This means that the loss associ-

ated with a forecast depends only on the size of the forecast error. We might
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require the loss function L(e) to satisfy three conditions:

1. L(0) = 0. That is, no loss is incurred when the forecast error is zero. (A

zero forecast error, after all, corresponds to a perfect forecast!)

2. L(e) is continuous. That is, nearly-identical forecast errors should pro-

duce nearly-identical losses.

3. L(e) is increasing on each side of the origin. That is, the bigger the

absolute value of the error, the bigger the loss.

Apart from these three requirements, we impose no restrictions on the

form of the loss function.

The quadratic loss function is tremendously important in practice. First,

it’s often an arguably-reasonable approximation to realistic loss structures.

Second, it’s mathematically convenient: It is usually easy to compute, be-

cause quadratic objectives have linear first-order conditions.6

Quadratic loss is given by

L(e) = e2 ,

and we graph it as a function of the forecast error in Figure 2.5. Because

of the squaring associated with the quadratic loss function, it is symmetric

around the origin, and in addition, it increases at an increasing rate on each

side of the origin, so that large errors are penalized much more severely than

small ones.

Another important symmetric loss function is absolute loss, or absolute

error loss, given by

L(e) = |e|.

Like quadratic loss, absolute loss is increasing on each side of the origin,

6In contrast, optimal forecasting under asymmetric loss is rather involved, and the tools for doing so
are still under development. See, for example, Christoffersen and Diebold, 1997.
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Figure 2.5: Quadratic, Absolute, and Linlin Loss Functions

but loss increases at a constant (linear) rate with the size of the error. We

illustrate absolute loss in Figure 2.5.

In certain contexts, symmetric loss functions may not be an adequate

distillation of the forecast / decision environment, as would be the case, for

example, if negative forecast errors were for some reason generally less costly

than positive errors. An important asymmetric loss function is “linlin loss”

(linear on each side of the origin, with generally different slopes), given by

L(e) =


a|e|, if e > 0

b|e|, if e ≤ 0.

We show asymmetric linlin loss in Figure 2.5.

2.8.2 Optimal Forecasts with Respect to a Loss Function

Much of this book is about how to produce optimal forecasts. What pre-

cisely do we mean by an optimal forecast? That’s where the loss function
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comes in: the optimal forecast is the forecast with smallest conditionally

expected loss.

ŷ(x)∗ = argminŷ(x)

∫ ∫
L(y − ŷ(x)) f(y, x) dy dx.

Here are some key results:

• Under quadratic loss, the optimal forecast is the conditional mean. That

is,

ŷ(x)∗ = E(y|x).

Note that x could be lagged y.

• Under absolute loss, the optimal forecast is the conditional median,

ŷ(x)∗ = Q.50·100%(y|x),

where Qd·100%(·) denotes the d-percent conditional quantile function.

• Under lin-lin loss, the optimal forecast is the conditional d · 100% quan-

tile, where

d =
b

a+ b
=

1

1 + a/b
.

That is,

ŷ(x)∗ = Qd·100%(y|x).

Quite generally under asymmetric L(e) loss (e.g., linlin), optimal forecasts

are biased, whereas the conditional mean forecast is unbiased.7 Bias is opti-

mal under asymmetric loss because we can gain on average by pushing the

forecasts in the direction such that we make relatively few errors of the more

costly sign.

7A forecast is unbiased if its error has zero mean.
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2.8.3 State-Dependent Loss

In some situations, the L(e) form of the loss function is too restrictive. Al-

though loss will always be of the form L(y, ŷ), there’s no reason why y and

ŷ should necessarily enter as y − ŷ. In predicting financial asset returns, for

example, interest sometimes focuses on direction of change. A direction-of-

change forecast takes one of two values – up or down. The loss function

associated with a direction of change forecast might be:8

L(y, ŷ) =

{
0, if sign(∆y) = sign(∆ŷ)

1, if sign(∆y) 6= sign(∆ŷ).

With this loss function, if you predict the direction of change correctly, you

incur no loss; but if your prediction is wrong, you’re penalized.

This is one example of a state-dependent loss function, meaning that

loss actually depends on the state of the world (y), as opposed to just de-

pending on e. This may sometimes make sense; the cost of a given error may

be higher or lower, for example, in different states of the world as indexed by

y.

Under direction-of-change loss, the optimal forecast is the conditional

mode. That is,

ŷ(x)∗ = Mode(y|x).

2.9 Model Complexity and the Parsimony Principle

It’s crucial to tailor forecasting tools to forecasting tasks, and doing so is

partly a matter of judgment. Typically the specifics of the situation (e.g.,

decision environment, forecast object, forecast statement, forecast horizon,

information set, etc.) will indicate the desirability of a specific method or
8The operator “∆” means “change.” Thus ∆yt is the change in y from period t − 1 to period t, or

yt − yt−1 .



40 CHAPTER 2. UNIVERSAL CONSIDERATIONS

modeling strategy. Moreover, as we’ll see, formal statistical criteria exist to

guide model selection within certain classes of models.

We’ve stressed that a variety of forecasting applications use a small set of

common tools and models. You might guess that those models are tremen-

dously complex, because of the obvious complexity of the real-world phe-

nomena that we seek to forecast. Fortunately, such is not the case. In fact,

decades of professional experience suggest just the opposite – simple, par-

simonious models tend to be best for out-of-sample forecasting in business,

finance, and economics. Hence, the parsimony principle: other things the

same, simple models are usually preferable to complex models.

There are a number of reasons why smaller, simpler models are often

more attractive than larger, more complicated ones. First, by virtue of their

parsimony, we can estimate the parameters of simpler models more precisely.

Second, because simpler models are more easily interpreted, understood and

scrutinized, anomalous behavior is more easily spotted. Third, it’s easier to

communicate an intuitive feel for the behavior of simple models, which makes

them more useful in the decision-making process. Finally, enforcing simplicity

lessens the scope for “data mining” – tailoring a model to maximize its fit

to historical data. Data mining often results in models that fit historical

data beautifully (by construction) but perform miserably in out-of-sample

forecasting, because it tailors models in part to the idiosyncrasies of historical

data, which have no relationship to unrealized future data.

Finally, note that simple models should not be confused with naive models.

All of this is well-formalized in the KISS principle (appropriately modified

for forecasting): “Keep it Sophisticatedly Simple.” We’ll attempt to do so

throughout.
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2.10 Unobserved Components

Trend, seasonal, cycle, noise. Deterministic vs. stochastic trend and season-

ality.

yt = Tt + St + Ct + εt.

Or maybe

yt = Tt × St × Ct × εt,

but of course that’s just

lnyt = lnTt + lnSt + lnCt + lnεt.

2.11 Concluding Remarks

This chapter obviously deals with broad issues of general relevance. For the

most part, it avoids detailed discussion of specific modeling or forecasting

techniques. The rest of the book drills down more deeply.
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2.12 Exercises, Problems and Complements

1. Properties of loss functions.

State whether the following potential loss functions meet the criteria

introduced in the text, and if so, whether they are symmetric or asym-

metric:

a. L(e) = e2 + e

b. L(e) = e4 + 2e2

c. L(e) = 3e2 + 1

d. L(e) =


√
e if e > 0

|e| if e ≤ 0.

.

2. Relationships among point, interval and density forecasts.

For each of the following density forecasts, how might you infer “good”

point and ninety percent interval forecasts? Conversely, if you started

with your point and interval forecasts, could you infer “good” density

forecasts?

Be sure to defend your definition of “good.”

a. Future y is distributed as N(10, 2).

b. P (y) =



y−5
25 if 5 < y < 10

−y−15
25 if 10 < y < 15

0 otherwise.

3. Forecasting at short through long horizons.
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Consider the claim, “The distant future is harder to forecast than the

near future.” Is it sometimes true? Usually true? Always true? Why or

why not? Discuss in detail. Be sure to define “harder.”

4. “Real” forecasts vs. “goal” or “advocacy” forecasts.

Many things that seem like forecasts are not at all real forecasts. Ev-

ery politician forecasts that she will win the election. Should you take

such forecasts seriously? Every lawyer forecasts that his client will win.

Should you take such forecasts seriously? Simultaneously, hidden away

from the public, serious, scientifically disinterested forecasts are rou-

tinely made and used successfully in numerous endeavors. The problem

is that the public routinely sees the former (e.g., from television pundits)

and rarely sees the latter.

5. Univariate and multivariate information sets.

a. Which of the following modeling situations involve univariate infor-

mation sets? Multivariate?

i. Using a stock’s price history to forecast its price over the next

week;

ii. Using a stock’s price history and volatility history to forecast its

price over the next week;

iii. Using a stock’s price history and volatility history to forecast its

price and volatility over the next week.

b. Keeping in mind the distinction between univariate and multivariate

information sets, consider a wine merchant seeking to forecast the

price per case at which a fine vintage of Chateau Latour, one of the

greatest Bordeaux wines, will sell when it is thirty years old, at which

time it will be fully mature.
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i. What sorts of univariate forecasting approaches can you imagine

that might be relevant?

ii. What sorts of multivariate forecasting approaches can you imagine

that might be relevant? What other variables might be used to

predict the Latour price?

iii. What are the comparative costs and benefits of the univariate and

multivariate approaches to forecasting the Latour price?

iv. Would you adopt a univariate or multivariate approach to fore-

casting the Latour price? Why?

6. Assessing forecasting situations.

For each of the following scenarios, discuss the decision environment,

the nature of the object to be forecast, the forecast type, the forecast

horizon, the loss function, the information set, and what sorts of simple

or complex forecasting approaches you might entertain.

a. You work for Airborne Analytics, a highly specialized mutual fund

investing exclusively in airline stocks. The stocks held by the fund are

chosen based on your recommendations. You learn that a newly rich

oil-producing country has requested bids on a huge contract to deliver

thirty state-of-the-art fighter planes, but that only two companies

submitted bids. The stock of the successful bidder is likely to rise.

b. You work for the Office of Management and Budget in Washington

DC and must forecast tax revenues for the upcoming fiscal year. You

work for a president who wants to maintain funding for his pilot so-

cial programs, and high revenue forecasts ensure that the programs

keep their funding. However, if the forecast is too high, and the pres-

ident runs a large deficit at the end of the year, he will be seen as

fiscally irresponsible, which will lessen his probability of reelection.
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Furthermore, your forecast will be scrutinized by the more conser-

vative members of Congress; if they find fault with your procedures,

they might have fiscal grounds to undermine the President’s planned

budget.

c. You work for D&D, a major Los Angeles advertising firm, and you

must create an ad for a client’s product. The ad must be targeted

toward teenagers, because they constitute the primary market for the

product. You must (somehow) find out what kids currently think

is “cool,” incorporate that information into your ad, and make your

client’s product attractive to the new generation. If your hunch is

right, your firm basks in glory, and you can expect multiple future

clients from this one advertisement. If you miss, however, and the

kids don’t respond to the ad, then your client’s sales fall and the

client may reduce or even close its account with you.

7. Box vs. Wiener on Models and Modeling.

We earlier mentioned George Box’s memorable view that “All models

are false, but some are useful.” Norbert Wiener, an equally important

applied mathematician on whose work much of this book builds, had

a different and also-memorable view, asserting that “The best material

model of a cat is another, or preferably the same, cat.”9 What did Wiener

mean? What is your view?

8. Forecasting as an ongoing process in organizations.

We could add another very important item to this chapter’s list of con-

siderations basic to successful forecasting – forecasting in organizations

is an ongoing process of building, using, evaluating, and improving fore-

casting models. Provide a concrete example of a forecasting model used

in business, finance, economics or government, and discuss ways in which

9Attributed by Wikiquote to Wiener and Rosenblueth’s Philosophy of Science, 1945.
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each of the following questions might be resolved prior to, during, or after

its construction.

a. Are the data “dirty”? For example, are there “ragged edges” (dif-

ferent starting and ending dates of different series)? Are there miss-

ing observations? Are there aberrant observations, called outliers,

perhaps due to measurement error?

Are the data stored in a format that inhibits computerized analysis?

b. Has software been written for importing the data in an ongoing fore-

casting operation?

c. Who will build and maintain the model?

d. Are sufficient resources available (time, money, staff) to facilitate

model building, use, evaluation, and improvement on a routine and

ongoing basis?

e. How much time remains before the first forecast must be produced?

f. How many series must be forecast, and how often must ongoing fore-

casts be produced?

g. What level of data aggregation or disaggregation is desirable?

h. To whom does the forecaster or forecasting group report, and how

will the forecasts be communicated?

i. How might you conduct a “forecasting audit”?



Part II

Cross Sections: Basics
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Chapter 3

Predictive Regression: Review and

Interpretation

Ideas that fall under the general heading of “regression analysis” are crucial

for building forecasting models, using them to produce forecasts, and evalu-

ating those forecasts. Here we provide a linear regression refresher. Again,

be warned: this chapter is no substitute for a full-introduction to regression,

which you should have had already.

3.1 Regression as Curve Fitting

3.1.1 Simple Regression

Suppose that we have data on two variables (“simple,” or “bivariate,” re-

gression), y and x, as in Figure 1, and suppose that we want to find the

linear function of x that best fits the data points, in the sense that the sum

of squared vertical distances of the data points from the fitted line is mini-

mized. When we “run a regression,” or “fit a regression line,” that’s what we

do. The estimation strategy is called least squares.

In Figure 2, we illustrate graphically the results of regressing y on x,

which we sometimes denote by y → c, x.1 The best-fitting line slopes upward,

1The “c” denotes inclusion of a constant, or intercept, term.

49
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reflecting the positive correlation between y and x. Note that the data points

don’t satisfy the fitted linear relationship exactly; rather, they satisfy it on

average.

Let us elaborate on the fitting of regression lines, and the reason for the

name “least squares.” When we run the regression, we use a computer to fit

the line by solving the problem

minβ

T∑
t=1

(yt − β1 − β2xt)
2,

where β is shorthand notation for the set of two parameters, β1 and β2. We

denote the set of estimated, or fitted, parameters by β̂, and its elements by
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β̂1 and β̂2.

The regression fitted values are

ŷt = β̂1 + β̂2xt,

t = 1, ..., T . The regression residuals are simply the difference between

actual and fitted values. We write

et = yt − ŷt,

t = 1, ..., T .

In in all linear regressions (even with multiple RHS variables, to which

we turn shortly), the least-squares estimator has a simple formula. We use a
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computer to evaluate the formula, simply, stably, and instantaneously.

3.1.2 Multiple Regression

Extension to the general multiple linear regression model, with an arbitrary

number of right-hand-side variables (K, including the constant), is imme-

diate. We simply run y → c, x2, ..., xK , again picking the parameters to

minimize the sum of squared residuals, and everything goes through as in

the case of simple regression.

The least squares estimator is

β̂OLS = (X ′X)−1X ′y, (3.1)

where X is a T ×K matrix,

X =


1 x21 x31 . . . xK1

1 x22 x32 . . . xK2
...

1 x2T x3T . . . xKT


and y is a T × 1 vector, y′ = (y1, y2, ..., yT ). The time-t fitted value is

ŷt = x′tβ̂,

where x′t = (x1t, ..., xKt) is the time-t vector of x’s, and the time-t residual is

et = yt − ŷt.

The vector of fitted values is

ŷ = Xβ̂,

and the vector of residuals is

e = y − ŷ.
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3.2 Regression as a Probability Model

We work with the full multiple regression model; simple regression is of course

a special case.

3.2.1 A Population Model and a Sample Estimator

Thus far we have not postulated a probabilistic model that relates yt and xt;

instead, we simply ran a mechanical regression of yt on xt to find the best

fit to yt formed as a linear function of xt. It’s easy, however, to construct

a probabilistic framework that lets us make statistical assessments about

the properties of the fitted line. Assume, for example, that yt is linearly

related to an exogenously-determined xt, with an independent and identically

distributed zero-mean (iid) Gaussian disturbance:

yt = β1 + β2x2t + ...+ βKxKt + εt = x′tβ + εt

εt ∼ iidN(0, σ2),

t = 1, ..., T . The intercept of the line is β1, the slope parameters are the

βi’s, and the variance of the disturbance is σ2.2 Collectively, we call the β’s

the model’s parameters. The index t keeps track of time; the data sample

begins at some time we’ve called “1” and ends at some time we’ve called “T”,

so we write t = 1, ..., T . (Or, in cross sections, we index cross-section units

by i and write i = 1, ..., N .)

In this linear regression model the expected value of yt conditional upon

xt taking a particular value, say x∗t , is

E(yt|xt = x∗t ) = xt
∗′β.

That is, the regression function is the conditional expectation of yt.

2We speak of the regression intercept and the regression slope.
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We assume that the the linear model sketched is true in population; that

is, it is the data-generating process (DGP). But in practice, of course, we

don’t know the values of the model’s parameters, β1, β2, ..., βK and σ2. Our

job is to estimate them using a sample of data from the population. We esti-

mate the β’s precesiely as before, using the computer to solve minβ
∑T

t=1 ε
2
t .

3.2.2 Notation, Assumptions and Results: The Full Ideal Condi-

tions

The discussion thus far was intentionally a bit loose, focusing on motivation

and intuition. Let us now be more precise about what we assume and what

results obtain.

A Bit of Matrix Notation

One reason that vector-matrix notation is useful is because the probabilistic

regression model can be written very compactly using it. We have written

the model as

yt = β1 + β2x2t + ...+ βKxKt + εt, t = 1, ..., T.

εt ∼ iidN(0, σ2)

Now stack εt, t = 1, ..., T , into the vector ε, where ε′ = (ε1, ε2, ..., εT ). Then

we can write the complete model over all observations as

y = Xβ + ε (3.2)

ε ∼ N(0, σ2I). (3.3)

This concise representation is very convenient.

Indeed representation (3.2)-(3.3) is crucially important, not simply be-

cause it is concise, but because the various assumptions that we need to
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make to get various statistical results are most naturally and simply stated

on X and ε in equation (3.2).

The most restrictive set of assumptions is known as the “full ideal con-

ditions” (FIC), which are so strict as to be nearly preposterous in economic

contexts, and most of econometrics is devoted to confronting various failures

of the FIC. But before we worry about FIC failures, it’s useful first to recall

what happens when they hold.

Assumptions: The Full Ideal Conditions (FIC)

1. The DGP is (3.2)-(3.3), and the fitted model matches the DGP exactly.

2. X is fixed in repeated samples.

3. X is of full column rank (K).

FIC 1 has many important sub-conditions embedded. For example:

1. Linear relationship, E(y) = Xβ

2. Fixed coefficients, β

3. ε ∼ N

4. ε has constant variance σ2

5. The ε’s are uncorrelated.

FIC 2 says that re-running the world to generate a new sample y∗ would

entail simply generating new shocks ε∗ and running them through equation

(3.2):

y∗ = Xβ + ε∗.

That is, X would stay fixed across replications.
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FIC 3 just says “no multicollinearity” – i.e., no redundancy among the

variables contained in X (more precisely, no regressor is a perfect linear

combination of the others).

Results Under the FIC

The least squares estimator remains

β̂OLS = (X ′X)−1X ′y,

but in a probabilistic interpretation under the FIC, we can say a great

deal about its statistical properties. Among other things, it is miniumum-

variance unbiased (MVUE) and normally distributed with covariance matrix

σ2(X ′X)−1. We write

β̂OLS ∼ N
(
β, σ2(X ′X)−1

)
.

We estimate the covariance matrix σ2(X ′X)−1 using s2(X ′X)−1, where

s2 =

∑T
t=1 e

2
t

T −K
.

3.3 A Typical Regression Analysis

Consider a typical regression output, which we show in Table 1. We do so

dozens of times in this book, and the output format and interpretation are

always the same, so it’s important to get comfortable with it quickly. The

output is in Eviews format. Other software will produce more-or-less the

same information, which is fundamental and standard.

The results begin by reminding us that we’re running a least-squares (LS)

regression, and that the left-hand-side variable is y. It then shows us the

sample range of the historical data, which happens to be 1960 to 2007, for a

total of 48 observations.
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Next comes a table listing each right-hand-side variable together with four

statistics. The right-hand-side variables x and z need no explanation, but the

variable c does. c is notation for the earlier-mentioned constant variable. The

c variable always equals one, so the estimated coefficient on c is the estimated

intercept of the regression line.3

3.3.1 Coefficient Estimates, Standard Errors, t Statistics and p-

Values

The four statistics associated with each right-hand-side variable are the es-

timated coefficient (“Coefficient”), its standard error (“Std. Error”), a t

statistic, and a corresponding probability value (“Prob.”).

The “coefficients” are simply the regression coefficient estimates. Per the

OLS formula that we introduced earlier in equation (3.1), they are the ele-

ments of the (K × 1) vector, (X ′X)−1X ′y.

3Sometimes the population coefficient on c is called the constant term, and the regression estimate is
called the estimated constant term.
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The standard errors of the estimated coefficients indicate their sampling

variability, and hence their reliability. In line with result (??) above, the ith

standard error is

s
√

(X ′X)−1
ii ,

where (X ′X)−1
ii denotes the ith diagonal element of (X ′X)−1, and s is an

estimate (defined below) of σ.

The estimated coefficient plus or minus one standard error is approxi-

mately a 68% confidence interval for the true but unknown population pa-

rameter (contribution to the conditional expectation), and the estimated co-

efficient plus or minus two standard errors is approximately a 95% confidence

interval, assuming that the estimated coefficient is approximately normally

distributed.4 Thus large coefficient standard errors translate into wide confi-

dence intervals.

Each t statistic provides a test of the hypothesis of variable irrelevance:

that the true but unknown population parameter (contribution to the con-

ditional expectation) is zero, so that the corresponding variable contributes

nothing to the conditional expectation and can therefore be dropped. One

way to test this variable irrelevance, with, say, a 5% probability of incorrect

rejection, is to check whether zero is outside the 95% confidence interval for

the parameter. If so, we reject irrelevance. The t statistic is just the ratio

of the estimated coefficient to its standard error, so if zero is outside the

95% confidence interval, then the t statistic must be bigger than two in abso-

lute value. Thus we can quickly test irrelevance at the 5% level by checking

whether the t statistic is greater than two in absolute value.5

Finally, associated with each t statistic is a probability value, which

is the probability of getting a value of the t statistic at least as large in

4Coefficients will be approximately normally distributed in large samples quite generally, and exactly
normally distributed in samples of any size if the regression disturbance is normally distributed.

5In large samples the t statistic is distributed N(0, 1) quite generally. In samples of any size the t statistic
follows a t distribution if the regression disturbances are Gaussian.
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absolute value as the one actually obtained, assuming that the irrelevance

hypothesis is true. Hence if a t statistic were two, the corresponding proba-

bility value would be approximately .05 (asstuming large T and/or Gaussian

disturbances). The smaller the probability value, the stronger the evidence

against irrelevance. There’s no magic cutoff, but typically probability values

less than 0.1 are viewed as strong evidence against irrelevance, and probabil-

ity values below 0.05 are viewed as very strong evidence against irrelevance.

Probability values are useful because they eliminate the need for consulting

tables of the t or z distributions. Effectively the computer does it for us

and tells us the significance level at which the irrelevance hypothesis is just

rejected.

Now let’s interpret the actual estimated coefficients, standard errors, t

statistics, and probability values. The estimated intercept is approximately

10, so that conditional on x and z both being zero, we expect y to be 10.

Moreover, the intercept is very precisely estimated, as evidenced by the small

standard error relative to the estimated coefficient. An approximate 95%

confidence interval for the true but unknown population intercept is 10 ±
2(.19) , or [9.62, 10.38]. Zero is far outside that interval, so the corresponding

t statistic is huge, with a probability value that’s zero to four decimal places.

The estimated coefficient on x is 1.07, and the standard error is again small

in relation to the size of the estimated coefficient, so the t statistic is large

and its probability value small. Hence at conventional levels we reject the hy-

pothesis that x contributes nothing to the conditional expectation E(y|x, z).
The estimated coefficient is positive, so that x contributes positively to the

conditional expectation; that is, E(y|x, z) is larger for larger x, other things

equal.

The estimated coefficient on z is -.64. Its standard error is larger relative

to the estimated parameter; hence its t statistic is smaller than those of the

other coefficients. The standard error is nevertheless small, and the absolute
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value of the t statistic is still well above 2, with a small probability value of

.06%. Hence at conventional levels we reject the hypothesis that z contributes

nothing to the conditional expectation E(y|x, z). The estimated coefficient

is negative, so that z contributes negatively to the conditional expectation;

that is, E(y|x, z) is smaller for larger z, other things equal.

3.3.2 Residual Plot

After running a time-series regression, it’s usually a good idea to assess the

adequacy of the model by plotting over time and examining the actual data

(yt’s), the fitted values (ŷt’s), and the residuals (et’s). Often we’ll refer to

such plots, shown together in a single graph, as a residual plot.6 In Figure

4 we show the residual plot for the regression of y → c, x, z. The actual

(short dash) and fitted (long dash) values appear at the top of the graph;

their scale is on the right. The fitted values track the actual values fairly

well. The residuals appear at the bottom of the graph (solid line); their scale

is on the left. It’s important to note that the scales differ; the et’s are in fact

substantially smaller and less variable than either the yt’s or the ŷt’s. We

draw the zero line through the residuals for visual comparison. There are no

obvious patterns in the residuals.

Residual plots are obviously useful in time-series perspective, and not use-

ful in cross sections, for which there is no natural ordering of the data. In

cross sections, however, we often examine residual scatterplots, that is,

scatterplots of y vs. ŷ for all observations in the cross section, with special

attention paid to the general pattern of deviations from the forty-five degree

line.

A variety of diagnostic statistics follow; they help us to evaluate the ade-

quacy of the regression. Here we review them very briefly.

6Sometimes, however, we’ll use “residual plot” to refer to a plot of the residuals alone. The intended
meaning will be clear from context.
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3.3.3 Mean dependent var

The sample mean of the dependent variable is

ȳ =
1

T

T∑
t=1

yt

It measures the central tendency, or location, of y.

3.3.4 S.D. dependent var

The sample standard deviation of the dependent variable is

SD =

√∑T
t=1(yt − ȳ)2

T − 1
.

It measures the dispersion, or scale, of y.
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3.3.5 Sum squared resid

Minimizing the sum of squared residuals is the objective of least squares

estimation. It’s natural, then, to record the minimized value of the sum of

squared residuals. In isolation it’s not of much value, but it serves as an

input to other diagnostics that we’ll discuss shortly. Moreover, it’s useful for

comparing models and testing hypotheses. The formula is

SSR =
T∑
t=1

e2
t .

3.3.6 F−statistic

We use the F statistic to test the hypothesis that the coefficients of all

variables in the regression except the intercept are jointly zero.7 That is,

we test whether, taken jointly as a set, the variables included in the model

contribute nothing to the expectation of y conditional on the variables. This

contrasts with the t statistics, which we use to examine the contributions of

the variables one at a time.8 If no variables contribute, then if the regression

disturbances are Gaussian the F statistic follows an F distribution with K−1

and T −K degrees of freedom. The formula is

F =
(SSRres − SSR)/(K − 1)

SSR/(T −K)
,

where SSRres is the sum of squared residuals from a restricted regression that

contains only an intercept. Thus the test proceeds by examining how much

SSR increases when all the variables except the constant are dropped. If it

increases by a great deal, there’s evidence that at least one of the variables

7We don’t want to restrict the intercept to be zero, because under the hypothesis that all the other
coefficients are zero, the intercept would equal the mean of y, which in general is not zero.

8In the case of only one right-hand-side variable, the t and F statistics contain exactly the same infor-
mation, and one can show that F = t2. When there are two or more right-hand-side variables, however, the
hypotheses tested differ, and F 6= t2.
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contributes to the conditional expectation.

3.3.7 Prob(F−statistic)

The probability value for the F statistic gives the significance level at which

we can just reject the hypothesis that the set of right-hand-side variables

makes no contribution to the conditional expectation. Here the value is

indistinguishable from zero, so we reject the hypothesis overwhelmingly.

3.3.8 S.E. of regression

We’d like an estimate of σ2, because σ2 tells us whether the regression “fit”

is good. The observed residuals, the et’s , are effectively estimates of the

unobserved population disturbances, the εt’s. Thus the sample variance of

the e’s, which we denote s2 (read “s-squared”), is a natural estimator of σ2:

s2 =

∑T
t=1 e

2
t

T −K
.

s2 is an estimate of the dispersion of the regression disturbance and hence is

used to assess goodness of fit. The larger is s2, the worse the model’s fit. s2

involves a degrees-of-freedom correction (division by T −K rather than by T

or T − 1), which, but whether one divides by T ot T −K is of no asymptotic

consequence.

The standard error of the regression (SER) conveys the same infor-

mation; it’s an estimator of σ rather than σ2, so we simply use s rather than

s2. The formula is

SER = s =
√
s2 =

√∑T
t=1 e

2
t

T −K
.

The standard error of the regression is easier to interpret than s2, because

its units are the same as those of the e’s, whereas the units of s2 are not. If
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the e’s are in dollars, then the squared e’s are in dollars squared, so s2 is in

dollars squared. By taking the square root at the end of it all, SER converts

the units back to dollars.

3.3.9 R-squared

If an intercept is included in the regression, as is almost always the case,

R-squared must be between zero and one. In that case, R-squared, usually

written R2, is the percentage of the variance of y explained by the variables

included in the regression. R2 is widely used as an easily-interpreted check

of goodness of fit. Here the R2 is about 55% – good but not great.

The formula is for R2 is

R2 = 1−
∑T

t=1 e
2
t∑T

t=1(yt − ȳ)2
.

The key is the ratio on the right of the formula. First, note that the ratio

must be positive (it exclusively involves sums of squares) and less than one

(if the regression includes an intercept). Hence R2, which is one minus the

ratio, must be in [0, 1]. Second, note what the ratio involves. The numerator

is SSR from a regression on all variables, and the denominator is the is SSR

from a regression on an intercept alone. Hence the ratio is the fraction of

variation in y not explained by the included x’s, so that R2 – which, again,

is one minus the ratio – is the fraction of variation in y that is explained by

the included x’s.

We can write R2 in a more roundabout way as

R2 = 1−
1
T

∑T
t=1 e

2
t

1
T

∑T
t=1(yt − ȳ)2

.

This proves useful for moving to adjusted R2, to which we now turn.
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3.3.10 Adjusted R−squared

The interpretation is the same as that of R2, but the formula is a bit different.

Adjusted R2 incorporates adjustments for the K degrees of freedom used in

fitting the full model to y (numerator of the ratio), and for the 1 degree of

freedom used in fitting the a mean to y (denominator of the ratio). As long as

there is more than one right-hand-side variable in the model fitted, adjusted

R̄2 is smaller than R2; here, however, the two are typically very close (in this

case, 53% vs. 55%). The formula for R̄2 is

R̄2 = 1−
1

T−K
∑T

t=1 e
2
t

1
T−1

∑T
t=1(yt − ȳ)2

,

where K is the number of right-hand-side variables, including the constant

term. The numerator in the large fraction is precisely s2
e, and the denominator

is precisely s2
y.

3.3.11 Durbin-Watson stat

We’re always interested in examining whether there are patterns in residuals;

if there are, the model somehow missed something systematic in the y data.

The Durbin-Watson statistic tests for a certain kind of pattern, correlation

over time, called serial correlation.

The Durbin-Watson test works within the context of the model

yt = β1 + β2xt + β3zt + εt

εt = φεt−1 + vt

vt

iid

∼ N(0, σ2).

The regression disturbance is serially correlated when φ 6= 0. The hypothesis
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of interest is φ = 0. When φ 6= 0, the disturbance is serially correlated. More

specifically, when φ 6= 0, we say that εt follows an autoregressive process of

order one, or AR(1) for short.9 If φ > 0 the disturbance is positively serially

correlated, and if φ < 0 the disturbance is negatively serially correlated. Pos-

itive serial correlation is typically the relevant alternative in the economic

and financial applications that will concern us.

The formula for the Durbin-Watson (DW) statistic is

DW =

∑T
t=2(et − et−1)

2∑T
t=1 e

2
t

.

DW takes values in the interval [0, 4], and if all is well, DW should be

around 2. If DW is substantially less than 2, there is evidence of positive

serial correlation. As a rough rule of thumb, if DW is less than 1.5, there

may be cause for alarm, and we should consult the tables of the DW statistic,

available in many statistics and econometrics texts. Here DW is very close

to 1.5. A look at the tables of the DW statistic reveals, however, that we

would not reject the null hypothesis at the five percent level. (Why Eviews

neglects to print a p-value is something of a mystery.)

Note well that DW and its good properties involve several strict assump-

tions. Gaussian disturbances are required, and the AR(1) alternative is the

only one explicitly entertained, whereas in reality much richer forms of serial

correlation may arise, and disturbances may of course be non-Gaussian. Sub-

sequently we will introduce much more flexible approaches to testing/assess-

ing residual serial correlation.

3.3.12 Akaike info criterion and Schwarz criterion

The Akaike and Schwarz criteria are used for model selection, and in cer-

tain contexts they have provable optimality properties in that regard. The

9The Durbin-Watson test is designed to be very good at detecting serial correlation of the AR(1) type.
Many other types of serial correlation are possible; we’ll discuss them extensively later.
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formulas are:

AIC = e(
2K
T )
∑T

t=1 e
2
t

T

and

SIC = T (KT )
∑T

t=1 e
2
t

T
.

Both are penalized versions of the mean-squared residual, where the penalties

are functions of the degrees of freedom used in fitting the model. For both

AIC and SIC, “smaller is better.” We will have much more to say about

them in section ?? below.

3.3.13 Log Likelihood

The likelihood function is tremendously important in statistics, as it sum-

marizes all the information contained in the data. It is simply the joint

density function of the data, viewed as a function of the model parameters.

The number reported is the maximized value of the log of the likelihood

function under the assumption of Gaussian disturbances.10 Like the sum of

squared residuals, SIC and AIC, it’s not of much use alone, but it’s useful

for comparing models and testing hypotheses. We will sometimes use the

maximized log likelihood function directly, although we’ll often focus on the

minimized sum of squared residuals.

3.4 Regression From a Forecasting Perspective

3.4.1 The Key to Everything (or at Least Many Things)

Linear least squares regression, by construction, is consistent under very gen-

eral conditions for “the linear function of xt that gives the best approximation

10Throughout, “log” refers to a natural (base e) logarithm.
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to yt under squared-error loss,” which is the linear projection,

P (yt|xt) = x′tβ.

If the conditional expectation E(yt|xt) is linear in xt, then the linear projec-

tion and the conditional expectation coincide, and OLS is consistent the for

conditional expectation E(yt|xt).
Hence to forecast yt for any given value of xt, we can use the fitted line to

find the value of yt that corresponds to the given value of xt. In large samples

that “linear least squares forecast” of yt will either be the conditional mean

E(yt|xt), which as we mentioned earlier in Chapter 2 is is the optimal forecast

under quadratic loss, or the best linear approximation to it, P (yt|xt).
One leading case in which the linear projection and conditional mean

coincide (that is, E(yt|xt) is linear in xt) is joint normality. In particular,

suppose that (
y

x

)
∼ N

(
µ,Σ

)
where

µ =

(
µy

µx

)
Σ =

(
Σyy Σyx

Σxy Σxx

)
.

Then it can be shown that:

y|x ∼ N
(
µy|x , Σy|x

)
where

µy|x = µy + Σyx Σ−1
xx (x − µx)

Σy|x = Σyy − Σyx Σ−1
xx Σxy

In what follows we’ll often casually speak of linear regression as estimat-

ing the conditional expectation function. You can think of a Gaussian situa-

tion, or your can just mentally replace “conditional expectation” with “linear
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projection.” We’ll also implicitly assume quadratic loss, which is why we’re

interested in the conditional mean in the first place.

3.4.2 Why Take a Probabilistic Approach to Regression,

as Opposed to Pure Curve Fitting?

We want conditional mean point forecasts, and the conditional mean is a

probabilistic concept. We also may want to test hypotheses regarding which

variables actually enter in the determination of the conditional mean. Last

and not at all least, we also want to quantify the uncertainty associated with

our forecasts – that is, we want interval and density forecasts – and doing so

requires probabilistic modeling.

3.4.3 Regression For Estimating Conditional Means is Regression

for Forecasting

We already introduced this, but we repeat for emphasis: In our regression

model, the expected value of yt conditional on xt is

E(yt|xt) = x′tβ.

That is, the regression function is the conditional expectation of yt

given xt.

This is crucial for forecasting, because the expectation of future y con-

ditional upon available information is a particularly good forecast. In fact,

under quadradic loss, it is the best possible forecast (i.e., it minimizes ex-

pected loss). The intimate connection between regression and optimal fore-

casts makes regression an important tool for forecasting.
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3.4.4 LS and Quadratic Loss

Quadratic loss is routinely invoked for prediction, in which case the con-

ditional mean is the optimal forecast, as mentioned above. OLS optimizes

quadratic loss in estimation, and it’s good to have the model estimation cri-

terion match the predictive criterion.

3.4.5 Estimated Coefficient Signs and Sizes

The “best fit” that OLS delivers is effectively a best (in-sample) forecast.

Each estimated coefficient gives the weight put on the corresponding x vari-

able in forming the best linear in-sample forecast of y.

3.4.6 Standard Errors, t Statistics, p-values, F Statistic, Log Like-

lihood, etc.

These let us do formal statistical inference as to which regressors are relevant

for forecasting y.

3.4.7 Fitted Values and Residuals

The fitted values are effectively in-sample forecasts:

ŷt = x′tβ̂,

t = 1, ..., T . The in-sample forecast is automatically unbiased if an intercept

is included, because the residuals must then sum to 0 (see EPC 2).

The residuals are effectively in-sample forecast errors:

et = yt − ŷt,

t = 1, ..., T .
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Forecasters are keenly interested in studying the properties of their forecast

errors. Systematic patterns in forecast errors indicate that the forecasting

model is inadequate – as we will show and explore later in great depth,

forecast errors from a good forecasting model must be unforecastable! And

again, residuals are in-sample forecast errors.

3.4.8 Mean and Variance of Dependent Variable

An obvious benchmark forecast is the sample, or historical, mean of y, an

estimate of the unconditional mean of y. It’s obtained by regressing y on an

intercept alone – no conditioning on other regressors!

The sample standard deviation of y is a measure of the (in-sample) accu-

racy of the unconditional mean forecast under quadratic loss.

It’s natural to compare the accuracy of our conditional-mean forecasts to

naive unconditional-mean forecasts. R2 and R̄2, to which we now turn, do

precisely that.

3.4.9 R2 and R̄2

Hopefully conditional-mean forecasts that condition on regressors other than

just an intercept are better than naive unconditional-mean forecasts. R2

and R̄2 effectively compare the in-sample accuracy of conditional-mean and

unconditional-mean forecasts.

R2 = 1−
1
T

∑T
t=1 e

2
t

1
T

∑T
t=1(yt − ȳ)2

.

R̄2 = 1−
1

T−K
∑T

t=1 e
2
t

1
T−1

∑T
t=1(yt − ȳ)2

,
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3.4.10 SSR (or MSE), SER (or Residual s2), AIC and SIC

Each attempts an estimate of out-of-sample forecast accuracy (which is what

we really care about) on the basis of in-sample forecast accuracy, with an eye

toward selecting forecasting models. (That is, we’d like to select a forecast-

ing model that will perform well for out-of-sample forecasting, quite apart

from its in-sample fit.) Everything proceeds by inflating the in-sample mean-

squared error (MSE), in various attempts to offset the deflation from regres-

sion fitting, to obtain a good estimate of out-of-sample mean-squared error.

We have:

MSE =

∑T
t=1 e

2
t

T

s2 =

(
T

T −K

)
MSE

AIC =
(
e(

2K
T )
)
MSE

SIC =
(
T (KT )

)
MSE.

We will have much more to say about AIC and SIC in section ?? below.

3.4.11 Durbin-Watson

We mentioned earlier that we’re interested in examining whether there are

patterns in our forecast errors, because errors from a good forecasting model

should be unforecastable. The Durbin−Watson statistic tests for a partic-

ular and important such pattern, serial correlation. If the errors made by

a forecasting model are serially correlated, then they are forecastable, and

we could improve the forecasts by forecasting the forecast errors! We will

subsequently discuss such issues at great length.
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3.4.12 Residual Plots

Residual plots are useful for visually flagging neglected things that impact

forecasting. Residual serial correlation indicates that point forecasts could

be improved. Residual volatility clustering indicates that interval forecasts

and density could be improved. (Why?) Evidence of structural change in

residuals indicates that everything could be improved.

3.5 Exercises, Problems and Complements

1. Regression, regression diagnostics, and regression graphics in action.

At the end of each quarter, you forecast a series y for the next quarter.

You do this using a regression model that relates the current value of y

to the lagged value of a single predictor x. That is, you regress

yt → c, xt−1.

(In your computer workfile, yt is called Y, and xt−1 is called XLAG1. So

you run

Y → c,XLAG1.

(a) Why might include a lagged, rather then current, right-hand-side

variable?

(b) Graph Y vs. XLAG1 and discuss.

(c) Regress Y on XLAG1 and discuss (including related regression di-

agnostics that you deem relevant).

(d) Consider as many variations as you deem relevant on the general

theme. At a minimum, you will want to consider the following:

i. Does it appear necessary to include an intercept in the regres-

sion?
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ii. Does the functional form appear adequate? Might the relation-

ship be nonlinear?

iii. Do the regression residuals seem completely random, and if not,

do they appear serially correlated, heteroskedastic, or something

else?

iv. Are there any outliers? If so, does the estimated model appear

robust to their presence?

v. Do the regression disturbances appear normally distributed?

vi. How might you assess whether the estimated model is struc-

turally stable?

2. Least-squares regression residuals have zero mean.

Prove that least-squares regression residuals must sum to zero, and hence

must have zero mean, if an intercept is included in the regression. Hence

in-sample regression “forecasts” are unbiased.

3. Conditional mean and variance

Consider the regression model,

yt = β1 + β2 xt + β3x
2
t + β4zt + εt

εt

iid

∼ (0, σ2).

(a) Find the mean of yt conditional upon xt = x∗t and zt = z∗t . Does the

conditional mean vary with the conditioning information (x∗t , z
∗
t )?

Discuss.

(b) Find the variance of yt conditional upon xt = x∗t and zt = z∗t . Does

the conditional variance vary with the conditioning information (x∗t , z
∗
t )?

Discuss.
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4. Conditional means vs. linear projections.

Consider a scalar y and a vector x, with joint density f(y, x).

(a) The conditional mean E(y|x) is not necessarily linear in x. Give an

example of a non-linear conditional mean function.

(b) Consider such a non-linear conditional mean situation. You assume

(incorrectly) that a linear regression model holds. You estimate the

model by OLS. We say that you are estimating “linear projection

weights.” Linear projection weights are best linear approximations

(under quadratic loss) to conditional expectations.

(c) Consider again such a non-linear conditional mean situation. In

large samples and under quadratic loss, what can be said about

the comparative merits of conditional-mean vs. linear-projection

forecasts?

(d) What factors influence whether your prediction will actually perform

well?

5. Squared residual plots for time series.

Consider a time-series plot of squared residuals rather than “raw” resid-

uals. Why might that be useful?

6. HAC Standard Errors

Recall that OLS linear regression is consistent for the linear projection

under great generality. Also recall, however, that if regression distur-

bances are autocorrelated and/or heteroskedastic, then OLS standard

errors are biased and inconsistent. This is an issue if we want to do

inference as to which predictors (x variables) are of relevance. HAC

methods (short for “heteroskedasticity and autocorrelation consistent”)

provide a quick and sometimes-useful fix. The variance of the OLS esti-
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mator is:

Σ = (X ′X)−1E(X ′εε′X)(X ′X)−1.

For iid εt this collapses to the usual σ2(X ′X)−1, but otherwise we need

the full formula. Write it as:

Σ = (X ′X)−1E(X ′ΩX)(X ′X)−1.

The question is what estimator to use for E(X ′ΩX). In the case of pure

heteroskedasticty (Ω diagonal but not scalar), we can use the White

estimator,

̂E(X ′ΩX) = X ′diag(e2
1, ..., e

2
T )X =

T∑
t=1

e2
tx
′
txt.

In the case of heteroskedasticity and autocorrelation, we can use the

Newey-West estimator,

̂E(X ′ΩX) =
T∑
t=1

e2
tx
′
txt +

m∑
l=1

(
1− l

m+ 1

) T∑
t=l+1

etet−l(x
′
txt−l + x′t−lxt),

where the so-called “truncation lag” m is chosen by the user. The first

Newey-West term is the White estimator, and the second Newey-West

term is an additional adjustment for autocorrelation.

There is a strong case against HAC estimators in forecasting contexts:

They achieve robust inference for predictor relevance, but they don’t

exploit any heteroskedasticity present (to improve interval forecasts) or

serial correlation present (to improve point forecasts). Nevertheless we

introduce them here because (1) they are often produced by regression

software, and (2) they can be of use, as we will see, in exploratory

modeling en route to arriving at a complete forecasting model.



Chapter 4

Forecast Model Building and Use

It has been said that “It’s difficult to make predictions, especially about the

future.” This quip is funny insofar as all predictions are about the future.

But actually they’re not. Prediction is a major topic even in cross-sections, in

which there is no temporal aspect. In this chapter we consider cross-section

prediction.

4.1 Cross-Section Prediction

The environment is:

yi = x′iβ + εi, i = 1, ..., N

εi ∼ iid D(0, σ2).

In cross sections, everything is easy. That is, cross-section prediction simply

requires evaluating the conditional expectation (regression relationship) at a

chosen value of x, x = x∗. Suppose, for example, that we know a regression

relationship between expenditure on restaurant meals (y) to income (x). If

we get new income data for a new household, we can use it to predict its

restaurant expenditures.

77
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4.1.1 Point Prediction

Continue to assume for the moment that we know the model parameters.

That is, assume that we know β and all parameters governing D.1

We immediately obtain point forecasts as:

E(yi|xi = x∗) = x∗′β.

4.1.2 Density Prediction for D Gaussian

Density forecasts, and hence interval forecasts, are a bit more involved, de-

pending on what we’re willing to assume. In any event the key is somehow

to account for disturbance uncertainty, the part of forecast uncertainty

arising from the fact that our forecasting models involve stochastic distur-

bances.

If D is Gaussian, then the density prediction is immediately

yi|xi = x∗ ∼ N(x∗′β, σ2). (4.1)

We can calculate any desired interval forecast from the density forecast.

For example, a 95% interval would be x∗′β ± 1.96σ.

Now let’s calculate the density and interval forecasts by a more round-

about simulation algorithm that will be very useful in more complicated (and

realistic) cases.

1. Take R draws from the disturbance density N(0, σ2).

2. Add x∗′β to each disturbance draw.

3. Form a density forecast by fitting a density to the output from step 2.

4. Form an interval forecast (95%, say) by sorting the output from step 2

to get the empirical cdf, and taking the left and right interval endpoints

1Note that the mean and variance are in general insufficient to characterize a non-Gaussian D.



4.1. CROSS-SECTION PREDICTION 79

as the the .025% and .975% values, respectively.

As R→∞, the algorithmic results coincide with those of 4.1.

4.1.3 Density Prediction for D Parametric Non-Gaussian

Our simulation algorithm still works for non-Gaussian D, so long as we can

simulate from D.

1. Take R draws from the disturbance density D.

2. Add x∗′β to each disturbance draw.

3. Form a density forecast by fitting a density to the output from step 2.

4. Form a 95% interval forecast by sorting the output from step 2, and

taking the left and right interval endpoints as the the .025% and .975%

values, respectively.2

Again as R→∞, the algorithmic results become arbitrarily accurate.

4.1.4 Making the Forecasts Feasible

The approaches above are infeasible in that they assume known parameters.

They can be made feasible by replacing unknown parameters with estimates.

For example, the feasible version of the point prediction is x∗′β̂. Similarly, to

construct a feasible 95% interval forecast in the Gaussian case we can take

x∗′β̂ ± 1.96σ̂, where σ̂ is the standard error of the regression (also earlier

denoted s).

2Note that, now that we have in general abandoned symmetry, the prescribed method no longer necessarily
generates the shortest interval.
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4.1.5 Density Prediction for D Non-Parametric

Now assume that we know nothing about distribution D, except that it has

mean 0. In addition, now that we have introduced “feasible” forecasts, we

will stay in that world.

1. Take R draws from the regression residual density (which is an approxi-

mation to the disturbance density) by assigning probability 1/N to each

regression residual and sampling with replacement.

2. Add x∗′β̂ to each draw.

3. Form a density forecast by fitting a density to the output from step 2.

4. Form a 95% interval forecast by sorting the output from step 2, and

taking the left and right interval endpoints as the the .025% and .975%

values, respectively.

As R→∞ and N →∞, the algorithmic results become arbitrarily accu-

rate.

4.1.6 Density Forecasts for D Nonparametric and Acknowledging

Parameter Estimation Uncertainty

Thus far we have accounted only for disturbance uncertainty in our feasible

density forecasts. Disturbance uncertainty reflects the fact that disturbance

realizations are inherently unpredictable. There is simply nothing that we

can do about disturbance uncertainty; it is present always and everywhere,

even if we were somehow to know the DGP and its parameters.

We now consider parameter estimation uncertainty. The coefficients

that we use to produce predictions are of course just estimates. That is, even

if we somehow know the form of the DGP, we still have to estimate its pa-

rameters. Those estimates are subject to sampling variability, which makes
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an additional contribution to prediction errors. The “feasible” approach to

density forecasting sketched above still fails to acknowledge parameter es-

timation uncertainty, because it treats “plugged-in” parameter estimates as

true values, ignoring the fact that they are only estimates and hence subject

to sampling variability. Parameter estimation uncertainty is often ignored,

as its contribution to overall forecast MSE can be shown to vanish unusually

quickly as sample size grows (See EPC 1). But it impacts forecast uncertainty

in small samples and hence should not be ignored in general.

1. Take R approximate disturbance draws by assigning probability 1/N to

each regression residual and sampling with replacement.

2. Take R draws from the large-N sampling density of β̂, namely

β̂OLS ∼ N(β, σ2(X ′X)−1),

as approximated by N(β̂, σ̂2(X ′X)−1).

3. To each disturbance draw from 1 add the corresponding x∗′β̂ draw from

2.

4. Form a density forecast by fitting a density to the output from step 3.

5. Form a 95% interval forecast by sorting the output from step 3, and

taking the left and right interval endpoints as the the .025% and .975%

values, respectively.

As R→∞ and N →∞, we get precisely correct results.

4.1.7 Incorporating Heteroskedasticity

We will illustrate for the Gaussian case without parameter estimation uncer-

tainty, using an approach that closely parallel’s White’s test for heteroskedas-
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ticity. Recall the feasible density forecast,

yi|xi = x∗ ∼ N(x∗′β̂, σ̂2).

Now we want to allow for the possibility that σ̂2 varies with xi.

1. Regress by OLS: yi → xi and save the residuals ei.

2. Regress e2
i → xi. Call the estimated coefficient vector γ̂.

3. Form the density forecast as

yi|xi = x∗ ∼ N(x∗′β̂, σ̂2(x∗)),

where σ̂2(x∗) = x∗′γ̂ is the fitted value from the regression in step 2

evaluated at x∗.

One could of course run regression 1 by weighted least squares (WLS)

rather than OLS using the σ̂2(x∗) as weights, but the efficiency gains in

estimating β are not likely to produce large additional improvements in cali-

bration of density and interval forecasts. The key is to allow the disturbance

variance to adapt to x∗ when forming forecasts, quite apart from whether

they are centered at x∗′β̂OLS or x∗′β̂WLS.

4.2 Wage Prediction Conditional on Education and Ex-

perience

4.2.1 The CPS Dataset

We will examine the CPS wage dataset, containing data on a large cross

section of individuals on wages, education, experience, sex, race and union

status. For a detailed description see Appendix E. For now we will use only

wage, education and experience.
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Figure 4.1: Distributions of Wages and Log Wages

Figure 4.2: Histograms for Wage Covariates
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Figure 4.3: Wage Regression on Education and Experience

– Basic features of wage, education and experience data.

In Figures 4.1 and 4.2 we show histograms and statistics for potential

determinants of wages. Education (EDUC) and experience (EXPER) are

standard continuous variables, although we measure them only discretely (in

years).

4.2.2 Regression

– Linear regression of log wage on predictors (education and experience).

Recall our basic wage regression,

LWAGE → c, EDUC,EXPER,

shown in Figure 4.3. Both explanatory variables are highly significant, with

expected signs. In table ?? consider a linear versus a quadratic model.

Even though the quadratic regression coefficients are statistically signifi-

cant, we see only an extremely small improvement in adj. R2 and RMSE. We
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also consider the histograms for the two models, in Figure ??.

We can see that the densities of residuals are almost identical, perhaps

that those from the quadratic model are ever so slightly less skewed. Since

we believe in the parsimony principle however, we will restrict ourselves to

a linear model in the absence of overwhelming evidence in favor of a non-

linear model. NOTE: There are many more nonlinear models to try besides

quadratic! See section 4.3 for possible further extensions.

Throughout we will use the “best” estimated log wage model for feasible

prediction of wage, for (EDUC, EXPER) = (10, 1) and (EDUC, EXPER) =

(14, 20). (NOTE: The model is for log wage, but the forecasts are for wage.)

4.2.3 Point Prediction by Exponentiating vs. Simulation

An obvious point forecast of WAGE can be obtained by exponentiating

a forecast of LWAGE. But there are issues. In particular, if lnyt+h,t is

an unbiased forecast of lnyt+h, then exp(lnyt+h,t) is a biased forecast of

yt+h.
3 More generally, if (f(y))t+h,t is an unbiased forecast of (f(y))t+h, then

f−1((f(y))t+h,t) is a biased forecast of yt+h, for arbitrary nonlinear function

f , because the expected value of a nonlinear function of a random variable

does not equal the nonlinear function of the expected value, a result known

as Jensen’s inequality.4

Various analytic “bias corrections” have been proposed, but they rely on

strong and unnecessary assumptions. The modern approach is simulation-

based. Using simulation, simply build up the density forecast of the object

of interest (e.g., WAGE rather than lnWAGE), the sample mean of which

across simulations is consistent for the population conditional mean. The

bias correction is done automatically!

3A forecast is unbiased if its mean error is zero. Other things equal, unbiasedness is desirable.
4As the predictive regression R2 → 1, however, the bias vanishes. Why?
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Figure 4.4: Predicted densities for wage under the assumption that residuals are homoskedas-
tic and Gaussian, abstracting from parameter uncertainty. The model is in logs and then
exponentiated The top graph is estimated density of wage with 10 years of education, 1
year of experience. The bottom graph is the same for 14 years of education, 20 years of
experience. The red vertical lines indicate 95% CI.

4.2.4 Density Prediction for D Gaussian

We now apply the methods from section 4.1.2 to the linear model. To op-

erationalize that algorithm, we must first make an estimator of σ2 and β.

β̂ is taken directly as the OLS regression coefficients, and σ̂ can be taken

as the residual standard error. With those plug-in estimators found, we can

follow the algorithm directly. Since we are in a Gaussian environment, recall

we could find a 95% CI by taking x∗′β ± 1.96σ̂. However, in more complex

environments, we will have to take the CI directly from the simulated data,

so we will do that here by sorting the sample draws and taking the left and

right endpoints to be the .025% and .975% values, respectively. This yields

the output from figure 4.4.

Two things are of particular note here. First is that, as expected, the

density prediction for the individual with more education and experience has

a much higher mean. Second is that the CI for individual 2 is much wider

than that of individual 1, or similarly that the density prediction has much

higher variance. This is perhaps surprising, since we were in a case with
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homoskedasticity. In fact this is one of the costs of working with a log-linear

model for wages:

log(y) = x′β + ε, ε ∼ N(0, σ2)

y = exp(x′β) exp(ε)

⇒ V[y] = [exp(x′β)]
2 V[exp(ε)]

Thus even with homoskedasticity in logs, the variance of the level yt will

depend on x.

4.2.5 Density Forecasts for D Gaussian and Acknowledging Pa-

rameter Estimation Uncertainty

We are still in a sufficiently simple world that we may follow directly the

algorithm above. A quick way to think about the algorithm of the previous

section is the following: Since residuals are Gaussian, y is Gaussian. So to

compute a density prediction of y, all we really need is to estimate its mean

and covariance. The mean is given directly as the conditional mean from the

model. For the covariance:

V[y] = V[x′β + ε]

= V[x′β] + V[ε]

Since the previous section did not allow for parameter estimation uncer-

tainty, the first term in that sum was zero. We will now accurately estimate

that first term and include it in our density prediction. This idea is explored

more in the EPC’s.

Having Gaussian disturbances means that the distribution of β̂ is precisely
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Gaussian, and as above we knows its mean and covariance: β and σ2(X ′X)−1.

To operationalize this, we will make draws from N(β̂, σ̂2(X ′X)−1). Con-

cretely, our algorithm is the following:

1. Take R draws from the estimated disturbance density N(0, σ̂2).

2. Take R draws of β from the estimated parameter sampling distribution

N(β̂, σ̂2(X ′X)−1).

3. Add the disturbance draw from step 1 to the draw of x∗
′
β, where β is

drawn as in step 2.

4. Exponentiate each draw to turn the draw of log wage into a draw for

wage.

5. Form the density forecast by fitting a density to the output.

6. Form a 95% interval forecast by sorting the output, and taking the left

and right interval endpoints as the .025% and .975% values, respectively.

Following this algorithm yields the output of figure 4.5. We see that these

density forecasts are nearly identical to those without parameter uncertainty.

This is to be expected once we consider the estimated covariance matrix of

β, which we find has very small variance:

V[β̂] =


0.00567 -0.000357 -4.19e-05

-0.000357 2.55e-05 1.22e-06

-4.19e-05 1.22e-06 1.35e-06


4.2.6 Density Forecasts for D Gaussian, Acknowledging Parame-

ter Estimation Uncertainty, and Allowing for Heteroskedas-

ticity

For this section we find that we must work a little bit harder. There are

two separate difficulties that are important to get correct: The first is an
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Figure 4.5: Predicted densities for wage under the assumption that residuals are homoskedas-
tic and Gaussian. Here parameter uncertainty is accounted for in the density of wage. The
model is in log wage and then exponentiated. The top graph is estimated density of wage
with 10 years of education, 1 year of experience. The bottom graph is the same for 14 years
of education, 20 years of experience. The red vertical lines indicate 95% CI.

appropriate drawing of the sampled residuals, the second is an appropriate

drawing of the parameters.

First, the parameter estimation uncertainty. The covariance matrix we es-

timated above, σ2(X ′X)−1, is no longer valid in the presence of heteroskedas-

ticity. Rather:

β̂OLS = (X ′X)−1X ′Y = β + (X ′X)−1X ′ε

⇒ β̂ ∼ N(β, (X ′X)−1X ′ΩX(X ′X)−1)
(4.2)

Under homoskedasticity, Ω = σ2I and so this covariance matrix dramati-

cally simplifies. This is no longer the case under heteroskedasticity. In this

environment we will find the distinction to be of little numerical importance,

but for other datasets it will be of dramatic importance.

Of course, in the presence of heteroskedasticity, we may prefer to instead

conduct weighted least squares instead of OLS. Recall the WLS estimator is

β̂WLS = (X ′ΣX)−1X ′ΣY
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Here Σ is any diagonal weighting matrix. A popular choice is of course Ω−1,

as this choice is efficient, where this matrix can be estimated by a number of

two-stage processes. The asymptotic covariance matrix of the WLS estimator

is then

β̂WLS = β + (X ′Ω−1X)−1X ′Ω−1ε

⇒ β̂WLS ∼ N(β, (X ′Ω−1X)−1X ′Ω−1ΩΩ−1X(X ′Ω−1)−1)

⇒ β̂WLS ∼ N(β, (X ′Ω−1X)−1)

(4.3)

Thus βWLS is simultaneously a better estimator than β̂OLS and with an

easier covariance matrix to estimate. For this reason we will proceed using

β̂WLS, and make draws from the above. To do this, we must select a specific

two-stage process, as discussed above. We will discuss this in the course of the

estimation of the residual density. This is done via the following algorithm:

1. Regress by OLS: yi → xi and save the residuals.

2. Regress e2
i → xi. Call the estimated coefficient vector γ̂.

3. Construct the vector of heteroskedasticities σ̂2(xi) = x
′

iγ̂, and set Ω̂ =

diag(σ̂2(xi)).

• Use Ω̂ to conduct WLS regression.

4. Take R draws of the residuals from N(0, σ̂2(x∗))

5. Take R draws of β from N(β̂, (X ′Ω̂−1X)−1)

6. Add the disturbance draw from step 4 to the draw of x∗
′
β, where β is

drawn as in step 5.

7. Exponentiate each draw to turn the draw of log wage into a draw for

wage.

8. Form the density forecast by fitting a density to the output.
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Figure 4.6: Predicted densities for wage under the assumption that residuals are het-
eroskedastic and Gaussian. Here parameter uncertainty is accounted for in the density of
wage. The model is in log wage and then exponentiated. The top graph is estimated density
of wage with 10 years of education, 1 year of experience. The bottom graph is the same for
14 years of education, 20 years of experience. The red vertical lines indicate 95% CI.

9. Form a 95% interval forecast by sorting the output, and taking the left

and right interval endpoints as the .025% and .975% values, respectively.

Notice one could argue with our above procedure: We took residuals from

the OLS regression to make the density prediction. There is certainly an

argument to be made from re-taking residuals from the WLS regression and

re-estimating the heteroskedasticity covariance matrix from there. However,

the above will still be a consistent procedure (since the covariance matrix

estimated is HAC-consistent), and since we have a surplus of observations we

are unlikely to see a numerical difference between the two. The outputs from

this procedure can be found in figure 4.6.

The CI interval for the lower wage, lower educated individual shrunk dra-

matically, while the CI for the (14, 20) individual did not change noticeably.

This is explainable by the fact that the average number of years of educa-

tion for our dataset is 13.1, and the average number of years of experience is

19.2. Thus the (14, 20) individual is close to the average. Since the form of

heteroskedasticity is measured to be linear in this algorithm, and homoskedas-
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Figure 4.7: Predicted densities for wage under the assumption that residuals are homoskedas-
tic, abstracting from parameter uncertainty. The density of residuals is now estimated
nonparametrically. The model is in log wages and then exponentiated. The top graph is
estimated density of wage with 10 years of education, 1 year of experience. The bottom
graph is the same for 14 years of education, 20 years of experience. The red vertical lines
indicate 95% CI.

ticity will set the variance of each individual to be approximately the mean

variance of the dataset, it is expected that the mean individual will have

approximately the same variance under homoskedasticity and heteroskedas-

ticity.

4.2.7 Density Prediction for D Nonparametric

In this section we will make density predictions for our dataset dropping the

assumption that disturbances are Gaussian. For now we will assume that

we can estimate parameters with no uncertainty and that disturbances are

homoskedastic. Here we may follow the exact algorithm of 4.1.5, with the

added step that we exponentiate each draw to make a draw for wage from a

draw for log wage. The yielded output can be found in 4.7.

Here we find that the nonparametric density estimates are quite similar

to those found assuming D Gaussian. This suggests that our assumption of

Gaussian disturbances was well-grounded. We can examine this further by
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Figure 4.8: Nonparametric Density of Disturbances. Red overlaid line is Gaussian.

directly observing the nonparametric density of the disturbances to the log

wages, seen in figure 4.8. These are some very Gaussian disturbances.

4.2.8 Density Forecasts for D Nonparametric and Acknowledging

Parameter Estimation Uncertainty

Here we will blend the algorithms of the previous sections. Even though hav-

ing non-Gaussian disturbances no longer assures that β̂ is precisely Gaussian,

by CLT the normal distribution remains the large-N approximation. Thus,

we may construct the algorithm exactly as in section 4.1.6, as before with

the added step of exponentiating each log wage draw to get a draw for wage.

This yields the output in figure 4.9.

Comparing the results from nonparametric estimation, and the results

from just incorporating parameter estimation uncertainty, we should be un-

surprised by this: nonparametric estimation told us that our Gaussian distur-

bances assumption was well-grounded, and our initial parameter uncertainty

estimation results told us our parameter estimates were being measured quite

accurately. Thus the output from this section very closely resembles that of

our very first density predictions, with D Gaussian and no parameter uncer-

tainty.
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Figure 4.9: Predicted densities for wage under the assumption that residuals are homoskedas-
tic. Here parameter uncertainty is accounted for in the density of wage, and the density of
residuals is now estimated nonparametrically. The model is in log wage and then exponen-
tiated. The top graph is estimated density of wage with 10 years of education, 1 year of
experience. The bottom graph is the same for 14 years of education, 20 years of experience.
The red vertical lines indicate 95% CI.

4.2.9 Modeling Directly in Levels

Up until now our model has been

log(y) = x′β + ε

From this model we construct density predictions for y by making draws of

log(y) and exponentiating. We now switch to the following model:

y = x′β + ε

We will now re-explore the above analysis in this context. The first thing

we will notice is that density predictions under the assumption of Gaussian

disturbances will generally perform quite poorly, because the disturbances to

the level model are quite clearly non-Gaussian. See figure 4.10.

We therefore skip to a nonparametric density prediction, incorporating

parameter uncertainty - although as before we will find that parameter un-
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Figure 4.10: Non-Gaussian Residuals

certainty is quite small. The resulting output is in figure 4.11

We immediately notice a problem for individual 1: The 95% CI includes

negative values for wage! This is inherently a problem of working directly in

levels when modeling a variable for which only positive values make sense.



96 CHAPTER 4. FORECAST MODEL BUILDING AND USE

Figure 4.11: Predicted densities for wage under the assumption that residuals are ho-
moskedastic. Here parameter uncertainty is accounted for in the density of wage, and the
density of residuals is now estimated nonparametrically. The model is directly in wages The
top graph is estimated density of wage with 10 years of education, 1 year of experience. The
bottom graph is the same for 14 years of education, 20 years of experience. The red vertical
lines indicate 95% CI.

4.3 Non-Parametric Estimation of Conditional Mean

Functions

4.3.1 Global Nonparametric Regression: Series

In the bivariate case we can think of the relationship as

yt = g(xt, εt),

or slightly less generally as

yt = f(xt) + εt.

First consider Taylor series expansions of f(xt). The linear (first-order)

approximation is

f(xt) ≈ β1 + β2x,
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and the quadratic (second-order) approximation is

f(xt) ≈ β1 + β2xt + β3x
2
t .

In the multiple regression case, the Taylor approximations also involves in-

teraction terms. Consider, for example, f(xt, zt):

f(xt, zt) ≈ β1 + β2xt + β3zt + β4x
2
t + β5z

2
t + β6xtzt + ....

Such interaction effects are also relevant in situations involving dummy

variables. There we capture interactions by including products of dummies.5

Now consider Fourier series expansions. We have

f(xt) ≈ β1 + β2sin(xt) + β3cos(xt) + β4sin(2xt) + β5cos(2xt) + ...

One can also mix Taylor and Fourier approximations by regressing not only

on powers and cross products (“Taylor terms”), but also on various sines and

cosines (“Fourier terms”). Mixing may facilitate parsimony.

The ultimate point is that so-called “intrinsically non-linear” models are

themselves linear when viewed from the series-expansion perspective. In prin-

ciple, of course, an infinite number of series terms are required, but in practice

nonlinearity is often quite gentle so that only a few series terms are required

(e.g., quadratic).

The Curse of Dimensionality

Let p be the adopted expansion order. Things quickly get out of hand as p

grows, for fixed N .

5Notice that a product of dummies is one if and only if both individual dummies are one.
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Bandwidth Selection and the Bias-Variance Tradeoff

For fixed N , smaller p reduces variance but increases bias, larger p reduces

bias but inflates variance.

Good things happen as p→∞ while p/N → 0.

p can be chosen by any of the criteria introduced earlier.

4.3.2 Local Nonparametric Regression: Nearest-Neighbor

Here we introduce the idea of local regression based on “nearest neighbors”.

It is a leading example of a local smoother. The basic model is

yt = g(xt) + εt.

Unweighted Locally-Constant Regression

We want to fit (predict) y for an arbitrary x∗. We use the x variables in a

neighborhood of x∗, n(x∗). In particular we use the PT nearest neighbors. PT

can be chosen by CV. We find the PT nearest neighbors using the Euclidean

norm:

λ(x∗, x∗PN ) = [ΣK
k=1(x

∗
PNk
− x∗k)2]

1
2 .

The fitted value is then

ŷ(x∗) =
1

PN

∑
j∈n(x∗)

yj

This “nearest-neighbor” idea is not only simple, but tremendously impor-

tant for prediction. If we want to predict y for an arbitrary x∗, it is natural

to examine and average the y’s that happened for close x’s.
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Weighted Locally-Linear Regression

We will use the “tri-cube” neighborhood weight function:

vi(xi, x
∗, x∗PN ) = C

(
λ(xi, x

∗)

λ(x∗, x∗PN )

)
,

where

C(u) =

{
(1− u3)3 for u < 1

0 otherwise

We then obtain the fitted value by weighted linear regression:

ŷ∗ = ĝ(x∗) = x∗′β̂

where

β̂ = argmin[ΣN
i=1vi(yi − x′iβ)2]

Good things happen as PN →∞ while PN/N → 0.

Figure 4.12: Locally Weighted Regression
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Figure 4.13: Locally Weighted Regression, Near the Edge

“Robustness Iterations”

Consider the initial fit to be “robusness iteration 0”. The define the robust-

ness weight at iteration 1:

ρi
(1) = S

(
ei

(0)

6h

)
where

ei
(0) = yi − ŷ(0)

i

h = med |ei(0)|

S(u) =

{
(1− u2)2 for|u| < 1

0 otherwise

That is, we use bi-square robustness weighting, with bigger observations with

bigger absolute residuals at iteration (0) downweighted progressively more,

and observations with absolute residuals greater than six times the median

absolute residual completely eliminated. We then obtain the fitted value by

doubly-weighted linear regression:

ŷ
∗(1)
i = ĝ(1)(x∗) = x∗′β̂(1)
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where

β̂(1) = argmin[ΣN
i=1 ρ

(1)
i vi(yi − xi′β)

2
].

Then we continue iterating if desired.

We speak of “robust weighted locally-linear regression”. Extensions to

locally-polynomial regression are immediate.

Figure 4.14: Locally Weighted Regression, Robustness Weighting for Outliers

4.3.3 Forecasting Perspectives

On Global vs. Local Smoothers for Forecasting

In cross-section environments, both global and local smoothers are useful for

prediction. Local smoothers are perhaps more flexible and more popular in

cross sections. x∗ is usually interior to the observed x’s, so nearest-neighbor

approaches feel natural.

In time-series environments both global and local smoothers can be useful

for prediction. But there’s a twist. Economic time-series data tend to trend,

so that x∗ can often be exterior to the observed x’s. That can create serious

issues for local smoothers, as, for example, there may be no nearby “nearest

neighbors”! Polynomial and Fourier global smoothers, in contrast, can be

readily extrapolated for short-horizon out-of-sample forecasts. They have
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issues of their own for long-horizon forecasts, however, as, for example, all

polynomials diverge either to +∞ or −∞ when extrapolated far enough.

Nearest Neighbors as a General Forecasting Method

Notice how natural and general NN is for forecasting. If we want to know

what y is likely to go with x∗ an obvious strategy is to look at the y’s that

went with x’s nearest x∗. And the NN idea can be used to produce not just

point forecasts (e.g., by fitting a constant to the y’s, but moreover to produce

density forecasts (by fitting a distribution to the y’s). The NN idea is also

equally relevant and useful in time series.

4.4 Wage Prediction, Continued

4.4.1 Point Wage Prediction

4.4.2 Density Wage Prediction

4.5 Exercises, Problems and Complements

1. Additional insight on parameter-estimation uncertainty.

Consider a simple homogeneous linear regression with zero-mean vari-

ables and Gaussian disturbances

yt = βxt + εt

εt

iid

∼ N(0, σ2).

It can be shown that

var(β̂) =
σ2∑T
t=1 x

2
t

,
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and that β̂ and ε are independent. Now consider an operational point

prediction of y given that x = x∗, ŷ = β̂x∗, and consider the variance of

the corresponding forecast error. We have

var(e) = var(y − ŷ) = var((βx∗ + ε)− β̂x∗) = σ2 +
σ2∑N
i=1 x

2
i

x∗2.

In this expression, the first term accounts for for the usual disturbance

uncertainty, and the second accounts for parameter estimation uncer-

tainty. Taken together, the results suggest an operational density fore-

cast that accounts for parameter uncertainty,

yi |xi = x∗ ∼ N

(
β̂x∗, σ̂2 +

σ̂2∑N
i=1 x

2
i

x∗2

)
,

from which interval forecasts may be constructed as well. Note that

when parameter uncertainty exists, the closer x∗ is to the mean x (0), the

smaller is the prediction-error variance. Note also that as the sample size

gets large,
∑N

i=1 x
2
t gets large as well, so the adjustment for parameter

estimation uncertainty vanishes (in fact very quickly, like 1/N), and

the density forecast collapses to the feasible Gaussian density forecast

introduced in the text.

The ideas sketched here can be shown to carry over to more compli-

cated situations (e.g., non-Gaussian, y and x don’t necessarily have zero

means, more than one regressor, etc.); it remains true that the closer is

x to its mean, the tighter is the prediction interval.

2. Prediction intervals via quantile regression.

Granger, C.W.J., H. White, and M. Kamstra (1987), “Interval Forecast-

ing: An Analysis Based Upon ARCH − Quantile Estimators,” Journal

of Econometrics. White (1990) allows for nonlinear conditional quantile

regression via neural nets.
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3. In-sample vs. out-of-sample prediction.

In cross sections all prediction has an “in-sample” flavor insofar as the

X∗ for which we want to forecast y is typically interior to the historical

X. In time series, in contrast, future times are by definition exterior to

past times.

4. Model uncertainty.

We have thus far emphasized disturbance uncertainty and parameter

estimation uncertainty (which is due in part to data uncertainty, which

in turn has several components).

A third source of prediction error is model uncertainty. All our mod-

els are intentional simplifications, and the fact is that different models

produce different forecasts. Despite our best intentions, and our use of

powerful tools such as information criteria, we never know the DGP, and

surely any model that we use is not the DGP.

5. “Data-rich” environments.

“Big data.” “Wide data,” for example, corresponds to K large relative

to T . In extreme cases we might even have K much larger than T . How

to get a sample covariance matrix for the variables in X? How to run a

regression? One way or another, we need to recover degrees of freedom,

so dimensionality reduction is key, which leads to notions of variable

selection and “sparsity”, or shrinkage and “regularization”.

6. Neural Networks

Neural networks amount to a particular non-linear functional form as-

sociated with repeatedly running linear combinations of inputs through

non-linear ”squashing” functions. The 0-1 squashing function is useful

in classification, and the logistic function is useful for regression. The

neural net literature is full of biological jargon, which serves to obfuscate
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rather than clarify. We speak, for example, of a “single-output feedfor-

ward neural network with n inputs and 1 hidden layer with q neurons.”

But the idea is simple. If the output is y and the inputs are x’s, we write

yt = Φ(β0 +

q∑
i=1

βihit),

where

hit = Ψ(γi0 +
n∑
j=1

γijxjt), i = 1, ..., q

are the “neurons” (“hidden units”), and the ”activation functions” Ψ

and Φ are arbitrary, except that Ψ (the squashing function) is generally

restricted to be bounded. (Commonly Φ(x) = x.) Assembling it all, we

write

yt = Φ

(
β0 +

q∑
i=1

βiΨ

(
γi0 +

n∑
j=1

γijxjt

))
= f(xt; θ),

which makes clear that a neural net is just a particular non-linear func-

tional form for a regression model.

7. Trees

8. Kernel Regression

9. Regression Splines

Polynomial are global. Unattractive in that the fit at the end is influ-

enced by the data at beginning (for example).

Move to piecewise cubic (say). But it’s discontinuous at the join point(s)

(“knots”).

Move to continuous piecewise cubic; i.e., force continuity at the knots.

But it might have an unreasonable kink.
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Move to cubic spline. Forces continuity and continuity of first and second

derivatives at the knots. Nice! A polynomial of degree p spline has

continuous dth-order derivatives, d = 0, ..., p− 1. So, for example, linear

spline is piecewise linear, continuous but not differentiable at the knots.

– Linear Splines

– Constructing Cubic Splines

– Natural Cubic Splines

Extrapolates linearly beyond the left and right boundary knots. This

adds constraints (two at each end), recovering degrees of freedom and

hence allowing for more knots.

A cubic spline with K knots uses K + 4 degrees of freedom. A natural

spline with K knots uses K degrees of freedom.

– Knot Placement

You’d like more knots in rough areas of the function being estimated,

but of course you don’t know where those areas are, so it’s tricky.

Smoothing splines avoid that issue.

10. Smoothing Splines

min
{f∈F}

T∑
t=1

(yt − f(xt))
2 + λ

∫
f ′′(z)2dz

HP Trend does that:

min
{st}Tt=1

T∑
t=1

(yt − st)2 + λ

T−1∑
t=2

((st+1 − st)− (st − st−1))
2

The smoothing spline is a natural cubic spline. It has a knot at each

unique x value, but smoothness is imposed via λ. No need to choose

knot locations; instead just choose a single λ. Can be done by CV.
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There is an analytic formula giving effective degrees of freedom, so we

can specify d.f. rather than λ.

4.6 Notes

“LOWESS”
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Part III

Time Series: A Components

Perspective
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Chapter 5

Trend and Seasonality

Consider a time-series situation:

yt = x′tβ + εt, t = 1, ..., T

εt ∼ iid N(0, σ2).

Note that the disturbance density is assumed Gaussian for simplicity (for

example in calculating density forecasts), but we could of course relax that

assumption just as we did for cross-section forecasts.

5.1 The Forecasting the Right-Hand-Side Variables (FRV)

Problem

In the future period of interest, T + h, it must be true that

yT+h = x′T+hβ + εT+h.

Under quadratic loss the conditional mean forecast is optimal, and we imme-

diately have

E(yT+h|xT+h) = x′T+hβ.

Suppose for the moment that we know the regression parameters. Forming

the conditional expectation still requires knowing xT+h, which we don’t, so it

111
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seems that we’re stuck.

We call this the “forecasting-the-right-hand-side-variables (FRV)

problem.” It is a problem, but it’s not nearly as damaging as you might

fear.

• We can abandon time series and only work in cross sections, where the

FRV problem doesn’t exist! But of course that’s throwing out the baby

with the bathwater and hardly a useful or serious prescription.

• We can move to scenario forecasts. Time-series scenario forecasts

(also called stress tests, or contingency analyses), help us answer the

“what if” questions that often arise. As with cross-section prediction,

there is no FRV problem, and for precisely the same reason. For any

given “scenario” x∗, we immediately have

E(yT+h|xT+h = x∗) = x∗′T+hβ.

However, notwithstanding the occasional usefulness of scenario analyses,

we generally don’t want to make forecasts of y conditional upon assump-

tions about x; rather, we just simply want the best possible forecast of

y.

• We can work with models involving lagged rather than current x, that is,

models that relate yt to xt−h rather than relating yt to xt. This sounds

ad hoc, but it’s actually not, and we will have much more to say about

it later.

• We can work with models for which we actually do know how to fore-

cast x. In some important cases, the FRV problem doesn’t arise at all,

because the regressors are perfectly deterministic, so we know exactly

what they’ll be at any future time. The trend and seasonality models

that we now discuss are leading examples.
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5.2 Deterministic Trend

Time series fluctuate over time, and we often mentally allocate those fluctu-

ations to unobserved underlying components, such as trends, seasonals, and

cycles. In this section we focus on trends.1 More precisely, in our general

unobserved-components model,

yt = Tt + St + Ct + εt,

we now include only trend and noise,

yt = Tt + εt.

Trend is obviously pervasive. It involves slow, long-run, evolution in the

variables that we want to model and forecast. In business, finance, and

economics, trend is produced by slowly evolving preferences, technologies,

institutions, and demographics.

We will study both deterministic trend, evolving in a perfectly pre-

dictable way, and stochastic trend, evolving in an approximately pre-

dictable way. We treat the deterministic case here, and we treat the stochastic

case later in Chapter 5.3.

5.2.1 Trend Models

Sometimes series increase or decrease like a straight line. That is, sometimes

a simple linear function of time,

Tt = β0 + β1TIMEt,

provides a good description of the trend, in which case we speak of linear

trend. We construct the variable TIME artificially; it is called a “time

1Later we’ll define and study seasonals and cycles. Not all components need be present in all observed
series.
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trend” or “time dummy.” Time equals 1 in the first period of the sample,

2 in the second period, and so on. Thus, for a sample of size T , TIME =

(1, 2, 3, ..., T − 1, T ); put differently, TIMEt = t. β0 is the intercept; it’s

the value of the trend at time t = 0. β1 is the slope; it’s positive if the trend

is increasing and negative if the trend is decreasing. The larger the absolute

value of β1, the steeper the trend’s slope. In business, finance, and economics,

linear trends are typically (but not necessarily) increasing, corresponding to

growth.

Sometimes trend appears nonlinear, or curved, as for example when a vari-

able increases at an increasing or decreasing rate. Ultimately, we don’t require

that trends be linear, only that they be smooth. Quadratic trend models

can potentially capture nonlinearities. Such trends are simply quadratic, as

opposed to linear, functions of time,

Tt = β0 + β1TIMEt + β2TIME2
t .

Linear trend emerges as a special (and potentially restrictive) case when

β2 = 0.2

A variety of different nonlinear quadratic trend shapes are possible, de-

pending on the signs and sizes of the coefficients. In particular, if β1 > 0 and

β2 > 0, the trend is monotonically, but nonlinearly, increasing, Conversely,

if β1 < 0 and β2 < 0, the trend is monotonically decreasing. If β1 < 0 and

β2 > 0 the trend is U-shaped, and if β1 > 0 and β2 < 0 the trend has an

inverted U shape. See Figure 5.1. Keep in mind that quadratic trends are

used to provide local approximations; one rarely has a U-shaped trend, for

example. Instead, all of the data may lie on one or the other side of the “U.”

Other types of nonlinear trend are sometimes appropriate. Sometimes,

in particular, trend is nonlinear in levels but linear in logarithms. That’s

2Higher-order polynomial trends are sometimes entertained, but it’s important to use low-order polyno-
mials to maintain smoothness.
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Figure 5.1: Various Shapes of Quadratic Trends

called exponential trend, or log-linear trend, and is very common in

business, finance and economics.3 It arises because economic variables often

display roughly constant growth rates (e.g., three percent per year). If trend

is characterized by constant growth at rate β1, then we can write

Tt = β0e
β1TIMEt. (5.1)

The trend is a nonlinear (exponential) function of time in levels, but in log-

arithms we have

ln(Tt) = ln(β0) + β1TIMEt.

Thus, ln(Tt) is a linear function of time. As with quadratic trend, depending

on the signs and sizes of the parameter values, exponential trend can achieve

a variety of patterns, increasing or decreasing at an increasing or decreasing

rate. See Figure 5.2.

3Throughout this book, logarithms are natural (base e) logarithms.
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Figure 5.2: Various Shapes of Exponential Trends

It’s important to note that, although qualitatively similar trend shapes can

be achieved with quadratic and exponential trend, there are subtle differences

between them. The nonlinear trends in some series are well approximated by

quadratic trend, while the trends in other series are better approximated by

exponential trend. Neither is necessarily “better” in general; rather, they’re

simply different, and which is better in any particular situation is ultimately

an empirical matter.

5.2.2 Trend Estimation

Before we can estimate trend models, we need to create and store on the

computer variables such as TIME and its square. Fortunately we don’t have

to type the trend values (1, 2, 3, 4, ...) in by hand; rather, in most software

packages a command exists to create TIME automatically, after which we

can immediately compute derived variables such as TIME2. Because, for
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example, TIME = 1, 2, ..., T , TIME2 = 1, 4, ..., T 2.

For the most part we fit our various trend models to data on a time series

y using ordinary least-squares regression. In the linear and quadratic

trend cases, the regressions are just simple OLS regressions. In an obvious

notation, we run

y → c, T IME

and

y → c, T IME, TIME2,

respectively, where c denotes inclusion of an intercept.

The exponential trend, in contrast, is a bit more nuanced. We can estimate

it in two ways. First, because the nonlinear exponential trend is nevertheless

linear in logs, we can estimate it by regressing ln y on an intercept and TIME,

ln y → c, T IME.

Note that c provides an estimate of ln β0 in equation (5.1) and so must be

exponentiated to obtain an estimate of β0. Similarly the fitted values from

this regression are the fitted values of ln y, so they must be exponentiated to

get the fitted values of y.

Alternatively, we can proceed directly from the exponential representation

and let the computer use numerical algorithms to find4

(β̂0, β̂1) = argmin

β0, β1

T∑
t=1

[
yt − β0e

β1TIMEt
]2
.

This is called nonlinear least squares, or NLS.

NLS can be used to perform least-squares estimation for any model, in-

cluding linear models, but in the linear case it’s more sensible simply to use

4“Argmin” just means “the argument that minimizes.”
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OLS. Some intrinsically nonlinear forecasting models can’t be estimated us-

ing OLS, however, but they can be estimated using nonlinear least squares.

We resort to nonlinear least squares in such cases.5 (We will encounter sev-

eral in this book.) Even for models like exponential trend, which as we have

seen can be transformed to linearity, estimation in levels by NLS is useful,

because statistics like AIC and SIC can then be directly compared to those

of linear and quadratic trend models.

5.2.3 Forecasting Trends

Suppose we’re presently at time T , and we have a sample of historical data,

{y1, y2, ..., yT} We want to use a trend model to forecast the h-step-ahead

value of y. For illustrative purposes, we’ll work with a linear trend, but the

procedures are identical for quadratic and exponential trends.

First consider point forecasts. The linear trend model, which holds for any

time t, is

yt = β0 + β1TIMEt + εt.

In particular, at time T + h, the future time of interest,

yT+h = β0 + β1TIMET+h + εT+h.

Two future values of series appear on the right side of the equation, TIMET+h

and εT+h. If TIMET+h and εT+h were known at time T , we could immediately

crank out the forecast. In fact, TIMET+h is known at time T , because

the artificially-constructed time variable is perfectly predictable; specifically,

TIMET+h = T + h. Unfortunately εT+h is not known at time T , so we replace

it with an optimal forecast of εT+h constructed using information only up

5When we estimate by NLS, we use a computer to find the minimum of the sum of squared residual
function directly, using numerical methods, by literally trying many (perhaps hundreds or even thousands)
of different (β0, β1) values until those that minimize the sum of squared residuals are found. This is not
only more laborious (and hence slow), but also less numerically reliable, as, for example, one may arrive at
a minimum that is local but not global.
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to time T .6 Under the assumption that ε is simply independent zero-mean

random noise, the optimal forecast of εT+h for any future period is 0, yielding

the point forecast,7

yT+h,T = β0 + β1TIMET+h.

The subscript “T + h, T” on the forecast reminds us that the forecast is for

time T + h and is made at time T . Note that the point forecast formula at

which we arrived is not of practical use, because it assumes known values

of the trend parameters β0 and β1. But it’s a simple matter to make it

operational – we just replace unknown parameters with their least squares

estimates, yielding

ŷT+h,T = β̂0 + β̂1TIMET+h.

Now consider density forecasts under normality and ignoring parameter es-

timation uncertainty We immediately have the density forecast , N(yT+h,T , σ
2),

where σ is the standard deviation of the disturbance in the trend regression.

To make this operational, we use the density forecast N(ŷT+h,T , σ̂
2), where σ̂2

is the square of the standard error of the regression. Armed with the density

forecast, we can construct any desired interval forecast. For example, the 95%

interval forecast ignoring parameter estimation uncertainty is yT+h,T ±1.96σ,

where σ is the standard deviation of the disturbance in the trend regression.

To make this operational, we use ŷT+h,T ± 1.96σ̂, where σ̂ is the standard

error of the regression.

We can use the simulation-based methods of Chapter 4 to dispense with

the normality assumption and/or account for parameter-estimation uncer-

tainty.

6More formally, we say that we’re “projecting εT+h on the time-T information set.”
7“Independent zero-mean random noise” is just a fancy way of saying that the regression disturbances

satisfy the usual assumptions – they are identically and independently distributed.
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Figure 5.3: Retail Sales

5.2.4 Forecasting Retail Sales

We’ll illustrate trend modeling with an application to forecasting U.S. current-

dollar retail sales. The data are monthly from 1955.01 through 1994.12 and

have been seasonally adjusted.8 We’ll use the period 1955.01-1993.12 to es-

timate our forecasting models, and we’ll use the “holdout sample” 1994.01-

1994.12 to examine their out-of-sample forecasting performance.

In Figure 5.3 we provide a time series plot of the retail sales data, which

display a clear nonlinear trend and not much else. Cycles are probably present

but are not easily visible, because they account for a comparatively minor

share of the series’ variation.

In Table 5.4a we show the results of fitting a linear trend model by re-

gressing retail sales on a constant and a linear time trend. The trend appears

highly significant as judged by the p-value of the t statistic on the time trend,

and the regression’s R2 is high. Moreover, the Durbin-Watson statistic in-

dicates that the disturbances are positively serially correlated, so that the

disturbance at any time t is positively correlated with the disturbance at

time t − 1. In later chapters we’ll show how to model such residual serial

8When we say that the data have been “seasonally adjusted,” we simply mean that they have been
smoothed in a way that eliminates seasonal variation. We’ll discuss seasonality in detail in Section 5.3.
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(a) Retail Sales: Linear Trend Regression

(b) Retail Sales: Linear Trend Residual Plot

Figure 5.4: Retail Sales: Linear Trend

correlation and exploit it for forecasting purposes, but for now we’ll ignore it

and focus only on the trend.9

The residual plot in Figure 5.4b makes clear what’s happening. The linear

trend is simply inadequate, because the actual trend is nonlinear. That’s

one key reason why the residuals are so highly serially correlated – first the

data are all above the linear trend, then below, and then above. Along with

the residuals, we plot plus-or-minus one standard error of the regression, for

visual reference.
9Such residual serial correlation may, however, render the standard errors of estimated coefficients (and

the associated t statistics) untrustworthy, and robust standard errors (e.g., Newey-West) can be used. In
addition, AIC and SIC remain valid.



122 CHAPTER 5. TREND AND SEASONALITY

(a) Retail Sales: Quadratic Trend Regression

(b) Retail Sales: Quadratic Trend Residual Plot

Figure 5.5: Retail Sales: Quadratic Trend

Table 5.5a presents the results of fitting a quadratic trend model. Both

the linear and quadratic terms appear highly significant. R2 is now almost

1. Figure 5.5b shows the residual plot, which now looks very nice, as the

fitted nonlinear trend tracks the evolution of retail sales well. The residuals

still display persistent dynamics (indicated as well by the still-low Durbin-

Watson statistic) but there’s little scope for explaining such dynamics with

trend, because they’re related to the business cycle, not the growth trend.

Now let’s estimate a different type of nonlinear trend model, the exponen-

tial trend. First we’ll do it by OLS regression of the log of retail sales on a

constant and linear time trend variable. We show the estimation results and
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(a) Retail Sales: Log Linear Trend Regression

(b) Retail Sales: Log Linear Trend Residual Plot

Figure 5.6: Retail Sales: Log Linear Trend

residual plot in Table 5.6a and Figure 5.6b. As with the quadratic nonlinear

trend, the exponential nonlinear trend model seems to fit well, apart from

the low Durbin-Watson statistic.

In sharp contrast to the results of fitting a linear trend to retail sales,

which were poor, the results of fitting a linear trend to the log of retail sales

seem much improved. But it’s hard to compare the log-linear trend model

to the linear and quadratic models because they’re in levels, not logs, which

renders diagnostic statistics like R2 and the standard error of the regression

incomparable. One way around this problem is to estimate the exponential

trend model directly in levels, using nonlinear least squares. In Table 5.7a
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(a) Retail Sales: Exponential Trend Regression - Nonlinear Least Squares

(b) Retail Sales: Exponential Trend Residual Plot

Figure 5.7: Retail Sales: Exponential Trend

and Figure 5.7b we show the nonlinear least squares estimation results and

residual plot for the exponential trend model. The diagnostic statistics and

residual plot indicate that the exponential trend fits better than the linear

but worse than the quadratic.

Thus far we’ve been informal in our comparison of the linear, quadratic and

exponential trend models for retail sales. We’ve noticed, for example, that the

quadratic trend seems to fit the best. The quadratic trend model, however,

contains one more parameter than the other two, so it’s not surprising that

it fits a little better, and there’s no guarantee that its better fit on historical

data will translate into better out-of-sample forecasting performance. (Recall
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Figure 5.8: Model Selection Criteria: Linear, Quadratic, and Exponential Trend Models

the parsimony principle.) To settle upon a final model, we examine the AIC

or SIC, which we summarize in Table 5.8 for the three trend models.10 Both

the AIC and SIC indicate that nonlinearity is important in the trend, as

both rank the linear trend last. Both, moreover, favor the quadratic trend

model. So let’s use the quadratic trend model.

Figure 5.9 shows the history of retail sales, 1990.01-1993.12, together

with out-of-sample point and 95% interval extrapolation forecasts, 1994.01-

1994.12. The point forecasts look reasonable. The interval forecasts are

computed under the (incorrect) assumption that the deviation of retail sales

from trend is random noise, which is why they’re of equal width throughout.

Nevertheless, they look reasonable.

In Figure 5.10 we show the history of retail sales through 1993, the quadratic

trend forecast for 1994, and the realization for 1994. The forecast is quite

good, as the realization hugs the forecasted trend line quite closely. All of

the realizations, moreover, fall inside the 95% forecast interval.

For comparison, we examine the forecasting performance of a simple linear

trend model. Figure 5.11 presents the history of retail sales and the out-of-

sample point and 95% interval extrapolation forecasts for 1994. The point

forecasts look very strange. The huge drop forecasted relative to the historical

sample path occurs because the linear trend is far below the sample path by

the end of the sample. The confidence intervals are very wide, reflecting the

large standard error of the linear trend regression relative to the quadratic

trend regression.

10It’s important that the exponential trend model be estimated in levels, in order to maintain comparability
of the exponential trend model AIC and SIC with those of the other trend models.
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Figure 5.9: Retail Sales: Quadratic Trend Forecast

Figure 5.10: Retail Sales: Quadratic Trend Forecast and Realization

Finally, Figure 5.12 shows the history, the linear trend forecast for 1994,

and the realization. The forecast is terrible – far below the realization. Even

the very wide interval forecasts fail to contain the realizations. The reason

for the failure of the linear trend forecast is that the forecasts (point and

interval) are computed under the assumption that the linear trend model is

actually the true DGP, whereas in fact the linear trend model is a very poor

approximation to the trend in retail sales.
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Figure 5.11: Retail Sales: Linear Trend Forecast

Figure 5.12: Retail Sales: Linear Trend Forecast and Realization

5.3 Deterministic Seasonality

Time series fluctuate over time, and we often mentally allocate those fluctu-

ations to unobserved underlying components, such as trends, seasonals, and

cycles. In this section we focus on seasonals.11 More precisely, in our general

unobserved-components model,

yt = Tt + St + Ct + εt,

11Later we’ll define and study cycles. Not all components need be present in all observed series.
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we now include only the seasonal and noise components,

yt = St + εt.

Seasonality involves patterns that repeat every year.12 Seasonality is pro-

duced by aspects of technologies, preferences and institutions that are linked

to the calendar, such as holidays that occur at the same time each year.

You might imagine that, although certain series are seasonal for obvious

reasons, seasonality is nevertheless uncommon. On the contrary, and perhaps

surprisingly, seasonality is pervasive in business and economics. Any technol-

ogy that involves the weather, such as production of agricultural commodities,

is likely to be seasonal. Preferences may also be linked to the calendar. For

example, people want to do more vacation travel in the summer, which tends

to increase both the price and quantity of summertime gasoline sales. Fi-

nally, social institutions that are linked to the calendar, such as holidays, are

responsible for seasonal variation in many series. Purchases of retail goods

skyrocket, for example, every Christmas season.

We will introduce both deterministic seasonality and stochastic sea-

sonality. We treat the deterministic case here, and we treat the stochastic

case later in Chapter .

5.3.1 Seasonal Models

A key technique for modeling seasonality is regression on seasonal dum-

mies. Let s be the number of seasons in a year. Normally we’d think of four

seasons in a year, but that notion is too restrictive for our purposes. Instead,

think of s as the number of observations on a series in each year. Thus s = 4

if we have quarterly data, s = 12 if we have monthly data, s = 52 if we have

weekly data, and so forth.

12Note therefore that seasonality is impossible, and therefore not an issue, in data recorded once per year,
or less often than once per year.
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Now let’s construct seasonal dummy variables, which indicate which

season we’re in. If, for example, there are four seasons (s = 4), we create D1 =

(1, 0, 0, 0, ...), D2 = (0, 1, 0, 0, ...), D3 = (0, 0, 1, 0, ...) and D4 = (0, 0, 0, 1, ...).

D1 indicates whether we’re in the first quarter (it’s 1 in the first quarter and

zero otherwise), D2 indicates whether we’re in the second quarter (it’s 1 in

the second quarter and zero otherwise), and so on. At any given time, we can

be in only one of the four quarters, so only one seasonal dummy is nonzero.

The deterministic seasonal component is

St =
s∑
i=1

γiDit.

It is an intercept that varies in a deterministic manner over throughout the

seasons within each year. Those different intercepts, the γi’s, are called the

seasonal factors; they summarize the seasonal pattern over the year.

In the absence of seasonality, the γi’s are all the same, so we drop all the

seasonal dummies and instead include an intercept in the usual way.

Crucially, note that the deterministic seasonal variation is perfectly pre-

dictable, just as with our earlier-studied deterministic trend variation.

5.3.2 Seasonal Estimation

Before we can estimate seasonal models we need to create and store on the

computer the seasonal dummies Di, i = 1, ..., s. Most software packages have

a command to do it instantly.

We fit our seasonal models to data on a time series y using ordinary

least-squares regression. We simply run

y → D1, ..., Ds.

We can also blend models to capture trend and seasonality simultaneously.
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For example, we capture quadratic trend plus seasonality by running

y → TIME, TIME2, D1, ..., Ds.

Note that whenever we include a full set of seasonal dummies, we drop the

intercept, to avoid perfect multicollinearity. 13

5.3.3 Forecasting Seasonals

Consider constructing an h-step-ahead point forecast, yT+h,T at time T . As

with the pure trend model, there’s no problem of forecasting the right-hand

side variables, due to the special (perfectly predictable) nature of seasonal

dummies, so point forecasts are easy to generate. The model is

yt =
s∑
i=1

γiDit + εt,

so that at time T + h,

yT+h =
s∑
i=1

γiDi,T+h + εT+h.

As with the trend model discussed earlier, we project the right side of the

equation on what’s known at time T (that is, the time-T information set,

ΩT ) to obtain the forecast

yT+h,T =
s∑
i=1

γiDi,T+h.

There is no FRV problem, because Di,T+h is known with certainty, for all

i and h. As always, we make the point forecast operational by replacing

13See also EPC ??.
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unknown parameters with estimates,

ŷT+h,T =
s∑
i=1

γ̂iDi,T+h.

To form density forecasts we again proceed precisely as in the trend model.

If we assume that the regression disturbance is normally distributed, then the

density forecast ignoring parameter estimation uncertainty is N(yT+h,T , σ
2),

where σ is the standard deviation of the regression disturbance. The op-

erational density forecast is then N(ŷT+h,T , σ̂
2), and the corresponding 95%

interval forecast is ŷT+h,T ± 1.96σ̂.

We can use simulation-based methods from Chapter 4 to dispense with

the normality assumption or account for parameter-estimation uncertainty.

5.3.4 Forecasting Housing Starts

We’ll use the seasonal modeling techniques that we’ve developed in this chap-

ter to build a forecasting model for housing starts. Housing starts are seasonal

because it’s usually preferable to start houses in the spring, so that they’re

completed before winter arrives. We have monthly data on U.S. housing

starts; we’ll use the 1946.01-1993.12 period for estimation and the 1994.01-

1994.11 period for out-of-sample forecasting. We show the entire series in

Figure 5.13, and we zoom in on the 1990.01-1994.11 period in Figure 5.14 in

order to reveal the seasonal pattern in better detail.
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Figure 5.13: Housing Starts, 1946-1994

Figure 5.14: Housing Starts, 1946-1994 - Zoom on 1990-1994
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The figures reveal that there is no trend, so we’ll work with the pure

seasonal model,

yt =
s∑
i=1

γiDit + εt.

Table 5.15a shows the estimation results. The twelve seasonal dummies

account for more than a third of the variation in housing starts, as R2 = .38.

At least some of the remaining variation is cyclical, which the model is not

designed to capture. (Note the very low Durbin-Watson statistic.)

The residual plot in Figure 5.15b makes clear the strengths and limitations

of the model. First compare the actual and fitted values. The fitted values go

through the same seasonal pattern every year – there’s nothing in the model

other than deterministic seasonal dummies – but that rigid seasonal pattern

picks up a lot of the variation in housing starts. It doesn’t pick up all of the

variation, however, as evidenced by the serial correlation that’s apparent in

the residuals. Note the dips in the residuals, for example, in recessions (e.g.,

1990, 1982, 1980, and 1975), and the peaks in booms.

The estimated seasonal factors are just the twelve estimated coefficients

on the seasonal dummies; we graph them in Figure 5.16. The seasonal effects

are very low in January and February, and then rise quickly and peak in May,

after which they decline, at first slowly and then abruptly in November and

December.

In Figure 5.17 we see the history of housing starts through 1993, together

with the out-of-sample point and 95% interval extrapolation forecasts for the

first eleven months of 1994. The forecasts look reasonable, as the model has

evidently done a good job of capturing the seasonal pattern. The forecast

intervals are quite wide, however, reflecting the fact that the seasonal effects

captured by the forecasting model are responsible for only about a third of

the variation in the variable being forecast.
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In Figure 5.18, we include the 1994 realization. The forecast appears

highly accurate, as the realization and forecast are quite close throughout.

Moreover, the realization is everywhere well within the 95% interval.



5.3. DETERMINISTIC SEASONALITY 135

(a) Housing Starts: Seasonal Dummy Variables

(b) Housing Starts: Seasonal Dummy Variables, Residual Plot

Figure 5.15: Housing Starts: Seasonal Dummy Model



136 CHAPTER 5. TREND AND SEASONALITY

Figure 5.16: Housing Starts: Estimated Seasonal Factors

Figure 5.17: Housing Starts: Seasonal Model Forecast

Figure 5.18: Housing Starts: Seasonal Model Forecast and Realization
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5.4 Exercises, Problems and Complements

1. Calculating forecasts from trend models.

You work for the International Monetary Fund in Washington DC, mon-

itoring Singapore’s real consumption expenditures. Using a sample of

quarterly real consumption data (measured in billions of 2005 Singapore

dollars), yt, t = 1990.1, ..., 2006.4, you estimate the linear consumption

trend model, yt = β0 + β1TIMEt + εt, where εt ∼ iidN(0, σ2), obtain-

ing the estimates β̂0 = 0.51, β̂1 = 2.30, and σ̂2 = 16. Based upon your

estimated trend model, construct feasible point, interval and density

forecasts for 2010.1.

2. Calendar span vs. observation count in trend estimation.

Suppose it’s the last day of the year. You are using a trend model to

produce a 1-year-ahead (end-of-year) forecast of a stock (as opposed

to flow) variable observed daily. Would you prefer to estimate your

forecasting model using the most recent 500 daily observations (and

then forecast 365 steps ahead) or 50 annual end-of-year observations

(and then forecast 1 step ahead)? Discuss. In particular, if you prefer

to use the 50 annual observations, why is that? Isn’t 500 a much larger

sample size than 50, so shouldn’t you prefer to use it?

3. Mechanics of trend estimation and forecasting.

Obtain from the web an upward-trending monthly series that interests

you. Choose your series such that it spans at least ten years, and such

that it ends at the end of a year (i.e., in December).

a. What is the series and why does it interest you? Produce a time series

plot of it. Discuss.

b. Fit linear, quadratic and exponential trend models to your series.

Discuss the associated diagnostic statistics and residual plots.
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c. Select a trend model using the AIC and using the SIC. Do the selected

models agree? If not, which do you prefer?

d. Use your preferred model to forecast each of the twelve months of the

next year. Discuss.

e. The residuals from your fitted model are effectively a detrended ver-

sion of your original series. Why? Plot them and discuss.

4. Properties of polynomial trends.

Consider a tenth-order deterministic polynomial trend:

Tt = β0 + β1TIMEt + β2TIME2
t + ...+ β10TIME10

t .

a. How many local maxima or minima may such a trend display?

b. Plot the trend for various values of the parameters to reveal some of

the different possible trend shapes.

c. Is this an attractive trend model in general? Why or why not?

d. How do you expect this trend to fit in-sample?

e. How do you expect this trend to forecast out-of-sample?

5. Seasonal adjustment.

One way to deal with seasonality in a series is simply to remove it, and

then to model and forecast the seasonally adjusted series.14 This

strategy is perhaps appropriate in certain situations, such as when in-

terest centers explicitly on forecasting nonseasonal fluctuations, as

is often the case in macroeconomics. Seasonal adjustment is often inap-

propriate in business forecasting situations, however, precisely because

interest typically centers on forecasting all the variation in a series, not

just the nonseasonal part. If seasonality is responsible for a large part

14Removal of seasonality is called seasonal adjustment.
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of the variation in a series of interest, the last thing a forecaster wants

to do is discard it and pretend it isn’t there.

a. Discuss in detail how you’d use dummy variable regression methods

to seasonally adjust a series. (Hint: the seasonally adjusted series

is closely related to the residual from the seasonal dummy variable

regression.)

b. Search the Web (or the library) for information on the latest U.S.

Census Bureau seasonal adjustment procedure, and report what you

learned.

6. Fourier seasonality.

Thus far we have used seasonal dummies. We can also take a Fourier

series approach, the benefits of which are two-fold. First, it produces

a smooth seasonal pattern, which accords with the basic intuition that

the progression through different seasons is gradual rather than discon-

tinuous. Second, it promotes parsimony, which not only respects the

parsimony principle but also enhances numerical stability in estimation.

The Fourier approach may be especially useful with high-frequency data.

Consider, for example, seasonal daily data. For a variety of reasons,

regression on more than three hundred daily dummies may not be ap-

pealing! So instead of using

St =
365∑
s=1

γiDit,

we can use

St =
P∑
p=1

(
δc,p cos

(
2πp

dt
365

)
+ δs,p sin

(
2πp

dt
365

))
,
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where dt is a repeating step function that cycles through 1, ..., 365. We

can choose P using the usual model selection criteria. (Note that for

simplicity we have dropped February 29 in leap years.)

5.5 Notes



Chapter 6

Cycles I: Autoregressions and Wold’s

Chain Rule

We’ve already considered models with trend and seasonal components. In this

chapter we consider a crucial third component, cycles. When you think of a

“cycle,” you probably think of the sort of rigid up-and-down pattern depicted

in Figure 6.1. Such cycles can sometimes arise, but cyclical fluctuations in

business, finance, economics and government are typically much less rigid. In

fact, when we speak of cycles, we have in mind a much more general notion

of cyclicality: any sort of stable, mean-reverting dynamics not captured by

trends or seasonals.

Cycles, according to our broad interpretation, may display the sort of

back-and-forth movement characterized in Figure 6.1, but they need not. All

we require is that there be some stable dynamics (“covariance stationary”

dynamics, in the jargon that we’ll shortly introduce) that link the present

to the past, and hence the future to the present. Cycles are present in most

of the series that concern us, and it’s crucial that we know how to model

and forecast them, because their history conveys information regarding their

future.

Trend and seasonal dynamics are simple, so we can capture them with

simple models. Cyclical dynamics, however, are a bit more complicated, and

141
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Figure 6.1: A Rigid Cyclical Pattern

consequently the cycle models we need are a bit more involved. We will

emphasize autoregressive models.

Let’s jump in.

6.1 Characterizing Cycles

Here we introduce methods for characterizing cyclical dynamics in model-free

fashion.

6.1.1 Covariance Stationary Time Series

Basic Ideas

A realization of a time series is an ordered set,

{..., y−2, y−1, y0, y1, y2, ...}.

Typically the observations are ordered in time – hence the name time series

– but they don’t have to be. We could, for example, examine a spatial series,

such as office space rental rates as we move along a line from a point in
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midtown Manhattan to a point in the New York suburbs thirty miles away.

But the most important case, by far, involves observations ordered in time,

so that’s what we’ll stress.

In theory, a time series realization begins in the infinite past and continues

into the infinite future. This perspective may seem abstract and of limited

practical applicability, but it will be useful in deriving certain very important

properties of the models we’ll be using shortly. In practice, of course, the data

we observe is just a finite subset of a realization, {y1, ..., yT}, called a sample

path.

Shortly we’ll be building models for cyclical time series. If the underlying

probabilistic structure of the series were changing over time, we’d be doomed

– there would be no way to relate the future to the past, because the laws gov-

erning the future would differ from those governing the past. At a minimum

we’d like a series’ mean and its covariance structure (that is, the covariances

between current and past values) to be stable over time, in which case we

say that the series is covariance stationary. Let’s discuss covariance sta-

tionarity in greater depth. The first requirement for a series to be covariance

stationary is that the mean of the series be stable over time. The mean of

the series at time t is Eyt = µt. If the mean is stable over time, as required

by covariance stationarity, then we can write Eyt = µ, for all t. Because the

mean is constant over time, there’s no need to put a time subscript on it.

The second requirement for a series to be covariance stationary is that

its covariance structure be stable over time. Quantifying stability of the

covariance structure is a bit tricky, but tremendously important, and we do

it using the autocovariance function. The autocovariance at displacement

τ is just the covariance between yt and yt−τ . It will of course depend on τ ,

and it may also depend on t, so in general we write

γ(t, τ) = cov(yt, yt−τ) = E(yt − µ)(yt−τ − µ).
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If the covariance structure is stable over time, as required by covariance

stationarity, then the autocovariances depend only on displacement, τ , not

on time, t, and we write γ(t, τ) = γ(τ), for all t.

The autocovariance function is important because it provides a basic sum-

mary of cyclical dynamics in a covariance stationary series. By examining

the autocovariance structure of a series, we learn about its dynamic behav-

ior. We graph and examine the autocovariances as a function of τ . Note that

the autocovariance function is symmetric; that is, γ(τ) = γ(−τ), for all τ .

Typically, we’ll consider only non-negative values of τ . Symmetry reflects the

fact that the autocovariance of a covariance stationary series depends only

on displacement; it doesn’t matter whether we go forward or backward. Note

also that γ(0) = cov(yt, yt) = var(yt).

There is one more technical requirement of covariance stationarity: we

require that the variance of the series – the autocovariance at displacement

0, γ(0), be finite. It can be shown that no autocovariance can be larger

in absolute value than γ(0), so if γ(0) < ∞, then so too are all the other

autocovariances.

It may seem that the requirements for covariance stationarity are quite

stringent, which would bode poorly for our models, almost all of which in-

voke covariance stationarity in one way or another. It is certainly true that

many economic, business, financial and government series are not covariance

stationary. An upward trend, for example, corresponds to a steadily increas-

ing mean, and seasonality corresponds to means that vary with the season,

both of which are violations of covariance stationarity.

But appearances can be deceptive. Although many series are not covari-

ance stationary, it is frequently possible to work with models that give special

treatment to nonstationary components such as trend and seasonality, so that

the cyclical component that’s left over is likely to be covariance stationary.

We’ll often adopt that strategy. Alternatively, simple transformations often
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appear to transform nonstationary series to covariance stationarity. For ex-

ample, many series that are clearly nonstationary in levels appear covariance

stationary in growth rates.

In addition, note that although covariance stationarity requires means and

covariances to be stable and finite, it places no restrictions on other aspects

of the distribution of the series, such as skewness and kurtosis.1 The upshot

is simple: whether we work directly in levels and include special components

for the nonstationary elements of our models, or we work on transformed

data such as growth rates, the covariance stationarity assumption is not as

unrealistic as it may seem.

Recall that the correlation between two random variables x and y is defined

by

corr(x, y) =
cov(x, y)

σxσy
.

That is, the correlation is simply the covariance, “normalized,” or “stan-

dardized,” by the product of the standard deviations of x and y. Both the

correlation and the covariance are measures of linear association between two

random variables. The correlation is often more informative and easily inter-

preted, however, because the construction of the correlation coefficient guar-

antees that corr(x, y) ∈ [−1, 1], whereas the covariance between the same two

random variables may take any value. The correlation, moreover, does not

depend on the units in which x and y are measured, whereas the covariance

does. Thus, for example, if x and y have a covariance of ten million, they’re

not necessarily very strongly associated, whereas if they have a correlation of

.95, it is unambiguously clear that they are very strongly associated.

In light of the superior interpretability of correlations as compared to

covariances, we often work with the correlation, rather than the covariance,

between yt and yt−τ . That is, we work with the autocorrelation function,

1For that reason, covariance stationarity is sometimes called second-order stationarity or weak sta-
tionarity.
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ρ(τ), rather than the autocovariance function, γ(τ). The autocorrelation

function is obtained by dividing the autocovariance function by the variance,

ρ(τ) =
γ(τ)

γ(0)
, τ = 0, 1, 2, ....

The formula for the autocorrelation is just the usual correlation formula,

specialized to the correlation between yt and yt−τ . To see why, note that the

variance of yt is γ(0), and by covariance stationarity, the variance of y at any

other time yt−τ is also γ(0). Thus,

ρ(τ) =
cov(yt, yt−τ)√

var(yt)
√
var(yt−τ)

=
γ(τ)√

γ(0)
√
γ(0)

=
γ(τ)

γ(0)
,

as claimed. Note that we always have ρ(0) = γ(0)
γ(0) = 1 , because any series

is perfectly correlated with itself. Thus the autocorrelation at displacement

0 isn’t of interest; rather, only the autocorrelations beyond displacement 0

inform us about a series’ dynamic structure.

Finally, the partial autocorrelation function, p(τ), is sometimes use-

ful. p(τ) is just the coefficient of yt−τ in a population linear regression of

yt on yt−1, ..., yt−τ .
2 We call such regressions autoregressions, because the

variable is regressed on lagged values of itself. It’s easy to see that the

autocorrelations and partial autocorrelations, although related, differ in an

important way. The autocorrelations are just the “simple” or “regular” corre-

lations between yt and yt−τ . The partial autocorrelations, on the other hand,

measure the association between yt and yt−τ after controlling for the effects

of yt−1 , ..., yt−τ+1; that is, they measure the partial correlation between yt

and yt−τ .

As with the autocorrelations, we often graph the partial autocorrelations

2To get a feel for what we mean by “population regression,” imagine that we have an infinite sample
of data at our disposal, so that the parameter estimates in the regression are not contaminated by sampling
variation – that is, they’re the true population values. The thought experiment just described is a population
regression.
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as a function of τ and examine their qualitative shape, which we’ll do soon.

Like the autocorrelation function, the partial autocorrelation function pro-

vides a summary of a series’ dynamics, but as we’ll see, it does so in a different

way.3

All of the covariance stationary processes that we will study subsequently

have autocorrelation and partial autocorrelation functions that approach

zero, one way or another, as the displacement gets large. In Figure 6.2 we

show an autocorrelation function that displays gradual one-sided damping,

and in Figure 6.3 we show a constant autocorrelation function; the latter

could not be the autocorrelation function of a stationary process, whose au-

tocorrelation function must eventually decay. The precise decay patterns

of autocorrelations and partial autocorrelations of a covariance stationary

series, however, depend on the specifics of the series. In Figure 6.4, for ex-

ample, we show an autocorrelation function that displays damped oscillation

– the autocorrelations are positive at first, then become negative for a while,

then positive again, and so on, while continuously getting smaller in absolute

value. Finally, in Figure 6.5 we show an autocorrelation function that differs

in the way it approaches zero – the autocorrelations drop abruptly to zero

beyond a certain displacement.

3Also in parallel to the autocorrelation function, the partial autocorrelation at displacement 0 is always
one and is therefore uninformative and uninteresting. Thus, when we graph the autocorrelation and partial
autocorrelation functions, we’ll begin at displacement 1 rather than displacement 0.
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Figure 6.2: Autocorrelation Function: One-sided Gradual Damping

Figure 6.3: Constant Autocorrelation
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Figure 6.4: Autocorrelation Function: Gradual Damped Oscillation

Figure 6.5: Autocorrelation Function: Sharp Cutoff
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6.2 White Noise

6.2.1 Basic Ideas

Later in this chapter we’ll study the population properties of certain impor-

tant time series models, or time series processes. Before we estimate time

series models, we need to understand their population properties, assum-

ing that the postulated model is true. The simplest of all such time series

processes is the fundamental building block from which all others are con-

structed. In fact, it’s so important that we introduce it now. We use y to

denote the observed series of interest. Suppose that

yt = εt

εt ∼ (0, σ2),

where the “shock,” εt , is uncorrelated over time. We say that εt , and hence yt

, is serially uncorrelated. Throughout, unless explicitly stated otherwise,

we assume that σ2 <∞. Such a process, with zero mean, constant variance,

and no serial correlation, is called zero-mean white noise, or simply white

noise.4 Sometimes for short we write

εt ∼ WN(0, σ2)

and hence

yt ∼ WN(0, σ2).

Note that, although εt and hence yt are serially uncorrelated, they are

not necessarily serially independent, because they are not necessarily nor-

mally distributed.5 If in addition to being serially uncorrelated, y is serially

4It’s called white noise by analogy with white light, which is composed of all colors of the spectrum,
in equal amounts. We can think of white noise as being composed of a wide variety of cycles of differing
periodicities, in equal amounts.

5Recall that zero correlation implies independence only in the normal case.
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Figure 6.6: Realization of White Noise Process

independent, then we say that y is independent white noise.6 We write

yt ∼ iid(0, σ2),

and we say that “y is independently and identically distributed with zero

mean and constant variance.” If y is serially uncorrelated and normally dis-

tributed, then it follows that y is also serially independent, and we say that

y is normal white noise, or Gaussian white noise.7 We write

yt ∼ iidN(0, σ2).

We read “y is independently and identically distributed as normal, with zero

mean and constant variance,” or simply “y is Gaussian white noise.” In Figure

6.6 we show a sample path of Gaussian white noise, of length T = 150,

simulated on a computer. There are no patterns of any kind in the series due

to the independence over time.

You’re already familiar with white noise, although you may not realize

6Another name for independent white noise is strong white noise, in contrast to standard serially
uncorrelated weak white noise.

7Carl Friedrich Gauss, one of the greatest mathematicians of all time, discovered the normal distribution
some 200 years ago; hence the adjective “Gaussian.”
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it. Recall that the disturbance in a regression model is typically assumed

to be white noise of one sort or another. There’s a subtle difference here,

however. Regression disturbances are not observable, whereas we’re working

with an observed series. Later, however, we’ll see how all of our models for

observed series can be used to model unobserved variables such as regression

disturbances.

Let’s characterize the dynamic stochastic structure of white noise, yt ∼ WN(0, σ2).

By construction the unconditional mean of y is E(yt) = 0, and the uncondi-

tional variance of y is var(yt) = σ2. Note in particular that the unconditional

mean and variance are constant. In fact, the unconditional mean and vari-

ance must be constant for any covariance stationary process. The reason is

that constancy of the unconditional mean was our first explicit requirement

of covariance stationarity, and that constancy of the unconditional variance

follows implicitly from the second requirement of covariance stationarity, that

the autocovariances depend only on displacement, not on time.8

To understand fully the linear dynamic structure of a covariance station-

ary time series process, we need to compute and examine its mean and its

autocovariance function. For white noise, we’ve already computed the mean

and the variance, which is the autocovariance at displacement 0. We have yet

to compute the rest of the autocovariance function; fortunately, however, it’s

very simple. Because white noise is, by definition, uncorrelated over time, all

the autocovariances, and hence all the autocorrelations, are zero beyond dis-

placement 0.9 Formally, then, the autocovariance function for a white noise

process is

γ(τ) =


σ2, τ = 0

0, τ ≥ 1,

8Recall that σ2 = γ(0).
9If the autocovariances are all zero, so are the autocorrelations, because the autocorrelations are propor-

tional to the autocovariances.
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Figure 6.7: White Noise Autocorrelation Function

and the autocorrelation function for a white noise process is

ρ(τ) =


1, τ = 0

0, τ ≥ 1.

In Figure 6.7 we plot the white noise autocorrelation function.

Finally, consider the partial autocorrelation function for a white noise

series. For the same reason that the autocorrelation at displacement 0 is

always one, so too is the partial autocorrelation at displacement 0. For a

white noise process, all partial autocorrelations beyond displacement 0 are

zero, which again follows from the fact that white noise, by construction, is

serially uncorrelated. Population regressions of yt on yt−1 , or on yt−1 and

yt−2 , or on any other lags, produce nothing but zero coefficients, because the

process is serially uncorrelated. Formally, the partial autocorrelation function

of a white noise process is

p(τ) =


1, τ = 0

0, τ ≥ 1.
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Figure 6.8: White Noise Partial Autocorrelation Function

We show the partial autocorrelation function of a white noise process in

Figure 6.8. Again, it’s degenerate, and exactly the same as the autocorrela-

tion function!

White noise is very special, indeed degenerate in a sense, as what happens

to a white noise series at any time is uncorrelated with anything in the past,

and similarly, what happens in the future is uncorrelated with anything in the

present or past. But understanding white noise is tremendously important

for at least two reasons. First, as already mentioned, processes with much

richer dynamics are built up by taking simple transformations of white noise.

Second, the goal of all time series modeling (and 1-step-ahead forecasting)

is to reduce the data (or 1-step-ahead forecast errors) to white noise. After

all, if such forecast errors aren’t white noise, then they’re serially correlated,

which means that they’re forecastable, and if forecast errors are forecastable

then the forecast can’t be very good. Thus it’s important that we understand

and be able to recognize white noise.

Thus far we’ve characterized white noise in terms of its mean, variance,

autocorrelation function and partial autocorrelation function. Another char-

acterization of dynamics involves the mean and variance of a process, condi-

tional upon its past. In particular, we often gain insight into the dynamics in
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a process by examining its conditional mean.10 In fact, throughout our study

of time series, we’ll be interested in computing and contrasting the uncondi-

tional mean and variance and the conditional mean and variance of

various processes of interest. Means and variances, which convey information

about location and scale of random variables, are examples of what statisti-

cians call moments. For the most part, our comparisons of the conditional

and unconditional moment structure of time series processes will focus on

means and variances (they’re the most important moments), but sometimes

we’ll be interested in higher-order moments, which are related to properties

such as skewness and kurtosis.

For comparing conditional and unconditional means and variances, it will

simplify our story to consider independent white noise, yt ∼ iid(0, σ2). By

the same arguments as before, the unconditional mean of y is 0 and the un-

conditional variance is σ2. Now consider the conditional mean and variance,

where the information set Ωt−1 upon which we condition contains either the

past history of the observed series, Ωt−1 = yt−1, yt−2, ..., or the past history of

the shocks, Ωt−1 = εt−1, εt−2.... (They’re the same in the white noise case.)

In contrast to the unconditional mean and variance, which must be constant

by covariance stationarity, the conditional mean and variance need not be

constant, and in general we’d expect them not to be constant. The uncondi-

tionally expected growth of laptop computer sales next quarter may be ten

percent, but expected sales growth may be much higher, conditional upon

knowledge that sales grew this quarter by twenty percent. For the indepen-

dent white noise process, the conditional mean is

E(yt|Ωt−1) = 0,

10If you need to refresh your memory on conditional means, consult any good introductory statistics book,
such as Wonnacott and Wonnacott (1990).
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and the conditional variance is

var(yt|Ωt−1) = E[(yt − E(yt|Ωt−1))
2|Ωt−1] = σ2.

Conditional and unconditional means and variances are identical for an inde-

pendent white noise series; there are no dynamics in the process, and hence

no dynamics in the conditional moments.

6.3 Estimation and Inference for the Mean, Autocor-

relation and Partial Autocorrelation Functions

Now suppose we have a sample of data on a time series, and we don’t know

the true model that generated the data, or the mean, autocorrelation function

or partial autocorrelation function associated with that true model. Instead,

we want to use the data to estimate the mean, autocorrelation function, and

partial autocorrelation function, which we might then use to help us learn

about the underlying dynamics, and to decide upon a suitable model or set

of models to fit to the data.

6.3.1 Sample Mean

The mean of a covariance stationary series is

µ = Eyt.

A fundamental principle of estimation, called the analog principle, suggests

that we develop estimators by replacing expectations with sample averages.

Thus our estimator for the population mean, given a sample of size T , is the

sample mean,

ȳ =
1

T

T∑
t=1

yt.
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Typically we’re not directly interested in the estimate of the mean, but it’s

needed for estimation of the autocorrelation function.

6.3.2 Sample Autocorrelations

The autocorrelation at displacement τ for the covariance stationary series y

is

ρ(τ) =
E [(yt − µ)(yt−τ − µ)]

E[(yt − µ)2]
.

Application of the analog principle yields a natural estimator,

ρ̂(τ) =
1
T

∑T
t=τ+1 [(yt − ȳ)(yt−τ − ȳ)]

1
T

∑T
t=1(yt − ȳ)2

=

∑T
t=τ+1 [(yt − ȳ)(yt−τ − ȳ)]∑T

t=1(yt − ȳ)2
.

This estimator, viewed as a function of τ , is called the sample autocorre-

lation function, or correlogram. Note that some of the summations begin

at t = τ + 1, not at t = 1; this is necessary because of the appearance of yt−τ

in the sum. Note that we divide those same sums by T , even though only

T − τ terms appear in the sum. When T is large relative to τ (which is the

relevant case), division by T or by T − τ will yield approximately the same

result, so it won’t make much difference for practical purposes, and moreover

there are good mathematical reasons for preferring division by T .

It’s often of interest to assess whether a series is reasonably approximated

as white noise, which is to say whether all its autocorrelations are zero in

population. A key result, which we simply assert, is that if a series is white

noise, then the distribution of the sample autocorrelations in large samples

is

ρ̂(τ) ∼ N

(
0,

1

T

)
.

Note how simple the result is. The sample autocorrelations of a white noise

series are approximately normally distributed, and the normal is always a

convenient distribution to work with. Their mean is zero, which is to say the
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sample autocorrelations are unbiased estimators of the true autocorrelations,

which are in fact zero. Finally, the variance of the sample autocorrelations

is approximately 1/T (equivalently, the standard deviation is 1/
√
T ), which

is easy to construct and remember. Under normality, taking plus or minus

two standard errors yields an approximate 95% confidence interval. Thus, if

the series is white noise, approximately 95% of the sample autocorrelations

should fall in the interval 0 ± 2/
√
T . In practice, when we plot the sample

autocorrelations for a sample of data, we typically include the “two standard

error bands,” which are useful for making informal graphical assessments of

whether and how the series deviates from white noise.

The two-standard-error bands, although very useful, only provide 95%

bounds for the sample autocorrelations taken one at a time. Ultimately,

we’re often interested in whether a series is white noise, that is, whether all

its autocorrelations are jointly zero. A simple extension lets us test that

hypothesis. Rewrite the expression

ρ̂(τ) ∼ N

(
0,

1

T

)
as √

T ρ̂(τ) ∼ N(0, 1).

Squaring both sides yields11

T ρ̂2(τ) ∼ χ2
1.

It can be shown that, in addition to being approximately normally dis-

tributed, the sample autocorrelations at various displacements are approxi-

mately independent of one another. Recalling that the sum of independent χ2

variables is also χ2 with degrees of freedom equal to the sum of the degrees

11Recall that the square of a standard normal random variable is a χ2 random variable with one degree
of freedom. We square the sample autocorrelations ρ̂(τ) so that positive and negative values don’t cancel
when we sum across various values of τ , as we will soon do.
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of freedom of the variables summed, we have shown that the Box-Pierce

Q-statistic,

QBP = T
m∑
τ=1

ρ̂2(τ),

is approximately distributed as a χ2
m random variable under the null hypoth-

esis that y is white noise.12 A slight modification of this, designed to follow

more closely the χ2 distribution in small samples, is

QLB = T (T + 2)
m∑
τ=1

(
1

T − τ

)
ρ̂2(τ).

Under the null hypothesis that y is white noise, QLB is approximately dis-

tributed as a χ2
m random variable. Note that the Ljung-Box Q-statistic is

the same as the Box-Pierce Q statistic, except that the sum of squared auto-

correlations is replaced by a weighted sum of squared autocorrelations, where

the weights are (T + 2)/(T − τ). For moderate and large T , the weights are

approximately 1, so that the Ljung-Box statistic differs little from the Box-

Pierce statistic.

Selection of m is done to balance competing criteria. On one hand, we

don’t want m too small, because after all, we’re trying to do a joint test on

a large part of the autocorrelation function. On the other hand, as m grows

relative to T , the quality of the distributional approximations we’ve invoked

deteriorates. In practice, focusing on m in the neighborhood of
√
T is often

reasonable.

6.3.3 Sample Partial Autocorrelations

Recall that the partial autocorrelations are obtained from population linear

regressions, which correspond to a thought experiment involving linear re-

gression using an infinite sample of data. The sample partial autocorrelations

12m is a maximum displacement selected by the user. Shortly we’ll discuss how to choose it.
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correspond to the same thought experiment, except that the linear regression

is now done on the (feasible) sample of size T . If the fitted regression is

ŷt = ĉ+ β̂1yt−1 + ...+ β̂τyt−τ ,

then the sample partial autocorrelation at displacement τ is

p̂(τ) ≡ β̂τ .

Distributional results identical to those we discussed for the sample auto-

correlations hold as well for the sample partial autocorrelations. That is, if

the series is white noise, approximately 95% of the sample partial autocorre-

lations should fall in the interval ±2/
√
T . As with the sample autocorrela-

tions, we typically plot the sample partial autocorrelations along with their

two-standard-error bands.

A “correlogram analysis” simply means examination of the sample au-

tocorrelation and partial autocorrelation functions (with two standard error

bands), together with related diagnostics, such as Q statistics.

We don’t show the sample autocorrelation or partial autocorrelation at

displacement 0, because as we mentioned earlier, they equal 1.0, by construc-

tion, and therefore convey no useful information. We’ll adopt this convention

throughout.

Note that the sample autocorrelation and partial autocorrelation are iden-

tical at displacement 1. That’s because at displacement 1, there are no earlier

lags to control for when computing the sample partial autocorrelation, so it

equals the sample autocorrelation. At higher displacements, of course, the

two diverge.
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Figure 6.9: Canadian Employment Index

6.4 Canadian Employment I: Characterizing Cycles

To illustrate the ideas we’ve introduced, we examine a quarterly, seasonally-

adjusted index of Canadian employment, 1962.1 - 1993.4, which we plot in

Figure 6.9. The series displays no trend, and of course it displays no season-

ality because it’s seasonally adjusted. It does, however, appear highly serially

correlated. It evolves in a slow, persistent fashion – high in business cycle

booms and low in recessions.

To get a feel for the dynamics operating in the employment series we

perform a correlogram analysis.13 The results appear in Table 1. Consider

first the Q statistic.14 We compute the Q statistic and its p-value under the

null hypothesis of white noise for values of m (the number of terms in the

sum that underlies the Q statistic) ranging from one through twelve. The

p-value is consistently zero to four decimal places, so the null hypothesis of

white noise is decisively rejected.

Now we examine the sample autocorrelations and partial autocorrelations.

The sample autocorrelations are very large relative to their standard errors

13A “correlogram analysis” simply means examination of the sample autocorrelation and partial autocor-
relation functions (with two standard error bands), together with related diagnostics, such as Q statistics.

14We show the Ljung-Box version of the Q statistic.
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and display slow one-sided decay.15 The sample partial autocorrelations, in

contrast, are large relative to their standard errors at first (particularly for

the 1-quarter displacement) but are statistically negligible beyond displace-

ment 2.16 In Figure 6.10 we plot the sample autocorrelations and partial

autocorrelations along with their two standard error bands.

It’s clear that employment has a strong cyclical component; all diagnostics

reject the white noise hypothesis immediately. Moreover, the sample auto-

correlation and partial autocorrelation functions have particular shapes – the

autocorrelation function displays slow one-sided damping, while the partial

autocorrelation function cuts off at displacement 2. Such patterns, which

summarize the dynamics in the series, can be useful for suggesting candidate

forecasting models. Such is indeed the case.

15 We don’t show the sample autocorrelation or partial autocorrelation at displacement 0, because as we
mentioned earlier, they equal 1.0, by construction, and therefore convey no useful information. We’ll adopt
this convention throughout.

16 Note that the sample autocorrelation and partial autocorrelation are identical at displacement 1. That’s
because at displacement 1, there are no earlier lags to control for when computing the sample partial
autocorrelation, so it equals the sample autocorrelation. At higher displacements, of course, the two diverge.
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Figure 6.10: Sample Autocorrelation and Sample Partial Autocorrelation
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6.5 Modeling Cycles With Autoregressions

6.5.1 Some Preliminary Notation: The Lag Operator

The lag operator and related constructs are the natural language in which

time series models are expressed. If you want to understand and manipulate

time series models – indeed, even if you simply want to be able to read the

software manuals – you have to be comfortable with the lag operator. The

lag operator, L, is very simple: it “operates” on a series by lagging it. Hence

Lyt = yt−1. Similarly, L2yt = L(L(yt)) = L(yt−1) = yt−2, and so on. Typically

we’ll operate on a series not with the lag operator but with a polynomial

in the lag operator. A lag operator polynomial of degree m is just a linear

function of powers of L, up through the m-th power,

B(L) = b0 + b1L+ b2L
2 + ...bmL

m.

To take a very simple example of a lag operator polynomial operating on

a series, consider the m-th order lag operator polynomial Lm, for which

Lmyt = yt−m.

A well-known operator, the first-difference operator ∆, is actually a first-order

polynomial in the lag operator; you can readily verify that

∆yt = (1− L)yt = yt − yt−1.

As a final example, consider the second-order lag operator polynomial 1 +

.9L+ .6L2 operating on yt. We have

(1 + .9L+ .6L2)yt = yt + .9yt−1 + .6yt−2,

which is a weighted sum, or distributed lag, of current and past values.

All time-series models, one way or another, must contain such distributed
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lags, because they’ve got to quantify how the past evolves into the present

and future; hence lag operator notation is a useful shorthand for stating and

manipulating time-series models.

Thus far we’ve considered only finite-order polynomials in the lag operator;

it turns out that infinite-order polynomials are also of great interest. We write

the infinite-order lag operator polynomial as

B(L) = b0 + b1L+ b2L
2 + ... =

∞∑
i=0

biL
i.

Thus, for example, to denote an infinite distributed lag of current and past

shocks we might write

B(L)εt = b0εt + b1εt−1 + b2εt−2 + ... =
∞∑
i=0

biεt−i.

At first sight, infinite distributed lags may seem esoteric and of limited prac-

tical interest, because models with infinite distributed lags have infinitely

many parameters (b0, b1, b2, ...) and therefore can’t be estimated with a finite

sample of data. On the contrary, and surprisingly, it turns out that models

involving infinite distributed lags are central to time series modeling, as we

shall soon see in detail.

6.5.2 Autoregressive Processes

Here we emphasize a very important model of cycles, the autoregressive

(AR) model.

We begin by characterizing the autocorrelation function and related quan-

tities under the assumption that the AR model is the DGP.17 These charac-

terizations have nothing to do with data or estimation, but they’re crucial

for developing a basic understanding of the properties of the models, which

17Sometimes we call time series models of cycles “time series processes,” which is short for stochastic
processes.
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is necessary to perform intelligent modeling. They enable us to make state-

ments such as “If the data were really generated by an autoregressive process,

then we’d expect its autocorrelation function to have property x.” Armed

with that knowledge, we use the sample autocorrelations and partial auto-

correlations, in conjunction with the AIC and the SIC, to suggest candidate

models, which we then estimate.

The autoregressive process is a natural time-series model of cycles. It’s

simply a stochastic difference equation, a simple mathematical model in which

the current value of a series is linearly related to its past values, plus an ad-

ditive stochastic shock. Stochastic difference equations are a natural vehicle

for discrete-time stochastic dynamic modeling.

6.5.3 Autoregressive Disturbances and Lagged Dependent Vari-

ables

You already know the first-order autoregressive (AR(1)) model as a model

of cyclical dynamics in regression disturbances. Recall, in particular the

Durbin-Watson environment that we introduced earlier in Chapter 3:

yt = x′tβ + εt

εt = φεt−1 + vt

vt

iid

∼ N(0, σ2).

To strip things to their essentials, suppose that the only regressor is an in-

tercept.18 Then we have:

yt = µ+ εt (6.1)

εt = φεt−1 + vt
18In later chapters we’ll bring in trends, seasonals, and other standard “x variables.”
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vt ∼ iid(0, σ2).

Now let us manipulate this “regression with serially-correlated disturbances”

as follows. Because

yt = µ+ εt,

we have

yt−1 = µ+ εt−1,

so

φyt−1 = φµ+ φεt−1. (6.2)

Subtracting 6.2 from 6.1 produces

yt − φyt−1 = µ(1− φ) + (εt − φεt−1),

or

yt = µ(1− φ) + φyt−1 + vt.

Hence we have arrived at a model of “regression a lagged dependent variable

with iid disturbances.” The two models are mathematically identical. LDV

with classical disturbances does the same thing as no LDV with serially-

correlated disturbances. Each approach “mops up” serial correlation not

explained by other regressors. (And in this extreme case, there are no other

regressors.)

In this chapter we’ll focus on univariate models with LDV’s, and again, to

isolate the relevant issues we’ll focus on models with only LDV’s. Later, in

Chapter 16, we’ll add x’s as well.

The AR(1) Process for Observed Series

The first-order autoregressive process, AR(1) for short, is

yt = φyt−1 + εt
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εt ∼ WN(0, σ2).

In lag operator form, we write

(1− φL)yt = εt.

In Figure 6.11 we show simulated realizations of length 150 of two AR(1)

processes; the first is

yt = .4yt−1 + εt,

and the second is

yt = .95yt−1 + εt,

where in each case

εt ∼ iidN(0, 1),

and the same innovation sequence underlies each realization. The fluctuations

in the AR(1) with parameter φ = .95 appear much more persistent that those

of the AR(1) with parameter φ = .4. Thus the AR(1) model is capable of

capturing highly persistent dynamics.

A certain condition involving the autoregressive lag operator polynomial

must be satisfied for an autoregressive process to be covariance stationary.

The condition is that all roots of the autoregressive lag operator polynomial

must be outside the unit circle. In the AR(1) case we have

(1− φL)yt = εt,

so the autoregressive lag operator polynomial is 1−φL, with root 1/φ. Hence

the AR(1) process is covariance stationary if |φ| < 1.

Let’s investigate the moment structure of the AR(1) process. If we begin

with the AR(1) process,

yt = φyt−1 + εt,

and substitute backward for lagged y’s on the right side, we obtain the so-
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Figure 6.11: Realizations of Two AR(1) Processes

called “moving-average representation”

yt = εt + φεt−1 + φ2εt−2 + ....

The existence of a moving-average representation is very intuitive. Ulti-

mately the ε’s are the only things that move y, so it is natural that we should

be able to express y in terms of the history of ε. We will have much more to

say about that in Chapter 7. The existence of a moving-average representa-

tion is also very useful, because it facilitates some important calculations, to

which we now turn.

From the moving average representation of the covariance stationaryAR(1)
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process, we can compute the unconditional mean and variance,

E(yt) = E(εt + φεt−1 + φ2εt−2 + ...)

= E(εt) + φE(εt−1) + φ2E(εt−2) + ...

= 0

and
var(yt) = var(εt + φεt−1 + φ2εt−2 + ...)

= σ2 + φ2σ2 + φ4σ2 + ...

= σ2
∑∞

i=0 φ
2i

= σ2

1−φ2 .

The conditional moments, in contrast, are

E(yt|yt−1) = E(φyt−1 + εt|yt−1)

= φE(yt−1|yt−1) + E(εt|yt−1)

= φyt−1 + 0

= φyt−1
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and
var(yt|yt−1) = var((φyt−1 + εt)|yt−1)

= φ2var(yt−1|yt−1) + var(εt|yt−1)

= 0 + σ2

= σ2.

Note in particular that the simple way that the conditional mean adapts to

the changing information set as the process evolves.

To find the autocovariances, we proceed as follows. The process is

yt = φyt−1 + εt,

so that multiplying both sides of the equation by yt−τ we obtain

ytyt−τ = φyt−1yt−τ + εtyt−τ .

For τ ≥ 1, taking expectations of both sides gives

γ(τ) = φγ(τ − 1).

This is called the Yule-Walker equation. It is a recursive equation; that is,

given γ(τ), for any τ , the Yule-Walker equation immediately tells us how to

get γ(τ + 1). If we knew γ(0) to start things off (an “initial condition”), we

could use the Yule-Walker equation to determine the entire autocovariance

sequence. And we do know γ(0); it’s just the variance of the process, which

we already showed to be

γ(0) =
σ2

1− φ2
.
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Thus we have

γ(0) =
σ2

1− φ2

γ(1) = φ
σ2

1− φ2

γ(2) = φ2 σ2

1− φ2
,

and so on. In general, then,

γ(τ) = φτ
σ2

1− φ2
, τ = 0, 1, 2, ....

Dividing through by γ(0) gives the autocorrelations,

ρ(τ) = φτ , τ = 0, 1, 2, ....

Note the gradual autocorrelation decay, which is typical of autoregressive pro-

cesses. The autocorrelations approach zero in the limit as the displacement

approaches infinity. If φ is positive, the autocorrelation decay is one-sided.

If φ is negative, the decay involves back-and-forth oscillations. The relevant

case in business and economics is φ > 0, but either way, the autocorrela-

tions damp gradually. In Figure 6.12 and 6.13 we show the autocorrelation

functions for AR(1) processes with parameters φ = .4 and φ = .95. The

persistence is much stronger when φ = .95.

Finally, the partial autocorrelation function for the AR(1) process cuts off

abruptly; specifically,

p(τ) =


φ, τ = 1

0, τ > 1.

.

It’s easy to see why. The partial autocorrelations are just the last coeffi-

cients in a sequence of successively longer population autoregressions. If the

true process is in fact an AR(1), the first partial autocorrelation is just the
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autoregressive coefficient, and coefficients on all longer lags are zero.

In Figures 6.14 and 6.15 we show the partial autocorrelation functions for

our two AR(1) processes. At displacement 1, the partial autocorrelations are

simply the parameters of the process (.4 and .95, respectively), and at longer

displacements, the partial autocorrelations are zero.
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Figure 6.12: Population Autocorrelation Function: ρ = .4

Figure 6.13: Population Autocorrelation Function: ρ = .95
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Figure 6.14: Partial Autocorrelation Function: ρ = .4

Figure 6.15: Partial Autocorrelation Function: ρ = .95
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6.5.4 The AR(p) Process

The general p-th order autoregressive process, or AR(p) for short, is

yt = φ1yt−1 + φ2yt−2 + ...+ φpyt−p + εt

εt ∼ WN(0, σ2).

In lag operator form we write

Φ(L)yt = (1− φ1L− φ2L
2 − ...− φpLp)yt = εt.

In our discussion of the AR(p) process we dispense with mathematical

derivations and instead rely on parallels with the AR(1) case to establish

intuition for its key properties.

An AR(p) process is covariance stationary if and only if all roots of the

autoregressive lag operator polynomial Φ(L) are outside the unit circle.19

The autocorrelation function for the general AR(p) process, as with that of

the AR(1) process, decays gradually with displacement. Finally, the AR(p)

partial autocorrelation function has a sharp cutoff at displacement p, for

the same reason that the AR(1) partial autocorrelation function has a sharp

cutoff at displacement 1.

Let’s discuss the AR(p) autocorrelation function in a bit greater depth.

The key insight is that, in spite of the fact that its qualitative behavior

(gradual damping) matches that of the AR(1) autocorrelation function, it

can nevertheless display a richer variety of patterns, depending on the order

and parameters of the process. It can, for example, have damped monotonic

decay, as in the AR(1) case with a positive coefficient, but it can also have

damped oscillation in ways that AR(1) can’t have. In the AR(1) case, the

only possible oscillation occurs when the coefficient is negative, in which case

19A necessary condition for covariance stationarity, which is often useful as a quick check, is
∑p
i=1 φi < 1.

If the condition is satisfied, the process may or may not be stationary, but if the condition is violated, the
process can’t be stationary.
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Figure 6.16: Autocorrelation Function of AR(2) with Complex Roots

the autocorrelations switch signs at each successively longer displacement. In

higher-order autoregressive models, however, the autocorrelations can oscil-

late with much richer patterns reminiscent of cycles in the more traditional

sense. This occurs when some roots of the autoregressive lag operator poly-

nomial are complex.20 Consider, for example, the AR(2) process,

yt = 1.5yt−1 − .9yt−2 + εt.

The corresponding lag operator polynomial is 1− 1.5L+ .9L2, with two com-

plex conjugate roots, .83±.65i. The inverse roots are .75±.58i, both of which

are close to, but inside, the unit circle; thus the process is covariance station-

ary. It can be shown that the autocorrelation function for an AR(2) process

is

ρ(0) = 1

ρ(τ) = φ1ρ(τ − 1) + φ2ρ(τ − 2), τ = 2, 3, ...

ρ(1) =
φ1

1− φ2

Using this formula, we can evaluate the autocorrelation function for the

20Note that complex roots can’t occur in the AR(1) case.
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process at hand; we plot it in Figure 6.16. Because the roots are complex,

the autocorrelation function oscillates, and because the roots are close to the

unit circle, the oscillation damps slowly.

6.6 Canadian Employment II: Modeling Cycles

The sum of squares function for autoregressive processes is linear in the pa-

rameters, so that estimation is particularly stable and easy – just standard

OLS regressions. In the AR(1) case, we simply run an ordinary least squares

regression of y on one lag of y; in the AR(p) case, we regress y on p lags of y.

We estimate AR(p) models, p = 1, 2, 3, 4. Both the AIC and the SIC

suggest that the AR(2) is best. To save space, we report only the results

of AR(2) estimation in Table 6.17a. The estimation results look good, and

the residuals (Figure 6.17b) look like white noise. The residual correlogram

(Table 6.18, Figure 6.19) supports that conclusion.
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(a) Employment: AR(2) Model

(b) Employment: AR(2) Model, Residual Plot

Figure 6.17: Employment: AR(2) Model
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Figure 6.18: Employment: AR(2) Model, Residual Correlogram

Figure 6.19: Employment: AR(2) Model, Residual Sample Autocorrelation and Partial Au-
tocorrelation
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6.7 Forecasting Cycles with Autoregressions

6.7.1 On the FRV Problem

We have seen that the FRV problem arises in general, but not in cross sec-

tions, and not in deterministic-trend time-series environments, and not in

deterministic-seasonal time-series environments. The same is true in certain

other time-series environments.

In particular, forget about trends and seasonals for the moment. Still

the FRV problem does not arise if the RHS variables are lagged sufficiently

relative the the forecast horizon of interest. Suppose, for example, that an

acceptable model is

yt = β1 + β2xt−1 + εt. (6.3)

The RHS variable is lagged by one period, so model 6.3 is immediately usable

for 1-step-ahead forecasting without the FRV problem. More lags of x can of

course be included; the key for 1-step-ahead forecasting is that all variables

on the right be lagged by at least one period.

Forecasting more than one step ahead in model 6.3, however, would appear

to lead again to the FRV problem: If we want to forecast h steps ahead, then

all variables on the right must be lagged by at least h periods, not just by

1 period. Perhaps surprisingly, it actually remains easy to circumvent the

FRV problem in autoregressive models. For example, models with yt → yt−1

or yt → yt−1, xt−1 can effectively be transformed to models with yt → yt−h or

yt → yt−h, xt−h, as we will see in this section.

6.7.2 Information Sets, Conditional Expectations, and Linear Pro-

jections

By now you’ve gotten comfortable with the idea of an information set.

Here we’ll use that idea extensively. We denote the time-T information set
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by ΩT . Think of the information set as containing the available past history

of the series,

ΩT = {yT , yT−1, yT−2, ...},

where for theoretical purposes we imagine history as having begun in the

infinite past.

Based upon that information set, we want to find the optimal forecast

of y at some future time T + h. The optimal forecast is the one with the

smallest loss on average, that is, the forecast that minimizes expected loss.

It turns out that under reasonably weak conditions the optimal forecast is

the conditional mean,

E(yT+h|ΩT ),

the expected value of the future value of the series being forecast, conditional

upon available information.

In general, the conditional mean need not be a linear function of the

elements of the information set. Because linear functions are particularly

tractable, we prefer to work with linear forecasts – forecasts that are linear

in the elements of the information set – by finding the best linear approxi-

mation to the conditional mean, called the linear projection, denoted

P (yT+h|ΩT ).

This explains the common term “linear least squares forecast.” The linear

projection is often very useful and accurate, because the conditional mean is

often close to linear. In fact, in the Gaussian case the conditional expectation

is exactly linear, so that

E(yT+h|ΩT ) = P (yT+h|ΩT ).
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6.7.3 Point Forecasts for Autoregressions: Wold’s Chain Rule

A very simple recursive method for computing optimal h-step-ahead point

forecasts, for any desired h, is available for autoregressions.

The recursive method, called the chain rule of forecasting, is best

learned by example. Consider the AR(1) process,

yt = φyt−1 + εt

εt ∼ WN(0, σ2).

First we construct the optimal 1-step-ahead forecast, and then we construct

the optimal 2-step-ahead forecast, which depends on the optimal 1-step-ahead

forecast, which we’ve already constructed. Then we construct the optimal

3-step-ahead forecast, which depends on the already-computed 2-step-ahead

forecast, which we’ve already constructed, and so on.

To construct the 1-step-ahead forecast, we write out the process for time

T + 1,

yT+1 = φyT + εT+1.

Then, projecting the right-hand side on the time-T information set, we obtain

yT+1,T = φyT .

Now let’s construct the 2-step-ahead forecast. Write out the process for time

T + 2,

yT+2 = φyT+1 + εT+2.

Then project directly on the time-T information set to get

yT+2,T = φyT+1,T .

Note that the future innovation is replaced by 0, as always, and that we have

directly replaced the time T+1 value of y with its earlier-constructed optimal
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forecast. Now let’s construct the 3-step-ahead forecast. Write out the process

for time T + 3,

yT+3 = φyT+2 + εT+3.

Then project directly on the time-T information set,

yT+3,T = φyT+2,T .

The required 2-step-ahead forecast was already constructed.

Continuing in this way, we can recursively build up forecasts for any and

all future periods. Hence the name “chain rule of forecasting.” Note that,

for the AR(1) process, only the most recent value of y is needed to construct

optimal forecasts, for any horizon, and for the general AR(p) process only

the p most recent values of y are needed. In particular, for our AR(1) case,

yT+h,T = φhyT .

As usual, in truth the parameters are unknown and so must be estimated,

so we turn infeasible forecasts into feasible (“operational”) forecasts by in-

serting the usual estimates where unknown parameters appear.

It is worth noting that thanks to Wold’s chain rule we have now solved the

FRV problem for autoregressions, as we did earlier for cross sections, trends,

and seasonals! We have of course worked through the calculations in detail

only for the AR(1) case, but the approach is identical for the general AR(p)

case.

6.7.4 Density Forecasts

The chain rule is a device for simplifying the computation of point forecasts.

Density forecasts require a bit more work. Let us again work through the

AR(1) case in detail, assuming normality and ignoring parameter estimation

uncertainty.
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We know that

yT+h ∼ N(yT+h,T , σ
2
h),

where σ2
h = var(yT+h|ΩT ) and ΩT = {yT , yT−1, ...}. Using Wold’s chain rule

we already derived the formula for yT+h,T , so all we need is the h-step-ahead

forecast error variance, σ2
h.

First let us simply assert the general result. It is

σ2
h = σ2

h−1∑
i=0

φ2i.

Now let us derive the general result. First recall that the optimal forecasts

are

yT+1,T = φyT

yT+2,T = φ2 yT

yT+h,T = φh yT .

Second, note that the corresponding forecast errors are

eT+1,T = (yT+1 − yT+1,T ) = εT+1

eT+2,T = (yT+2 − yT+2,T ) = φεT+1 + εT+2

eT+h,T = (yT+h − yT+h,T ) = εT+h + φεT+h−1 + ...+ φh−1εT+1.

Third, note that the corresponding forecast error variances are

σ2
1 = σ2

σ2
2 = σ2(1 + φ2)

σ2
h = σ2

h−1∑
i=0

φ2i.

QED
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Note that the limiting h-step-ahead forecast error variance is

lim

h→∞
σ2
h =

σ2

1− φ2
,

the unconditional variance of the AR(1) process. (The conditioning informa-

tion becomes progressively less valuable as h → ∞ in covariance stationary

environments, so the conditional variance converges to the unconditional vari-

ance.)

As usual, in truth the parameters are unknown and so must be estimated,

so we turn infeasible forecasts into feasible (“operational”) forecasts by insert-

ing the usual estimates where unknown parameters appear. In addition, and

also as usual, we can account for non-normality and parameter-estimation

uncertainty using simulation methods. (Of course simulation could be used

even under normality).

Density forecasts for higher-ordered autoregressions proceed in similar

fashion. Point forecasts at any horizon come from Wold’s chain rule. Under

normality we still need the corresponding h-step forecast-error variances, we

we infer from the moving-average representation. Dropping normality and

using simulation methods does not even require the variance calculation.

6.8 Canadian Employment III: Forecasting

Now we put our forecasting technology to work to produce autoregressive

point and interval forecasts for Canadian employment. Recall that the best

autoregressive model was an AR(2). In Figure 6.20 we show the 4-quarter-

ahead extrapolation forecast, which reverts to the unconditional mean much

less quickly, as seems natural given the high persistence of employment. The

4-quarter-ahead point forecast, in fact, is still well below the mean. Sim-
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ilarly, the 95% error bands grow gradually and haven’t approached their

long-horizon values by four quarters out.

Figures 6.20 and 6.21 make clear the nature of the autoregressive forecasts.

In Figure 6.21 we show the employment history, 4-quarter-ahead AR(2) ex-

trapolation forecast, and the realization. The AR(2) forecast appears quite

accurate; the mean squared forecast error is 1.3.

Figure 6.22 presents the 12-step-ahead extrapolation forecast, and Figure

6.23 presents a much longer-horizon extrapolation forecast. Eventually the

unconditional mean is approached, and eventually the error bands do go

flat, but only for very long-horizon forecasts, due to the high persistence in

employment, which the AR(2) model captures.
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Figure 6.20: Employment History and Forecast: AR(2)

Figure 6.21: Employment History, Forecast, and Realization: AR(2)
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Figure 6.22: Employment History and Long-Horizon Forecast: AR(2)

Figure 6.23: Employment History and Very Long-Horizon Forecast: AR(2)
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6.9 Exercises, Problems and Complements

1. From FRED get Industrial Production, Total Index, 2012=100, Quar-

terly, Not Seasonally Adjusted, 1919:Q1-latest. First, hold out 2014.1-

latest. Select and estimate your preferred model (deterministic trend +

deterministic seasonal + autoregressive cyclical dynamics) using 1919:Q1-

2013:Q4, and use your estimated model to generate a path forecast

2014:Q1-latest. Second, hold out nothing. Re-select and re-estimate

using 1919:Q1-latest, and use your estimated model to generate a path

forecast for the next eight quarters.

2. More on the stability condition for AR(1) processes.

The key stability condition is |φ| < 1. Recall yt =
∑∞

j=0 φ
jεt−j. This

implies that var(yt) =
∑∞

j=0 φ
2jσ2, which is the sum of a geometric

series. Hence:

var(yt) =
σ2

1− φ2
if |φ| < 1

var(yt) =∞ otherwise

3. A more complete picture of AR(1) stability.

The following are all aspects in which covariance stationarity corresponds

to a nice, stable environment.

(a) Series yt is persistent but eventually reverts to a fixed mean.

(b) Shocks εt have persistent effects but eventually die out. Hint: Con-

sider yt = µ+
∑∞

j=0 φ
jεt−j, |φ| < 1.

(c) Autocorrelations ρ(τ) nonzero but decay to zero.

(d) Autocorrelations ρ(τ) depend on τ (of course) but not on time. Hint:

Use back substitution to relate yt and yt−2. How does it compare to

the relation between yt and yt−1 when |φ| < 1?
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(e) Series yt varies but not too extremely. Hint: Consider var(yt) =
σ2

1−φ2 , |φ| < 1.

4. Autocorrelation functions of covariance stationary series.

While interviewing at a top investment bank, your interviewer is im-

pressed by the fact that you have taken a course on forecasting. She

decides to test your knowledge of the autocovariance structure of covari-

ance stationary series and lists five autocovariance functions:

a. γ(t, τ) = α

b. γ(t, τ) = e−ατ

c. γ(t, τ) = ατ

d. γ(t, τ) = α
τ , where α is a positive constant. Which autocovariance

function(s) are consistent with covariance stationarity, and which are

not? Why?

5. Autocorrelation vs. partial autocorrelation.

Describe the difference between autocorrelations and partial autocorre-

lations. How can autocorrelations at certain displacements be positive

while the partial autocorrelations at those same displacements are neg-

ative?

6. Sample autocorrelation functions of trending series.

A tell-tale sign of the slowly-evolving nonstationarity associated with

trend is a sample autocorrelation function that damps extremely slowly.

a. Find three trending series, compute their sample autocorrelation func-

tions, and report your results. Discuss.

b. Fit appropriate trend models, obtain the model residuals, compute

their sample autocorrelation functions, and report your results. Dis-

cuss.
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7. Sample autocorrelation functions of seasonal series.

A tell-tale sign of seasonality is a sample autocorrelation function with

sharp peaks at the seasonal displacements (4, 8, 12, etc. for quarterly

data, 12, 24, 36, etc. for monthly data, and so on).

a. Find a series with both trend and seasonal variation. Compute its

sample autocorrelation function. Discuss.

b. Detrend the series. Discuss.

c. Compute the sample autocorrelation function of the detrended series.

Discuss.

d. Seasonally adjust the detrended series. Discuss.

e. Compute the sample autocorrelation function of the detrended, seasonally-

adjusted series. Discuss.

8. Lag operator expressions, I.

Rewrite the following expressions without using the lag operator.

a. (Lτ)yt = εt

b. yt =
(

2+5L+.8L2

L−.6L3

)
εt

c. yt = 2
(

1 + L3

L

)
εt.

9. Lag operator expressions, II.

Rewrite the following expressions in lag operator form.

a. yt + yt−1 + ...+ yt−N = α + εt + εt−1 + ...+ εt−N , where α is a con-

stant

b. yt = εt−2 + εt−1 + εt.

10. Simulating time series processes.
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Many cutting-edge estimation and forecasting techniques involve simula-

tion. Moreover, simulation is often a good way to get a feel for a model

and its behavior. White noise can be simulated on a computer using

random number generators, which are available in most statistics,

econometrics and forecasting packages.

(a) Simulate a Gaussian white noise realization of length 200. Call the

white noise εt. Compute the correlogram. Discuss.

(b) Form the distributed lag yt = εt + .9εt−1 , t = 2, 3, ..., 200. Com-

pute the sample autocorrelations and partial autocorrelations. Dis-

cuss.

(c) Let y1 = 1 and yt = .9yt−1 + εt , t = 2, 3, ..., 200. Compute the

sample autocorrelations and partial autocorrelations. Discuss.

11. Diagnostic checking of model residuals.

If a forecasting model has extracted all the systematic information from

the data, then what’s left – the residual – should be white noise. More

precisely, the true innovations are white noise, and if a model is a good

approximation to the DGP then its 1-step-ahead forecast errors should

be approximately white noise. The model residuals are the in-sample

analog of out-of-sample 1-step-ahead forecast errors. Hence the useful-

ness of various tests of the hypothesis that residuals are white noise.

The Durbin-Watson test is the most popular. Recall the Durbin-Watson

test statistic, discussed in Chapter 2,

DW =

∑T
t=2(et − et−1)

2∑T
t=1 e

2
t

.

Note that
T∑
t=2

(et − et−1)
2 ≈ 2

T∑
t=2

e2
t − 2

T∑
t=2

etet−1.
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Thus

DW ≈ 2(1− ρ̂(1)),

so that the Durbin-Watson test is effectively based only on the first

sample autocorrelation and really only tests whether the first autocor-

relation is zero. We say therefore that the Durbin-Watson is a test for

first-order serial correlation. In addition, the Durbin-Watson test

is not valid in the presence of lagged dependent variables.21 On both

counts, we’d like a more general and flexible framework for diagnosing

serial correlation. The residual correlogram, comprised of the residual

sample autocorrelations, the sample partial autocorrelations, and the

associated Q statistics, delivers the goods.

(a) When we discussed the correlogram in the text, we focused on the

case of an observed time series, in which case we showed that the

Q statistics are distributed as χ2
m. Now, however, we want to assess

whether unobserved model disturbances are white noise. To do so,

we use the model residuals, which are estimates of the unobserved

disturbances. Because we fit a model to get the residuals, we need

to account for the degrees of freedom used. The upshot is that

the distribution of the Q statistics under the white noise hypothesis

is better approximated by a χ2
m−K random variable, where K is

the number of parameters estimated. That’s why, for example, we

don’t report (and in fact the software doesn’t compute) the p-values

for the Q statistics associated with the residual correlogram of our

employment forecasting model until m > K.

(b) Durbin’s h test is an alternative to the Durbin-Watson test. As

21Following standard, if not strictly appropriate, practice, in this book we often report and examine the
Durbin-Watson statistic even when lagged dependent variables are included. We always supplement the
Durbin-Watson statistic, however, with other diagnostics such as the residual correlogram, which remain
valid in the presence of lagged dependent variables, and which almost always produce the same inference as
the Durbin-Watson statistic.
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with the Durbin-Watson test, it’s designed to detect first-order se-

rial correlation, but it’s valid in the presence of lagged dependent

variables. Do some background reading as well on Durbin’s h test

and report what you learned.

(c) The Breusch-Godfrey test is another alternative to the Durbin-

Watson test. It’s designed to detect pth-order serial correlation,

where p is selected by the user, and is also valid in the presence

of lagged dependent variables. Do some background reading on the

Breusch-Godfrey procedure and report what you learned.

(d) Which do you think is likely to be most useful to you in assessing

the properties of residuals from forecasting models: the residual

correlogram, Durbin’s h test, or the Breusch-Godfrey test? Why?

12. Forecast accuracy across horizons.

You are a consultant to MedTrax, a large pharmaceutical company,

which released a new ulcer drug three months ago and is concerned about

recovering research and development costs. Accordingly, MedTrax has

approached you for drug sales projections at 1- through 12-month-ahead

horizons, which it will use to guide potential sales force realignments.

In briefing you, MedTrax indicated that it expects your long-horizon

forecasts (e.g., 12-month-ahead) to be just as accurate as your short-

horizon forecasts (e.g., 1-month-ahead). Explain to MedTrax why that

is unlikely, even if you do the best forecasting job possible.

13. Forecasting an AR(1) process with known and unknown parameters.

Use the chain rule to forecast the AR(1) process,

yt = φyt−1 + εt.

For now, assume that all parameters are known.
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a. Show that the optimal forecasts are

yT+1,T = φyT

yT+2,T = φ2 yT

yT+h,T = φh yT .

b. Show that the corresponding forecast errors are

eT+1,T = (yT+1 − yT+1,T ) = εT+1

eT+2,T = (yT+2 − yT+2,T ) = φεT+1 + εT+2

eT+h,T = (yT+h − yT+h,T ) = εT+h + φεT+h−1 + ...+ φh−1εT+1.

c. Show that the forecast error variances are

σ2
1 = σ2

σ2
2 = σ2(1 + φ2)

σ2
h = σ2

h−1∑
i=0

φ2i.

d. Show that the limiting forecast error variance is

lim

h→∞
σ2
h =

σ2

1− φ2
,

the unconditional variance of the AR(1) process.

e. Now assume that the parameters are unknown and so must be esti-

mated. Make your expressions for both the forecasts and the forecast

error variances operational, by inserting least squares estimates where

unknown parameters appear, and use them to produce an operational
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point forecast and an operational 90% interval forecast for yT+2,T .

14. Forecast error variances in models with estimated parameters.

As we’ve seen, computing forecast error variances that acknowledge pa-

rameter estimation uncertainty is very difficult; that’s one reason why

we’ve ignored it. We’ve learned a number of lessons about optimal fore-

casts while ignoring parameter estimation uncertainty, such as:

a. Forecast error variance grows as the forecast horizon lengthens.

b. In covariance stationary environments, the forecast error variance ap-

proaches the (finite) unconditional variance as the horizon grows.

Such lessons provide valuable insight and intuition regarding the work-

ings of forecasting models and provide a useful benchmark for assessing

actual forecasts. They sometimes need modification, however, when pa-

rameter estimation uncertainty is acknowledged. For example, in models

with estimated parameters:

a. Forecast error variance needn’t grow monotonically with horizon. Typ-

ically we expect forecast error variance to increase monotonically with

horizon, but it doesn’t have to.

b. Even in covariance stationary environments, the forecast error vari-

ance needn’t converge to the unconditional variance as the forecast

horizon lengthens; instead, it may grow without bound. Consider, for

example, forecasting a series that’s just a stationary AR(1) process

around a linear trend. With known parameters, the point forecast

will converge to the trend as the horizon grows, and the forecast er-

ror variance will converge to the unconditional variance of the AR(1)

process. With estimated parameters, however, if the estimated trend

parameters are even the slightest bit different from the true values

(as they almost surely will be, due to sampling variation), that error
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will be magnified as the horizon grows, so the forecast error variance

will grow.

Thus, results derived under the assumption of known parameters should

be viewed as a benchmark to guide our intuition, rather than as precise

rules.

15. Direct vs. indirect autoregressive forecasts.

6.10 Notes



Chapter 7

Cycles II: The Wold Representation

and Its Approximation

This Chapter is a bit more abstract than most, but don’t be put off. On the

contrary, you may want to read it several times. The material in it is crucially

important for time series modeling and forecasting and is therefore central to

our concerns. In some parts (finite-ordered autoregressive models) it largely

repeats Chapter 6, but that’s intentional. It treats much more, including

the Wold representation and its approximation and prediction using finite-

ordered autoregressions, finite-ordered moving averages, and finite-ordered

ARMA processes. Hence even the overlapping material is presented and

integrated from a significantly more sohpisticated perspective.

7.1 The Wold Representation and the General Linear

Process

7.1.1 The Wold Representation

Many different dynamic patterns are consistent with covariance stationarity.

Thus, if we know only that a series is covariance stationary, it’s not at all

clear what sort of model we might fit to describe its evolution. The trend and

seasonal models that we’ve studied aren’t of use; they’re models of specific

199
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nonstationary components. Effectively, what we need now is an appropriate

model for what’s left after fitting the trend and seasonal components – a

model for a covariance stationary residual. Wold’s representation theo-

rem points to the appropriate model.

Theorem:

Let {yt} be any zero-mean covariance-stationary process.1 Then we can

write it as

yt = B(L)εt =
∞∑
i=0

biεt−i

εt ∼ WN(0, σ2),

where

b0 = 1
∞∑
i=0

b2
i < ∞.

In short, the correct “model” for any covariance stationary series is some

infinite distributed lag of white noise, called the Wold representation. The

ε′ts are often called innovations, because (as we’ll see) they correspond to the

1-step-ahead forecast errors that we’d make if we were to use a particularly

good forecast. That is, the ε′ts represent that part of the evolution of y that’s

linearly unpredictable on the basis of the past of y. Note also that the ε′ts,

although uncorrelated, are not necessarily independent. Again, it’s only for

Gaussian random variables that lack of correlation implies independence, and

the innovations are not necessarily Gaussian.

In our statement of Wold’s theorem we assumed a zero mean. That may

seem restrictive, but it’s not. Rather, whenever you see yt, just read (yt−µ),

so that the process is expressed in deviations from its mean. The deviation

from the mean has a zero mean, by construction. Working with zero-mean

1Moreover, we require that the covariance stationary processes not contain any deterministic components.
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processes therefore involves no loss of generality while facilitating notational

economy. We’ll use this device frequently.

7.1.2 The General Linear Process

Wold’s theorem tells us that when formulating forecasting models for covari-

ance stationary time series we need only consider models of the form

yt = B(L)εt =
∞∑
i=0

biεt−i

εt ∼ WN(0, σ2),

where the bi are coefficients with b0 = 1 and
∑∞

i=0 b
2
i <∞.

We call this the general linear process, “general” because any covari-

ance stationary series can be written that way, and “linear” because the Wold

representation expresses the series as a linear function of its innovations.

The general linear process is so important that it’s worth examining its un-

conditional and conditional moment structure in some detail. Taking means

and variances, we obtain the unconditional moments

E(yt) = E(
∞∑
i=0

biεt−i) =
∞∑
i=0

biEεt−i =
∞∑
i=0

bi · 0 = 0

and

var(yt) = var(
∞∑
i=0

biεt−i) =
∞∑
i=0

b2
i var(εt−i) =

∞∑
i=0

b2
iσ

2 = σ2
∞∑
i=0

b2
i .

At this point, in parallel to our discussion of white noise, we could compute

and examine the autocovariance and autocorrelation functions of the general

linear process. Those calculations, however, are rather involved, and not

particularly revealing, so we’ll proceed instead to examine the conditional

mean and variance, where the information set Ωt−1 upon which we condition
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contains past innovations; that is,

Ωt−1 = εt−1, εt−2, ....

In this manner we can see how dynamics are modeled via conditional mo-

ments.2 The conditional mean is

E(yt|Ωt−1) = E(εt|Ωt−1) + b1E(εt−1|Ωt−1) + b2E(εt−2|Ωt−1) + ...

= 0 + b1εt−1 + b2εt−2 + ... =
∞∑
i=1

biεt−i,

and the conditional variance is

var(yt|Ωt−1) = Eyt − E(yt|Ωt−1))
2|Ωt−1] = E(ε2

t |Ωt−1) = E(ε2
t ) = σ2.

The key insight is that the conditional mean moves over time in response

to the evolving information set. The model captures the dynamics of the

process, and the evolving conditional mean is one crucial way of summarizing

them. An important goal of time series modeling, especially for forecasters,

is capturing such conditional mean dynamics – the unconditional mean is

constant (a requirement of stationarity), but the conditional mean varies in

response to the evolving information set.3

7.2 Approximating the Wold Representation

When building forecasting models, we don’t want to pretend that the model

we fit is true. Instead, we want to be aware that we’re approximating a

2Although Wold’s theorem guarantees only serially uncorrelated white noise innovations, we shall some-
times make a stronger assumption of independent white noise innovations in order to focus the discussion.
We do so, for example, in the following characterization of the conditional moment structure of the general
linear process.

3Note, however, an embarrassing asymmetry: the conditional variance, like the unconditional variance,
is a fixed constant. However, models that allow the conditional variance to change with the information set
have been developed recently, as discussed in detail in Chapter ??.
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more complex reality. That’s the modern view, and it has important impli-

cations for forecasting. In particular, we’ve seen that the key to successful

time series modeling and forecasting is parsimonious, yet accurate, approxi-

mation of the Wold representation. Here we consider three approximations:

moving average (MA) models, autoregressive (AR) models, and au-

toregressive moving average (ARMA) models. The three models differ

in their specifics and have different strengths in capturing different sorts of

autocorrelation behavior.

We begin by characterizing the autocorrelation functions and related quan-

tities associated with each model, under the assumption that the model is

“true.” We do this separately for autoregressive, moving average, and ARMA

models.4 These characterizations have nothing to do with data or estimation,

but they’re crucial for developing a basic understanding of the properties of

the models, which is necessary to perform intelligent modeling and forecast-

ing. They enable us to make statements such as “If the data were really

generated by an autoregressive process, then we’d expect its autocorrelation

function to have property x.” Armed with that knowledge, we use the sam-

ple autocorrelations and partial autocorrelations, in conjunction with the

AIC and the SIC, to suggest candidate forecasting models, which we then

estimate.

7.2.1 Rational Distributed Lags

As we’ve seen, the Wold representation points to the crucial importance of

models with infinite distributed lags. Infinite distributed lag models, in turn,

are stated in terms of infinite polynomials in the lag operator, which are

therefore very important as well. Infinite distributed lag models are not of

immediate practical use, however, because they contain infinitely many pa-

4Sometimes, especially when characterizing population properties under the assumption that the models
are correct, we refer to them as processes, which is short for stochastic processes. Hence the terms moving
average process, autoregressive process, and ARMA process.
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rameters, which certainly inhibits practical application! Fortunately, infinite

polynomials in the lag operator needn’t contain infinitely many free parame-

ters. The infinite polynomial B(L) may for example be a ratio of finite-order

(and perhaps very low-order) polynomials. Such polynomials are called ra-

tional polynomials, and distributed lags constructed from them are called

rational distributed lags.

Suppose, for example, that

B(L) =
Θ (L)

Φ (L)
,

where the numerator polynomial is of degree q,

Θ(L) =

q∑
i=0

θiL
i,

and the denominator polynomial is of degree p,

Φ(L) =

p∑
i=0

φiL
i.

There are not infinitely many free parameters in the B(L) polynomial;

instead, there are only p + q parameters (the θ’s and the φ’s). If p and q

are small, say 0, 1 or 2, then what seems like a hopeless task – estimation of

B(L) – may actually be easy.

More realistically, suppose that B(L) is not exactly rational, but is approxi-

mately rational,

B(L) ≈ Θ(L)

Φ(L)
,

Then we can approximate the Wold representation using a rational dis-

tributed lag. Rational distributed lags produce models of cycles that econ-

omize on parameters (they’re parsimonious), while nevertheless providing

accurate approximations to the Wold representation. The popular ARMA
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and ARIMA forecasting models, which we’ll introduce shortly, are simply

rational approximations to the Wold representation.

7.2.2 Moving Average (MA) Models

The finite-order moving average processes is a natural and obvious approxi-

mation to the Wold representation, which is an infinite-order moving average

process. Finite-order moving average processes also have direct motivation:

the fact that all variation in time series, one way or another, is driven by

shocks of various sorts suggests the possibility of modeling time series directly

as distributed lags of current and past shocks, that is, as moving average pro-

cesses.5

The MA(1) Process

The first-order moving average, or MA(1), process is

yt = εt + θεt−1 = (1 + θL)εt

εt ∼ WN(0, σ2).

The defining characteristic of the MA process in general, and the MA(1)

in particular, is that the current value of the observed series is expressed

as a function of current and lagged unobservable shocks – think of it as a

regression model with nothing but current and lagged disturbances on the

right-hand side.

To help develop a feel for the behavior of the MA(1) process, we show two

simulated realizations of length 150 in Figure 7.1. The processes are

yt = εt + .4εt−1

5Economic equilibria, for example, may be disturbed by shocks that take some time to be fully assimilated.
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Figure 7.1: Realizations of Two MA(1) Processes

and

yt = εt + .95εt−1,

where in each case

εt ∼ iid N(0, 1).

To construct the realizations, we used the same series of underlying white

noise shocks; the only difference in the realizations comes from the different

coefficients. Past shocks feed positively into the current value of the series,

with a small weight of θ=.4 in one case and a large weight of θ=.95 in the

other. You might think that θ=.95 would induce much more persistence than

θ=.4, but it doesn’t. The structure of the MA(1) process, in which only the

first lag of the shock appears on the right, forces it to have a very short

memory, and hence weak dynamics, regardless of the parameter value.

The unconditional mean and variance are

Eyt = E(εt) + θE(εt−1) = 0
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and

var(yt) = var(εt) + θ2var(εt−1) = σ2 + θ2σ2 = σ2(1 + θ2).

Note that for a fixed value of σ, as θ increases in absolute value so too does

the unconditional variance. That’s why the MA(1) process with parameter

θ=.95 varies a bit more than the process with a parameter of θ=.4.

The conditional mean and variance of an MA(1), where the conditioning

information set is

Ωt−1 = εt−1, εt−2, ...,

are

E(yt|Ωt−1) = E(εt + θεt−1|Ωt−1) = E(εt|Ωt−1) + θE(εt−1|Ωt−1) = θεt−1

and

var(yt|Ωt−1) = Eyt − E(yt|Ωt−1))
2|Ωt−1] = E(ε2

t |Ωt−1) = E(ε2
t ) = σ2.

The conditional mean explicitly adapts to the information set, in contrast to

the unconditional mean, which is constant. Note, however, that only the first

lag of the shock enters the conditional mean – more distant shocks have no

effect on the current conditional expectation. This is indicative of the one-

period memory of MA(1) processes, which we’ll now characterize in terms of

the autocorrelation function.

To compute the autocorrelation function for the MA(1) process, we must

first compute the autocovariance function. We have

γ(τ) = E(ytyt−τ) = E((εt + θεt−1)(εt−τ + θεt−τ−1)) =

θσ2, τ = 1

0, otherwise.

.

(The proof is left as a problem.) The autocorrelation function is just the
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Figure 7.2: MA(1) Population Autocorrelation Function - θ = .4

autocovariance function scaled by the variance,

ρ(τ) =
γ(τ)

γ(0)
=

θ
1+θ2 , τ = 1

0, otherwise.

.

The key feature here is the sharp cutoff in the autocorrelations. All autocor-

relations are zero beyond displacement 1, the order of the MA process. In

Figures 7.2 and 7.3, we show the autocorrelation functions for our two MA(1)

processes with parameters θ=.4 and θ=.95. At displacement 1, the process

with parameter θ=.4 has a smaller autocorrelation (.34) than the process

with parameter θ=.95, (.50) but both drop to zero beyond displacement 1.

Note that the requirements of covariance stationarity (constant uncondi-

tional mean, constant and finite unconditional variance, autocorrelation de-

pends only on displacement) are met for any MA(1) process, regardless of the

values of its parameters. If, moreover, |θ| < 1 , then we say that the MA(1)

process is invertible. In that case, we can “invert” the MA(1) process and

express the current value of the series not in terms of a current shock and a
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Figure 7.3: MA(1) Population Autocorrelation Function - θ = .95

lagged shock, but rather in terms of a current shock and lagged values of the

series. That’s called an autoregressive representation. An autoregressive

representation has a current shock and lagged observable values of the series

on the right, whereas a moving average representation has a current shock

and lagged unobservable shocks on the right.

Let’s compute the autoregressive representation. The process is

yt = εt + θεt−1

εt ∼ WN(0, σ2).

Thus we can solve for the innovation as

εt = yt − θεt−1.

Lagging by successively more periods gives expressions for the innovations at

various dates,

εt−1 = yt−1 − θεt−2
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εt−2 = yt−2 − θεt−3

εt−3 = yt−3 − θεt−4,

and so forth. Making use of these expressions for lagged innovations we can

substitute backward in the MA(1) process, yielding

yt = εt + θyt−1 − θ2yt−2 + θ3yt−3 − ...

In lag-operator notation, we write the infinite autoregressive representation

as
1

1 + θL
yt = εt.

Note that the back substitution used to obtain the autoregressive representa-

tion only makes sense, and in fact a convergent autoregressive representation

only exists, if |θ| < 1 , because in the back substitution we raise θ to progres-

sively higher powers.

We can restate the invertibility condition in another way: the inverse of

the root of the moving average lag operator polynomial (1 + θL) must be

less than one in absolute value. Recall that a polynomial of degree m has m

roots. Thus the MA(1) lag operator polynomial has one root, which is the

solution to

1 + θL = 0.

The root is L=-1/θ, so its inverse will be less than one in absolute value if

|θ| < 1 , and the two invertibility conditions are equivalent. The “inverse

root” way of stating invertibility conditions seems tedious, but it turns out

to be of greater applicability than the |θ| < 1 condition, as we’ll see shortly.

Autoregressive representations are appealing to forecasters, because one

way or another, if a model is to be used for real-world forecasting, it’s got

to link the present observables to the past history of observables, so that

we can extrapolate to form a forecast of future observables based on present
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and past observables. Superficially, moving average models don’t seem to

meet that requirement, because the current value of a series is expressed in

terms of current and lagged unobservable shocks, not observable variables.

But under the invertibility conditions that we’ve described, moving average

processes have equivalent autoregressive representations. Thus, although we

want autoregressive representations for forecasting, we don’t have to start

with an autoregressive model. However, we typically restrict ourselves to

invertible processes, because for forecasting purposes we want to be able to

express current observables as functions of past observables.

Finally, let’s consider the partial autocorrelation function for the MA(1)

process. From the infinite autoregressive representation of the MA(1) process,

we see that the partial autocorrelation function will decay gradually to zero.

As we discussed earlier, the partial autocorrelations are just the coefficients on

the last included lag in a sequence of progressively higher-order autoregressive

approximations. If θ > 0, then the pattern of decay will be one of damped

oscillation; otherwise, the decay will be one-sided.

In Figures 7.4 and 7.5 we show the partial autocorrelation functions for

our example MA(1) processes. For each process, |θ| < 1 , so that an au-

toregressive representation exists, and θ > 0, so that the coefficients in the

autoregressive representations alternate in sign. Specifically, we showed the

general autoregressive representation to be

yt = εt + θyt−1 − θ2yt−2 + θ3yt−3 − ...,

so the autoregressive representation for the process with θ=.4 is

yt = εt + .4yt−1 − .42yt−2 + ... = εt + .4yt−1 − .16yt−2 + ...,

and the autoregressive representation for the process with θ=.95 is

yt = εt + .95yt−1 − .952yt−2 + ... = εt + .95yt−1 − .9025yt−2 + ...
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Figure 7.4: MA(1) Population Partial Autocorrelation Function - θ = .4

The partial autocorrelations display a similar damped oscillation.6 The decay,

however, is slower for the θ=.95 case.

Figure 7.5: MA(1) Population Partial Autocorrelation Function - θ = .95

6Note, however, that the partial autocorrelations are not the successive coefficients in the infinite autore-
gressive representation. Rather, they are the coefficients on the last included lag in sequence of progressively
longer autoregressions. The two are related but distinct.
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The MA(q) Process

Now consider the general finite-order moving average process of order q, or

MA(q) for short,

yt = εt + θ1εt−1 + ...+ θqεt−q = Θ(L)εt

εt ∼ WN(0, σ2),

where

Θ(L) = 1 + θ1L+ ...+ θqL
q

is a qth-order lag operator polynomial. The MA(q) process is a natural

generalization of the MA(1). By allowing for more lags of the shock on the

right side of the equation, the MA(q) process can capture richer dynamic

patterns, which we can potentially exploit for improved forecasting. The

MA(1) process is of course a special case of the MA(q), corresponding to

q = 1.

The properties of the MA(q) processes parallel those of the MA(1) process

in all respects, so in what follows we’ll refrain from grinding through the

mathematical derivations. Instead we’ll focus on the key features of practical

importance. Just as the MA(1) process was covariance stationary for any

value of its parameters, so too is the finite-order MA(q) process. As with

the MA(1) process, the MA(q) process is invertible only if a root condition

is satisfied. The MA(q) lag operator polynomial has q roots; when q > 1

the possibility of complex roots arises. The condition for invertibility of the

MA(q) process is that the inverses of all of the roots must be inside the unit

circle, in which case we have the convergent autoregressive representation,

1

Θ(L)
yt = εt.

The conditional mean of the MA(q) process evolves with the information
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set, in contrast to the unconditional moments, which are fixed. In contrast

to the MA(1) case, in which the conditional mean depends on only the first

lag of the innovation, in the MA(q) case the conditional mean depends on q

lags of the innovation. Thus the MA(q) process has the potential for longer

memory.

The potentially longer memory of the MA(q) process emerges clearly in

its autocorrelation function. In the MA(1) case, all autocorrelations beyond

displacement 1 are zero; in the MA(q) case all autocorrelations beyond dis-

placement q are zero. This autocorrelation cutoff is a distinctive property of

moving average processes. The partial autocorrelation function of the MA(q)

process, in contrast, decays gradually, in accord with the infinite autoregres-

sive representation, in either an oscillating or one-sided fashion, depending

on the parameters of the process.

In closing this section, let’s step back for a moment and consider in greater

detail the precise way in which finite-order moving average processes approx-

imate the Wold representation. The Wold representation is

yt = B(L)εt,

where B(L) is of infinite order. The MA(1), in contrast, is simply a first-

order moving average, in which a series is expressed as a one-period moving

average of current and past innovations. Thus when we fit an MA(1) model

we’re using the first-order polynomial 1 + θL to approximate the infinite-

order polynomial B(L). Note that 1 + θL is a rational polynomial with nu-

merator polynomial of degree one and degenerate denominator polynomial

(degree zero).

MA(q) process have the potential to deliver better approximations to the

Wold representation, at the cost of more parameters to be estimated. The

Wold representation involves an infinite moving average; the MA(q) process
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approximates the infinite moving average with a finite-order moving average,

yt = Θ(L)εt,

whereas the MA(1) process approximates the infinite moving average with a

only a first-order moving average, which can sometimes be very restrictive.

Soon we shall see that MA processes are absolutely central for under-

standing forecasting and properties of forecast errors, even if they usually

not used directly as forecasting models. Other approximations to the Wold

representation are typically more useful for producing forecasts, in particu-

lar autoregressive (AR) and mixed autoregressive moving-average (ARMA)

models, to which we now turn.

7.2.3 Autoregressive (AR) Models

The autoregressive process is also a natural approximation to the Wold rep-

resentation. We’ve seen, in fact, that under certain conditions a moving

average process has an autoregressive representation, so an autoregressive

process is in a sense the same as a moving average process. Like the moving

average process, the autoregressive process has direct motivation; it’s simply

a stochastic difference equation, a simple mathematical model in which the

current value of a series is linearly related to its past values, plus an additive

stochastic shock. Stochastic difference equations are a natural vehicle for

discrete-time stochastic dynamic modeling.

The AR(1) Process

The first-order autoregressive process, AR(1) for short, is

yt = φyt−1 + εt
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Figure 7.6: Realization of Two AR(1) Processes

εt ∼ WN(0, σ2).

In lag operator form, we write

(1− φL)yt = εt.

In Figure 7.6 we show simulated realizations of length 150 of two AR(1)

processes; the first is

yt = .4yt−1 + εt,

and the second is

yt = .95yt−1 + εt,

where in each case

εt iid N(0, 1),

and the same innovation sequence underlies each realization.

The fluctuations in the AR(1) with parameter φ = .95 appear much more

persistent that those of the AR(1) with parameter φ = .4. This contrasts

sharply with the MA(1) process, which has a very short memory regardless
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of parameter value. Thus the AR(1) model is capable of capturing much

more persistent dynamics than is the MA(1).

Recall that a finite-order moving average process is always covariance sta-

tionary, but that certain conditions must be satisfied for invertibility, in which

case an autoregressive representation exists. For autoregressive processes, the

situation is precisely the reverse. Autoregressive processes are always invert-

ible – in fact invertibility isn’t even an issue, as finite-order autoregressive

processes already are in autoregressive form – but certain conditions must be

satisfied for an autoregressive process to be covariance stationary.

If we begin with the AR(1) process,

yt = φyt−1 + εt,

and substitute backward for lagged y’s on the right side, we obtain

yt = εt + φεt−1 + φ2εt−2 + ...

In lag operator form we write

yt =
1

1− φL
εt.

This moving average representation for y is convergent if and only if |φ| < 1

; thus, |φ| < 1 is the condition for covariance stationarity in the AR(1) case.

Equivalently, the condition for covariance stationarity is that the inverse of

the root of the autoregressive lag operator polynomial be less than one in

absolute value.

From the moving average representation of the covariance stationaryAR(1)
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process, we can compute the unconditional mean and variance,

E(yt) = E(εt + φεt−1 + φ2εt−2 + ...)

= E(εt) + φE(εt−1) + φ2E(εt−2) + ...

= 0

and
var(yt) = var(εt + φεt−1 + φ2εt−2 + ...)

= σ2 + φ2σ2 + φ4σ2 + ...

= σ2
∑∞

i=0 φ
2i

= σ2

1−φ2 .

The conditional moments, in contrast, are

E(yt|yt−1) = E(φyt−1 + εt|yt−1)

= φE(yt−1|yt−1) + E(εt|yt−1)

= φyt−1 + 0

= φyt−1
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and
var(yt|yt−1) = var((φyt−1 + εt) | yt−1)

= φ2var(yt−1|yt−1) + var(εt|yt−1)

= 0 + σ2

= σ2.

Note in particular that the simple way that the conditional mean adapts to

the changing information set as the process evolves.

To find the autocovariances, we proceed as follows. The process is

yt = φyt−1 + εt,

so that multiplying both sides of the equation by yt−τ we obtain

ytyt−τ = φyt−1yt−τ + εtyt−τ .

For τ ≥ 1, taking expectations of both sides gives

γ(τ) = φγ(τ − 1).

This is called the Yule-Walker equation. It is a recursive equation; that is,

given γ(τ), for any τ , the Yule-Walker equation immediately tells us how to

get γ(τ + 1). If we knew γ(0) to start things off (an “initial condition”), we

could use the Yule-Walker equation to determine the entire autocovariance

sequence. And we do know γ(0); it’s just the variance of the process, which

we already showed to be

γ(0) =
σ2

1− φ2
.
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Thus we have

γ(0) =
σ2

1− φ2

γ(1) = φ
σ2

1− φ2

γ(2) = φ2 σ2

1− φ2
,

and so on. In general, then,

γ(τ) = φτ
σ2

1− φ2
, τ = 0, 1, 2, ....

Dividing through by γ(0) gives the autocorrelations,

ρ(τ) = φτ , τ = 0, 1, 2, ....

Note the gradual autocorrelation decay, which is typical of autoregressive

processes. The autocorrelations approach zero, but only in the limit as the

displacement approaches infinity. In particular, they don’t cut off to zero,

as is the case for moving average processes. If φ is positive, the autocorre-

lation decay is one-sided. If φ is negative, the decay involves back-and-forth

oscillations. The relevant case in business and economics is φ > 0, but either

way, the autocorrelations damp gradually, not abruptly. In Figure 7.7 and

7.8 we show the autocorrelation functions for AR(1) processes with parame-

ters φ = .4 and φ = .95. The persistence is much stronger when φ = .95, in

contrast to the MA(1) case, in which the persistence was weak regardless of

the parameter.

Finally, the partial autocorrelation function for the AR(1) process cuts off

abruptly; specifically,

p(τ) =


φ, τ = 1

0, τ > 1.

.
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Figure 7.7: AR(1) Population Autocorrelation Function - ρ = .4

Figure 7.8: AR1) Population Autocorrelation Function - ρ = .95

It’s easy to see why. The partial autocorrelations are just the last coeffi-

cients in a sequence of successively longer population autoregressions. If the

true process is in fact an AR(1), the first partial autocorrelation is just the

autoregressive coefficient, and coefficients on all longer lags are zero.

In Figures 7.9 and 7.10 we show the partial autocorrelation functions for
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Figure 7.9: AR(1) Population Partial Autocorrelation Function - ρ = .4

our two AR(1) processes. At displacement 1, the partial autocorrelations are

simply the parameters of the process (.4 and .95, respectively), and at longer

displacements, the partial autocorrelations are zero.

The AR(p) Process

The general p-th order autoregressive process, or AR(p) for short, is

yt = φ1yt−1 + φ2yt−2 + ...+ φpyt−p + εt

εt ∼ WN(0, σ2).

In lag operator form we write

Φ(L)yt = (1− φ1L− φ2L
2 − ...− φpLp) yt = εt.

As with our discussion of the MA(q) process, in our discussion of the AR(p)

process we dispense here with mathematical derivations and instead rely on

parallels with the AR(1) case to establish intuition for its key properties.
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Figure 7.10: AR1) Population Partial Autocorrelation Function - ρ = .95

An AR(p) process is covariance stationary if and only if the inverses of

all roots of the autoregressive lag operator polynomial Φ(L) are inside the

unit circle.7 In the covariance stationary case we can write the process in the

convergent infinite moving average form

yt =
1

Φ(L)
εt.

The autocorrelation function for the general AR(p) process, as with that of

the AR(1) process, decays gradually with displacement. Finally, the AR(p)

partial autocorrelation function has a sharp cutoff at displacement p, for

the same reason that the AR(1) partial autocorrelation function has a sharp

cutoff at displacement 1.

Let’s discuss the AR(p) autocorrelation function in a bit greater depth.

7A necessary condition for covariance stationarity, which is often useful as a quick check, is

p∑
i=1

φi < 1.

If the condition is satisfied, the process may or may not be stationary, but if the condition is violated, the
process can’t be stationary.



224CHAPTER 7. CYCLES II: THEWOLD REPRESENTATION AND ITS APPROXIMATION

The key insight is that, in spite of the fact that its qualitative behavior

(gradual damping) matches that of the AR(1) autocorrelation function, it

can nevertheless display a richer variety of patterns, depending on the order

and parameters of the process. It can, for example, have damped monotonic

decay, as in the AR(1) case with a positive coefficient, but it can also have

damped oscillation in ways that AR(1) can’t have. In the AR(1) case, the

only possible oscillation occurs when the coefficient is negative, in which case

the autocorrelations switch signs at each successively longer displacement. In

higher-order autoregressive models, however, the autocorrelations can oscil-

late with much richer patterns reminiscent of cycles in the more traditional

sense. This occurs when some roots of the autoregressive lag operator poly-

nomial are complex.8

Consider, for example, the AR(2) process,

yt = 1.5yt−1 − .9yt−2 + εt.

The corresponding lag operator polynomial is 1− 1.5L+ .9L2 , with two

complex conjugate roots, .83± .65i. The inverse roots are .75± .58i, both of

which are close to, but inside, the unit circle; thus the process is covariance

stationary. It can be shown that the autocorrelation function for an AR(2)

process is

ρ(0) = 1

ρ(τ) = φ1ρ(τ − 1) + φ2ρ(τ − 2), τ = 2, 3, ...

ρ(1) =
φ1

1− φ2

Using this formula, we can evaluate the autocorrelation function for the pro-

cess at hand; we plot it in Figure 7.11. Because the roots are complex, the

autocorrelation function oscillates, and because the roots are close to the unit

circle, the oscillation damps slowly.

8Note that complex roots can’t occur in the AR(1) case.
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Figure 7.11: Population Autocorrelation Function - AR(2) with Complex Roots

Finally, let’s step back once again to consider in greater detail the precise

way that finite-order autoregressive processes approximate the Wold repre-

sentation. As always, the Wold representation is yt = B(L)εt, where B(L) is

of infinite order. The AR(1), as compared to the MA(1), is simply a different

approximation to the Wold representation. The moving average representa-

tion associated with the AR(1) process is yt = 1/1− φLεt. Thus, when we fit

an AR(1) model, we’re using 1/1− φL, a rational polynomial with degenerate

numerator polynomial (degree zero) and denominator polynomial of degree

one, to approximate B(L). The moving average representation associated

with the AR(1) process is of infinite order, as is the Wold representation, but

it does not have infinitely many free coefficients. In fact, only one parameter,

φ, underlies it.

The AR(p) is an obvious generalization of the AR(1) strategy for ap-

proximating the Wold representation. The moving average representation

associated with the AR(p) process is yt = 1/Φ(L)εt. When we fit an AR(p)

model to approximate the Wold representation we’re still using a rational

polynomial with degenerate numerator polynomial (degree zero), but the de-
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nominator polynomial is of higher degree.

7.2.4 Autoregressive Moving Average (ARMA) Models

Autoregressive and moving average models are often combined in attempts

to obtain better and more parsimonious approximations to the Wold repre-

sentation, yielding the autoregressive moving average process, ARMA(p,q)

for short. As with moving average and autoregressive processes, ARMA pro-

cesses also have direct motivation.9 First, if the random shock that drives

an autoregressive process is itself a moving average process, then it can be

shown that we obtain an ARMA process. Second, ARMA processes can arise

from aggregation. For example, sums of AR processes, or sums of AR and

MA processes, can be shown to be ARMA processes. Finally, AR processes

observed subject to measurement error also turn out to be ARMA processes.

The simplest ARMA process that’s not a pure autoregression or pure mov-

ing average is the ARMA(1,1), given by

yt = φyt−1 + εt + θεt−1

εt ∼ WN(0, σ2),

or in lag operator form,

(1− φL) yt = (1 + θL) εt,

where |φ| < 1 is required for stationarity and |θ| < 1 is required for invert-

ibility.10 If the covariance stationarity condition is satisfied, then we have the

moving average representation

yt =
(1 + θL)

(1− φL)
εt,

9For more extensive discussion, see Granger and Newbold (1986).
10Both stationarity and invertibility need to be checked in the ARMA case, because both autoregressive

and moving average components are present.
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which is an infinite distributed lag of current and past innovations. Similarly,

if the invertibility condition is satisfied, then we have the infinite autoregres-

sive representation,
(1− φL)

(1 + θL)
yt = εt.

The ARMA(p,q) process is a natural generalization of the ARMA(1,1) that

allows for multiple moving average and autoregressive lags. We write

yt = φ1yt−1 + ...+ φpyt−p + εt + θ1εt−1 + ...+ θqεt−q

εt ∼ WN(0, σ2),

or

Φ(L)yt = Θ(L)εt,

where

Φ(L) = 1− φ1L− φ2L
2 − ...− φpLp

and

Θ(L) = 1 + θ1L+ θ2L
2 + ... + θqL

q.

If the inverses of all roots of Φ(L) are inside the unit circle, then the

process is covariance stationary and has convergent infinite moving average

representation

yt =
Θ(L)

Φ(L)
εt.

If the inverses of all roots of Θ(L) are inside the unit circle, then the process

is invertible and has convergent infinite autoregressive representation

Φ(L)

Θ(L)
yt = εt.

As with autoregressions and moving averages, ARMA processes have a fixed

unconditional mean but a time-varying conditional mean. In contrast to

pure moving average or pure autoregressive processes, however, neither the
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autocorrelation nor partial autocorrelation functions of ARMA processes cut

off at any particular displacement. Instead, each damps gradually, with the

precise pattern depending on the process.

ARMA models approximate the Wold representation by a ratio of two

finite-order lag-operator polynomials, neither of which is degenerate. Thus

ARMA models use ratios of full-fledged polynomials in the lag operator to

approximate the Wold representation,

yt =
Θ(L)

Φ(L)
εt.

ARMA models, by allowing for both moving average and autoregressive com-

ponents, often provide accurate approximations to the Wold representation

that nevertheless have just a few parameters. That is, ARMA models are of-

ten both highly accurate and highly parsimonious. In a particular situation,

for example, it might take an AR(5) to get the same approximation accuracy

as could be obtained with an ARMA(2,1), but the AR(5) has five parameters

to be estimated, whereas the ARMA(2,1) has only three.

7.3 Forecasting Cycles From a Moving-Average Per-

spective: Wiener-Kolmogorov

By now you’ve gotten comfortable with the idea of an information set.

Here we’ll use that idea extensively. We denote the time-T information set

by ΩT . As first pass it seems most natural to think of the information set as

containing the available past history of the series,

ΩT = {yT , yT−1, yT−2, ...},

where for theoretical purposes we imagine history as having begun in the

infinite past.
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So long as y is covariance stationary, however, we can just as easily express

the information available at time T in terms of current and past shocks,

ΩT = {εT , εT−1, εT−2, ...}.

Suppose, for example, that the process to be forecast is a covariance station-

ary AR(1),

yt = φyt−1 + εt.

Then immediately,

εT = yT − φyT−1

εT−1 = yT−1 − φyT−2

εT−2 = yT−2 − φyT−3,

and so on. In other words, we can figure out the current and lagged ε’s from

the current and lagged y’s. More generally, for any covariance stationary and

invertible series, we can infer the history of ε from the history of y, and the

history of y from the history of ε.

Assembling the discussion thus far, we can view the time-T information

set as containing the current and past values of either (or both) y and ε,

ΩT = yT , yT−1, yT−2, ..., εT , εT−1, εT−2, ....

Based upon that information set, we want to find the optimal forecast

of y at some future time T + h. The optimal forecast is the one with the

smallest loss on average, that is, the forecast that minimizes expected loss.

It turns out that under reasonably weak conditions the optimal forecast is

the conditional mean,

E(yT+h|ΩT ),

the expected value of the future value of the series being forecast, conditional

upon available information.
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In general, the conditional mean need not be a linear function of the

elements of the information set. Because linear functions are particularly

tractable, we prefer to work with linear forecasts – forecasts that are linear in

the elements of the information set – by finding the best linear approximation

to the conditional mean, called the linear projection, denoted

P (yT+h|ΩT ).

This explains the common term “linear least squares forecast.” The linear

projection is often very useful and accurate, because the conditional mean is

often close to linear. In fact, in the Gaussian case the conditional expectation

is exactly linear, so that

E(yT+h|ΩT ) = P (yT+h|ΩT ).

7.3.1 Optimal Point Forecasts for Finite-Order Moving Averages

Our forecasting method is always the same: we write out the process for

the future time period of interest, T + h, and project it on what’s known at

time T , when the forecast is made. This process is best learned by example.

Consider an MA(2) process,

yt = εt + θ1εt−1 + θ2εt−2

εt ∼ WN(0, σ2).

Suppose we’re standing at time T and we want to forecast yT+1. First we

write out the process for T + 1,

yT+1 = εT+1 + θ1εT + θ2εT−1.
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Then we project on the time-T information set, which simply means that all

future innovations are replaced by zeros. Thus

yT+1,T = P (yT+1|ΩT ) = θ1εT + θ2εT−1.

To forecast 2 steps ahead, we note that

yT+2 = εT+2 + θ1εT+1 + θ2εT ,

and we project on the time-T information set to get

yT+2,T = θ2εT .

Continuing in this fashion, we see that

yT+h,T = 0,

for all h>2.

Now let’s compute the corresponding forecast errors.11 We have:

eT+1,T = εT+1 WN

eT+2,T = εT+2 + θ1εT+1 (MA(1))

eT+h,T = εT+h + θ1εT+h−1 + θ2εT+h−2 (MA(2)),

for all h>2.

Finally, the forecast error variances are:

σ2
1 = σ2

σ2
2 = σ2(1 + θ2

1)

σ2
h = σ2(1 + θ2

1 + θ2
2),

11Recall that the forecast error is simply the difference between the actual and forecasted values. That is,
eT+h,T = yT+h − yT+h,T .
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for all h > 2. Moreover, the forecast error variance for h>2 is just the

unconditional variance of yt.

Now consider the general MA(q) case. The model is

yt = εt + θ1εt−1 + ... θqεt−q.

First, consider the forecasts. If h ≤ q, the forecast has the form

yT+h,T = 0 + “adjustment,′′

whereas if h > q the forecast is

yT+h,T = 0.

Thus, an MA(q) process is not forecastable (apart from the unconditional

mean) more than q steps ahead. All the dynamics in the MA(q) process,

which we exploit for forecasting, “wash out” by the time we get to horizon

q, which reflects the autocorrelation structure of the MA(q) process. (Recall

that, as we showed earlier, it cuts off at displacement q.) Second, consider

the corresponding forecast errors. They are

eT+h,T = MA(h− 1)

for h ≤ q and

eT+h,T = MA(q)

for h > q. The h-step-ahead forecast error for h > q is just the process itself,

minus its mean.

Finally, consider the forecast error variances. For h ≤ q,

σ2
h ≤ var(yt),
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whereas for h > q,

σ2
h = var(yt).

In summary, we’ve thus far studied the MA(2), and then the general MA(q),

process, computing the optimal h-step-ahead forecast, the corresponding fore-

cast error, and the forecast error variance. As we’ll now see, the emerging

patterns that we cataloged turn out to be quite general.

7.3.2 Optimal Point Forecasts for Infinite-Order Moving Averages

By now you’re getting the hang of it, so let’s consider the general case of an

infinite-order MA process. The infinite-order moving average process may

seem like a theoretical curiosity, but precisely the opposite is true. Any

covariance stationary process can be written as a (potentially infinite-order)

moving average process, and moving average processes are easy to understand

and manipulate, because they are written in terms of white noise shocks,

which have very simple statistical properties. Thus, if you take the time

to understand the mechanics of constructing optimal forecasts for infinite

moving-average processes, you’ll understand everything, and you’ll have some

powerful technical tools and intuition at your command.

Recall that the general linear process is

yt =
∞∑
i=0

biεt−i,

where

εt ∼ WN(0, σ2)

b0 = 1

σ2
∞∑
i=0

b2
i <∞.

We proceed in the usual way. We first write out the process at the future
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time of interest:

yT+h = εT+h + b1εT+h−1 + ...+ bhεT + bh+1εT−1 + ...

Then we project yT+h on the time-T information set. The projection yields

zeros for all of the future ε’s (because they are white noise and hence unfore-

castable), leaving

yT+h,T = bhεT + bh+1εT−1 + ...

It follows that the h-step ahead forecast error is serially correlated; it follows

an MA(h− 1) process,

eT+h,T = (yT+h − yT+h,T ) =
h−1∑
i=0

biεT+h−i,

with mean 0 and variance

σ2
h = σ2

h−1∑
i=0

b2
i .

A number of remarks are in order concerning the optimal forecasts of the

general linear process, and the corresponding forecast errors and forecast

error variances. First, the 1-step-ahead forecast error is simply εT+1. εT+1

is that part of yT+1 that can’t be linearly forecast on the basis of Ωt (which,

again, is why it is called the innovation). Second, although it might at first

seem strange that an optimal forecast error would be serially correlated, as

is the case when h > 1, nothing is awry. The serial correlation can’t be

used to improve forecasting performance, because the autocorrelations of the

MA(h−1) process cut off just before the beginning of the time-T information

set εT , εT−1, .... This is a general and tremendously important property of

the errors associated with optimal forecasts: errors from optimal forecasts

can’t be forecast using information available when the forecast was made. If

you can forecast the forecast error, then you can improve the forecast, which

means that it couldn’t have been optimal. Finally, note that as h approaches
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infinity yT+h,T approaches zero, the unconditional mean of the process, and

σ2
h approaches σ2

∑∞
i=0 b

2
i , the unconditional variance of the process, which

reflects the fact that as h approaches infinity the conditioning information on

which the forecast is based becomes progressively less useful. In other words,

the distant future is harder to forecast than the near future!

7.3.3 Interval and Density Forecasts

Now we construct interval and density forecasts. Regardless of whether the

moving average is finite or infinite, we proceed in the same way, as follows.

The definition of the h-step-ahead forecast error is

eT+h,T = yT+h − yT+h,T .

Equivalently, the h-step-ahead realized value, yT+h , equals the forecast plus

the error,

yT+h = yT+h,T + eT+h,T .

If the innovations are normally distributed, then the future value of the series

of interest is also normally distributed, conditional upon the information set

available at the time the forecast was made, and so we have the 95% h-step-

ahead interval forecast yT+h,T ±1.96σh.
12 In similar fashion, we construct the

h-step-ahead density forecast as

N(yT+h,T , σ
2
h).

The mean of the conditional distribution of yT+h is yT+h,T , which of course

must be the case because we constructed the point forecast as the conditional

mean, and the variance of the conditional distribution is σ2
h, the variance of

12Confidence intervals at any other desired confidence level may be constructed in similar fashion, by
using a different critical point of the standard normal distribution. A 90% interval forecast, for example, is
yT+h,T ± 1.64σh. In general, for a Gaussian process, a (1−α) · 100% confidence interval is yT+h,T ± zα/2σh,
where zα/2 is that point on the N(0, 1) distribution such that prob(z > zα/2) = α/2.
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the forecast error.

As an example of interval and density forecasting, consider again the

MA(2) process,

yt = εt + θ1εt−1 + θ2εt−2

εt ∼ WN(0, σ2).

Assuming normality, the 1-step-ahead 95% interval forecast is

yT+1,T = (θ1εT + θ2εT−1)± 1.96σ,

and the 1-step-ahead density forecast is

N(θ1εT + θ2εT−1, σ
2).

7.3.4 Making the Forecasts Operational

So far we’ve assumed that the parameters of the process being forecast are

known. In practice, of course, they must be estimated. To make our forecast-

ing procedures operational, we simply replace the unknown parameters in our

formulas with estimates, and the unobservable innovations with residuals.

Consider, for example, the MA(2) process,

yt = εt + θ1εt−1 + θ2εt−2.

As you can readily verify using the methods we’ve introduced, the 2-step

ahead optimal forecast, assuming known parameters, is

yT+2,T = θ2εT ,

with corresponding forecast error

eT+2,T = εT+2 + θ1εT+1,
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and forecast-error variance

σ2
2 = σ2(1 + θ2

1).

To make the forecast operational, we replace unknown parameters with esti-

mates and the time-T innovation with the time-T residual, yielding

ŷT+2,T = θ̂2ε̂T

and forecast error variance

σ̂2
2 = σ̂2(1 + θ̂2

1).

Then, if desired, we can construct operational 2-step-ahead interval and den-

sity forecasts, as

ŷT+2,T ± zα/2σ̂2

and

N(ŷT+2,T , σ̂
2
2).

The strategy of taking a forecast formula derived under the assumption of

known parameters, and replacing unknown parameters with estimates, is a

natural way to operationalize the construction of point forecasts. However,

using the same strategy to produce operational interval or density forecasts

involves a subtlety that merits additional discussion. The forecast error vari-

ance estimate so obtained can be interpreted as one that ignores parameter

estimation uncertainty, as follows. Recall once again that the actual future

value of the series is

yT+2 = εT+2 + θ1εT+1 + θ2εT ,
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and that the operational forecast is

ŷT+2,T = θ̂2εT .

Thus the exact forecast error is

êT+2,T = yT+2 − ŷT+2,T = εT+2 + θ1εT+1 + (θ2 − θ̂2)εT ,

the variance of which is very difficult to evaluate. So we make a convenient

approximation: we ignore parameter estimation uncertainty by assuming that

estimated parameters equal true parameters. We therefore set

(θ2 − θ̂2)

to zero, which yields

êT+2,T = εT+2 + θ1εT+1,

with variance

σ2
2 = σ2(1 + θ2

1),

which we make operational as

σ̂2
2 = σ̂2(1 + θ̂2

1).

7.4 Forecasting Cycles From an Autoregressive Per-

spective: Wold’s Chain Rule

7.4.1 Point Forecasts of Autoregressive Processes

Because any covariance stationary AR(p) process can be written as an infinite

moving average, there’s no need for specialized forecasting techniques for

autoregressions. Instead, we can simply transform the autoregression into a

moving average, and then use the techniques we developed for forecasting



7.4. FORECASTING CYCLES FROMANAUTOREGRESSIVE PERSPECTIVE:WOLD’S CHAIN RULE239

moving averages. It turns out, however, that a very simple recursive method

for computing the optimal forecast is available in the autoregressive case.

The recursive method, called the chain rule of forecasting, is best

learned by example. Consider the AR(1) process,

yt = φyt−1 + εt

εt ∼ WN(0, σ2).

First we construct the optimal 1-step-ahead forecast, and then we construct

the optimal 2-step-ahead forecast, which depends on the optimal 1-step-ahead

forecast, which we’ve already constructed. Then we construct the optimal

3-step-ahead forecast, which depends on the already-computed 2-step-ahead

forecast, which we’ve already constructed, and so on.

To construct the 1-step-ahead forecast, we write out the process for time

T + 1,

yT+1 = φyT + εT+1.

Then, projecting the right-hand side on the time-T information set, we obtain

yT+1,T = φyT .

Now let’s construct the 2-step-ahead forecast. Write out the process for time

T + 2,

yT+2 = φyT+1 + εT+2.

Then project directly on the time-T information set to get

yT+2,T = φyT+1,T .

Note that the future innovation is replaced by 0, as always, and that we have

directly replaced the time T+1 value of y with its earlier-constructed optimal

forecast. Now let’s construct the 3-step-ahead forecast. Write out the process
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for time T + 3,

yT+3 = φyT+2 + εT+3.

Then project directly on the time-T information set,

yT+3,T = φyT+2,T .

The required 2-step-ahead forecast was already constructed.

Continuing in this way, we can recursively build up forecasts for any and

all future periods. Hence the name “chain rule of forecasting.” Note that,

for the AR(1) process, only the most recent value of y is needed to construct

optimal forecasts, for any horizon, and for the general AR(p) process only

the p most recent values of y are needed.

7.4.2 Point Forecasts of ARMA processes

Now we consider forecasting covariance stationary ARMA processes. Just

as with autoregressive processes, we could always convert an ARMA process

to an infinite moving average, and then use our earlier-developed methods

for forecasting moving averages. But also as with autoregressive processes,

a simpler method is available for forecasting ARMA processes directly, by

combining our earlier approaches to moving average and autoregressive fore-

casting.

As always, we write out the ARMA(p, q) process for the future period of

interest,

yT+h = φ1yT+h−1 + ...+ φpyT+h−p + εT+h + θ1εT+h−1 + ...+ θqεT+h−q.

On the right side we have various future values of y and ε, and perhaps also

past values, depending on the forecast horizon. We replace everything on the

right-hand side with its projection on the time-T information set. That is,

we replace all future values of y with optimal forecasts (built up recursively
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using the chain rule) and all future values of ε with optimal forecasts (0),

yielding

yT+h,T = φ1yT+h−1,T + ...+ φpyT+h−p,T + εT+h,T + θ1εT+h−1,T + ...+ θqεT+h−q,T .

When evaluating this formula, note that the optimal time-T “forecast” of

any value of y or ε dated time T or earlier is just y or ε itself.

As an example, consider forecasting the ARMA(1, 1) process,

yt = φyt−1 + εt + θεt−1

εt ∼ WN(0, σ2).

Let’s find yT+1,T . The process at time T + 1 is

yT+1 = φyT + εT+1 + θεT .

Projecting the right-hand side on ΩT yields

yT+1,T = φyT + θεT .

Now let’s find yT+2,T . The process at time T + 2 is

yT+2 = φyT+1 + εT+2 + θεT+1.

Projecting the right-hand side on ΩT yields

yT+2,T = φyT+1,T .

Substituting our earlier-computed 1-step-ahead forecast yields

yT+2,T = φ (φyT + θεT ) (7.1)

= φ2yT + φθεT . (7.2)
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Continuing, it is clear that

yT+h,T = φyT+h−1,T ,

for all h > 1.

7.4.3 Interval and Density Forecasts

The chain rule, whether applied to pure autoregressive models or to ARMA

models, is a device for simplifying the computation of point forecasts. Interval

and density forecasts require the h-step-ahead forecast error variance, which

we get from the moving average representation, as discussed earlier. It is

σ2
h = σ2

h−1∑
i=0

b2
i ,

which we operationalize as

σ̂2
h = σ̂2

h−1∑
i=0

b̂2
i .

Note that we don’t actually estimate the moving average representation;

rather, we solve backward for as many b’s as we need, in terms of the original

model parameters, which we then replace with estimates.

Let’s illustrate by constructing a 2-step-ahead 95% interval forecast for the

ARMA(1, 1) process. We already constructed the 2-step-ahead point fore-

cast, yT+2,T ; we need only compute the 2-step-ahead forecast error variance.

The process is

yt = φyt−1 + εt + θεt−1
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Substitute backward for yt−1 to get

yt = φ(φyt−2 + εt−1 + θεt−2) + εt + θεt−1 (7.3)

= εt + (φ+ θ)εt−1 + ... (7.4)

We need not substitute back any farther, because the 2-step-ahead forecast

error variance is

σ2
2 = σ2(1 + b2

1),

where b1 is the coefficient on εt−1 in the moving average representation of the

ARMA(1,1) process, which we just calculated to be ( φ+ θ ). Thus the 2-step-

ahead interval forecast is yT+2,T ± 1.96σ2 , or (φ2yT + φθεT ) ± 1.96σ
√

1 + (φ+ θ)2.

We make this operational as (φ̂2yT + φ̂θ̂εT ) ± 1.96σ̂

√
1 + (φ̂+ θ̂)2.

7.5 Canadian Employment

We earlier examined the correlogram for the Canadian employment series,

and we saw that the sample autocorrelations damp slowly and the sample

partial autocorrelations cut off, just the opposite of what’s expected for a

moving average. Thus the correlogram indicates that a finite-order moving

average process would not provide a good approximation to employment dy-

namics. Nevertheless, nothing stops us from fitting moving average models,

so let’s fit them and use the AIC and the SIC to guide model selection.

Moving average models are nonlinear in the parameters; thus, estimation

proceeds by nonlinear least squares (numerical minimization). The idea is the

same as when we encountered nonlinear least squares in our study of nonlinear

trends – pick the parameters to minimize the sum of squared residuals – but

finding an expression for the residual is a little bit trickier. To understand

why moving average models are nonlinear in the parameters, and to get a

feel for how they’re estimated, consider an invertible MA(1) model, with a
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nonzero mean explicitly included for added realism,

yt = µ + εt + θεt−1.

Substitute backward m times to obtain the autoregressive approximation

yt ≈
µ

1 + θ
+ θyt−1 − θ2yt−2 + ...+ (−1)m+1 θmyt−m + εt.

Thus an invertible moving average can be approximated as a finite-order

autoregression. The larger is m, the better the approximation. This lets us

(approximately) express the residual in terms of observed data, after which

we can use a computer to solve for the parameters that minimize the sum of

squared residuals,

µ̂, θ̂ = argmin

µ, θ

T∑
t=1

[
yt −

(
µ

1 + θ
+ θyt−1 − θ2yt−2 + ... + (−1)m+1θmyt−m

)]2

σ̂2 =
1

T

T∑
t=1

[
yt −

(
µ̂

1 + θ̂
+ θ̂yt−1 − θ̂2yt−2 + ... + (−1)m+1θ̂myt−m

)]2

.

The parameter estimates must be found using numerical optimization

methods, because the parameters of the autoregressive approximation are

restricted. The coefficient of the second lag of y is the square of the coef-

ficient on the first lag of y, and so on. The parameter restrictions must be

imposed in estimation, which is why we can’t simply run an ordinary least

squares regression of y on lags of itself.

The next step would be to estimate MA(q) models, q = 1, 2, 3, 4. Both

the AIC and the SIC suggest that the MA(4) is best. To save space, we
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report only the results of MA(4) estimation in Table 7.12a. The results of the

MA(4) estimation, although better than lower-order MAs, are nevertheless

poor. The R2 of .84 is rather low, for example, and the Durbin-Watson

statistic indicates that the MA(4) model fails to account for all the serial

correlation in employment. The residual plot, which we show in Figure 7.12b,

clearly indicates a neglected cycle, an impression confirmed by the residual

correlogram (Table 7.13, Figure 7.14).
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(a) Employment MA(4) Regression

(b) Employment MA(4) Residual Plot

Figure 7.12: Employment: MA(4) Model
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Figure 7.13: Employment MA(4) Residual Correlogram
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Figure 7.14: Employment MA(4) Residual Sample Autocorrelation and Partial Autocorre-
lation
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If we insist on using a moving average model, we’d want to explore orders

greater than four, but all the results thus far indicate that moving average

processes don’t provide good approximations to employment dynamics. Thus

let’s consider alternative approximations, such as autoregressions. Autore-

gressions can be conveniently estimated by ordinary least squares regression.

Consider, for example, the AR(1) model,

(yt − µ) = φ(yt−1 − µ) + εt

εt ∼ (0, σ2)

We can write it as

yt = c + φyt−1 + εt

where c = µ(1− φ). The least squares estimators are

ĉ, φ̂ = argmin

c, φ

T∑
t=1

[yt − c − φyt−1]
2

σ̂2 =
1

T

T∑
t=1

[
yt − ĉ − φ̂yt−1

]2

.

The implied estimate of µ is

µ̂ = ĉ/(1− φ̂).

Unlike the moving average case, for which the sum of squares function

is nonlinear in the parameters, requiring the use of numerical minimization

methods, the sum of squares function for autoregressive processes is linear

in the parameters, so that estimation is particularly stable and easy. In the

AR(1) case, we simply run an ordinary least squares regression of y on one
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lag of y; in the AR(p) case, we regress y on p lags of y.

We estimate AR(p) models, p = 1, 2, 3, 4. Both the AIC and the SIC

suggest that the AR(2) is best. To save space, we report only the results

of AR(2) estimation in Table 7.15a. The estimation results look good, and

the residuals (Figure 7.15b) look like white noise. The residual correlogram

(Table 7.16, Figure 7.17) supports that conclusion.
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(a) Employment AR(2) Model

(b) Employment AR(2) Residual Plot

Figure 7.15: Employment: MA(4) Model
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Figure 7.16: Employment AR(2) Residual Correlogram
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Figure 7.17: Employment AR(2) Residual Sample Autocorrelation and Partial Autocorrela-
tion
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(a) Employment AIC Values

(b) Employment SIC Values

Figure 7.18: Employment - Information Criterion for ARMA Models

Finally, we consider ARMA(p, q) approximations to the Wold representa-

tion. ARMA models are estimated in a fashion similar to moving average

models; they have autoregressive approximations with nonlinear restrictions

on the parameters, which we impose when doing a numerical sum of squares

minimization. We examine all ARMA(p, q) models with p and q less than or

equal to four; the SIC and AIC values appear in Tables 7.18a and 7.18b. The

SIC selects the AR(2) (an ARMA(2, 0)), which we’ve already discussed. The

AIC, which penalizes degrees of freedom less harshly, selects an ARMA(3, 1)

model. The ARMA(3, 1) model looks good; the estimation results appear in

Table 7.19a, the residual plot in Figure 7.19b, and the residual correlogram

in Table 7.20 and Figure fig: employment arma(3,1) residual sample auto-

correlation and partial autocorrelation.
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(a) Employment ARMA(3,1) Model

(b) Employment ARMA(3,1) Residual Plot

Figure 7.19: Employment: MA(4) Model
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Figure 7.20: Employment ARMA(3,1) Correlogram
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Figure 7.21: Employment ARMA(3,1) Residual Sample Autocorrelation and Partial Auto-
correlation
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Although the ARMA(3, 1) looks good, apart from its lower AIC it looks

no better than the AR(2), which basically seemed perfect. In fact, there are

at least three reasons to prefer the AR(2). First, for the reasons that we dis-

cussed in Chapter 15 , when the AIC and the SIC disagree we recommend

using the more parsimonious model selected by the SIC. Second, if we con-

sider a model selection strategy involving not just examination of the AIC

and SIC, but also examination of autocorrelations and partial autocorrela-

tions, which we advocate, we’re led to the AR(2). Finally, and importantly,

the impression that the ARMA(3, 1) provides a richer approximation to em-

ployment dynamics is likely spurious in this case. The ARMA(3, 1) has a

inverse autoregressive root of -.94 and an inverse moving average root of -.97.

Those roots are of course just estimates and are likely to be statistically in-

distinguishable from one another, in which case we can cancel them, which

brings us down to an ARMA(2, 0), or AR(2), model with roots virtually in-

distinguishable from those of our earlier-estimated AR(2) process! We refer

to this situation as one of common factors in an ARMA model. Look out for

such situations, which can lead to substantial model simplification.

Now we put our forecasting technology to work to produce point and

interval forecasts for Canadian employment. Recall that the best moving

average model was an MA(4), while the best autoregressive model, as well as

the best ARMA model and the best model overall, was an AR(2).

Consider forecasting with the MA(4) model. Figure 7.22 shows employ-

ment history together with operational 4-quarter-ahead point and interval

extrapolation forecasts. The 4-quarter-ahead extrapolation forecast reverts

quickly to the mean of the employment index. In 1993.4, the last quarter of

historical data, employment is well below its mean, but the forecast calls for

a quick rise. The forecasted quick rise seems unnatural, because employment

dynamics are historically very persistent. If employment is well below its

mean in 1993.4, we’d expect it to stay below its mean for some time.
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Figure 7.22: Employment History and Forecast - MA(4)

Figure 7.23: Employment History and Long-Horizon Forecast - MA(4)
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Figure 7.24: Employment History, Forecast, and Realization - MA(4)
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The MA(4) model is unable to capture such persistence. The quick re-

version of the MA(4) forecast to the mean is a manifestation of the short

memory of moving average processes. Recall, in particular, that an MA(4)

process has a 4-period memory – all autocorrelations are zero beyond dis-

placement 4. Thus, all forecasts more than four steps ahead are simply equal

to the unconditional mean (100.2), and all 95% interval forecasts more than

four steps ahead are plus or minus 1.96 unconditional standard deviations.

All of this is made clear in Figure 7.23, in which we show the employment his-

tory together with 12-step-ahead point and interval extrapolation forecasts.

In Figure 7.24 we show the 4-quarter-ahead forecast and realization. Our

suspicions are confirmed. The actual employment series stays well below its

mean over the forecast period, whereas the forecast rises quickly back to the

mean. The mean squared forecast error is a large 55.9.

Now consider forecasting with the AR(2) model. In Figure 7.25 we show

the 4-quarter-ahead extrapolation forecast, which reverts to the unconditional

mean much less quickly, as seems natural given the high persistence of em-

ployment. The 4-quarter-ahead point forecast, in fact, is still well below the

mean. Similarly, the 95% error bands grow gradually and haven’t approached

their long-horizon values by four quarters out.

Figures 7.26 and 7.28 make clear the very different nature of the autore-

gressive forecasts. Figure 7.26 presents the 12-step-ahead extrapolation fore-

cast, and Figure 7.28 presents a much longer-horizon extrapolation forecast.

Eventually the unconditional mean is approached, and eventually the error

bands do go flat, but only for very long-horizon forecasts, due to the high

persistence in employment, which the AR(2) model captures.

In Figure 7.27 we show the employment history, 4-quarter-ahead AR(2)

extrapolation forecast, and the realization. The AR(2) forecast appears quite

accurate; the mean squared forecast error is 1.3, drastically smaller than that

of the MA(4) forecast.
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Figure 7.25: Employment History and Forecast - AR(2)

Figure 7.26: Employment History and Forecast, 12-step ahead - AR(2)
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Figure 7.27: Employment History, Forecast, and Realization - AR(2)

Figure 7.28: Employment History and Long-Horizon Forecast - AR(2)
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7.6 Exercises, Problems and Complements

1. Shapes of correlograms.

Given the following ARMA processes, sketch the expected forms of the

autocorrelation and partial autocorrelation functions. (Hint: examine

the roots of the various autoregressive and moving average lag operator

polynomials.)

(a) yt =
(

1
1−1.05L−.09L2

)
εt

(b) yt = (1− .4L)εt

(c) yt =
(

1
1−.7L

)
εt.

2. The autocovariance function of the MA(1) process, revisited.

In the text we wrote

γ(τ) = E(ytyt−τ) = E((εt + θεt−1)(εt−τ + θεt−τ−1)) =


θσ2, τ = 1

0, otherwise

.

Fill in the missing steps by evaluating explicitly the expectation

E((εt + θεt−1)(εt−τ + θεt−τ−1)).

3. ARMA algebra.

Derive expressions for the autocovariance function, autocorrelation func-

tion, conditional mean, unconditional mean, conditional variance and

unconditional variance of the following processes:

(a) yt = µ+ εt + θ1εt−1 + θ2εt−2

(b) yt = φyt−1 + εt + θεt−1.
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4. Mechanics of fitting ARMA models.

You have data for daily transfers over BankWire, a financial wire transfer

system in a country responsible for much of the world’s finance, over a

recent span of 200 business days.

(a) Is trend or seasonality operative? Defend your answer.

(b) Find a parsimonious ARMA(p, q) model that fits well, and defend

its adequacy.

(c) In item 4b above, you were asked to find a parsimonious ARMA(p,q)

model that fits the transfer data well, and to defend its adequacy.

Repeat the exercise, this time using only the first 175 days for model

selection and fitting. Is it necessarily the case that the selected

ARMA model will remain the same as when all 200 days are used?

Does yours?

(d) Use your estimated model to produce point and interval forecasts for

days 176 through 200. Plot them and discuss the forecast pattern.

(e) Compare your forecasts to the actual realizations. Do the forecasts

perform well? Why or why not?

5. A different way to estimate autoregressive models.

We discussed estimation of autoregressive models using ordinary least

squares. We could also write the model as a regression on an intercept,

with a serially correlated disturbance. Thus the autoregressive model is

yt = µ+ εt

Φ(L)εt = vt

vt ∼ WN(0, σ2).
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We can estimate the model using nonlinear least squares. Eviews and

other forecasting packages proceed in precisely that way.13

This framework – regression on a constant with serially correlated dis-

turbances – has a number of attractive features. First, the mean of the

process is the regression constant term.14 Second, it leads us naturally

toward regression on more than just a constant, as other right-hand side

variables can be added as desired.

6. Aggregation and disaggregation: top-down vs. bottom-up fore-

casting models.

Related to the issue of methods and complexity discussed in Chapter 2

is the question of aggregation. Often we want to forecast an aggregate,

such as total sales of a manufacturing firm, but we can take either an

aggregated or disaggregated approach.

Suppose, for example, that total sales is composed of sales of three prod-

ucts. The aggregated, or top-down, or macro, approach is simply to

model and forecast total sales. The disaggregated, or bottom- up, or

micro, approach is to model and forecast separately the sales of the

individual products, and then to add them together.

(a) Perhaps surprisingly, it’s impossible to know in advance whether

the aggregated or disaggregated approach is better. It all depends

on the specifics of the situation; the only way to tell is to try both

approaches and compare the forecasting results.

(b) However, in real-world situations characterized by likely model mis-

specification and parameter estimation uncertainty, there are rea-

sons to suspect that the aggregated approach may be preferable.

13That’s why, for example, information on the number of iterations required for convergence is presented
even for estimation of the autoregressive model.

14Hence the notation “µ” for the intercept.
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First, standard (e.g., linear) models fit to aggregated series may be

less prone to specification error, because aggregation can produce

approximately linear relationships even when the underlying disag-

gregated relationships are not linear. Second, if the disaggregated

series depend in part on a common factor (e.g., general business

conditions) then it will emerge more clearly in the aggregate data.

Finally, modeling and forecasting of one aggregated series, as op-

posed to many disaggregated series, relies on far fewer parameter

estimates.

(c) Of course, if our interest centers on the disaggregated components,

then we have no choice but to take a disaggregated approach.

(d) Sometimes, even if interest centers on an aggregate, there may no

data available for it, but there may be data for relevant components.

Consider, for example, forecasting the number of pizzas eaten next

year by Penn students. There’s no annual series available for “pizzas

eaten by Penn students,” but there may be series of Penn enrollment,

annual U.S. pizza consumption, U.S. population, etc. from which

a forecast could be built. This is called “Fermi-izing” the prob-

lem, after the great Italian physicist Enrico Fermi. See Tetlock and

Gardner (2015), chapter 5.

(e) It is possible that an aggregate forecast may be useful in forecasting

disaggregated series. Why? (Hint: See Fildes and Stekler, 2000.)

7. Forecasting an ARMA(2, 2) process.

Consider the ARMA(2, 2) process:

yt = φ1yt−1 + φ2yt−2 + εt + θ1εt−1 + θ2εt−2.
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a. Verify that the optimal 1-step ahead forecast made at time T is

yT+1,T = φ1yT + φ2yT−1 + θ1εT + θ2εT−1.

b. Verify that the optimal 2-step ahead forecast made at time T is

yT+2,T = φ1yT+1,T + φ2yT + θ2εT ,

and express it purely in terms of elements of the time-T information

set.

c. Verify that the optimal 3-step ahead forecast made at time T is

yT+3,T = φ1yT+2,T + φ2yT+1,T ,

and express it purely in terms of elements of the time-T information

set.

d. Show that for any forecast horizon h greater than or equal to three,

yT+h,T = φ1yT+h−1,T + φ2yT+h−2,T .

8. ARMA lag inclusion.

In our MA model fitting for employment, why did we leave the MA(3)

term in the preferred MA(4) model, despite the insignificant p-value?

Discuss costs and benefits of dropping the insignificant MA(3) term.

9. Modeling cyclical dynamics.

As a research analyst at the U.S. Department of Energy, you have been

asked to model non-seasonally-adjusted U.S. imports of crude oil.

(a) Find a suitable time series on the web.

(b) Create a model that captures the trend in the series.
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(c) Adding to the model from part 9b, create a model with trend and

a full set of seasonal dummy variables.

(d) Observe the residuals of the model from part b and their correlo-

gram. Is there evidence neglected dynamics? If so, what to do?

10. Applied ARMA modeling.

Nile.com, a successful on-line bookseller, monitors and forecasts the

number of “hits” per day to its web page. You have daily hits data

for 1/1/98 through 9/28/98.

a. Fit and assess the standard linear, quadratic, and log linear trend

models.

b. For a few contiguous days roughly in late April and early May, hits

were much higher than usual during a big sale. Do you find evidence

of a corresponding group of outliers in the residuals from your trend

models? Do they influence your trend estimates much? How should

you treat them?

c. Model and assess the significance of day-of-week effects in Nile.com

web page hits.

d. Select a final model, consisting only of trend and seasonal components,

to use for forecasting.

e. Use your model to forecast Nile.com hits through the end of 1998.

f. Generalize your earlier trend + seasonal model to allow for cyclical

dynamics, if present, via ARMA(p, q) disturbances. Write the full

specification of your model in general notation (e.g., with p and q left

unspecified).

g. Estimate all models, corresponding to p = 0, 1, 2, 3 and q = 0, 1, 2, 3,

while leaving the original trend and seasonal specifications intact, and

select the one that optimizes SIC.



270CHAPTER 7. CYCLES II: THEWOLD REPRESENTATION AND ITS APPROXIMATION

h. Using the model selected in part 10g, write theoretical expressions for

the 1- and 2-day- ahead point forecasts and 95% interval forecasts,

using estimated parameters.

i. Calculate those point and interval forecasts for Nile.com for 9/29 and

9/30.

11. Mechanics of fitting ARMA models.

On the book’s web page you will find data for daily transfers over

BankWire, a financial wire transfer system in a country responsible for

much of the world’s finance, over a recent span of 200 business days.

a. Is trend or seasonality operative? Defend your answer.

b. Find a parsimonious ARMA(p, q) model that fits well, and defend its

adequacy.

c. Repeat the exercise 11b, this time using only the first 175 days for

model selection and fitting. Is it necessarily the case that the selected

ARMA model will remain the same as when all 200 days are used?

Does yours?

d. Use your estimated model to produce point and interval forecasts for

days 176 through 200. Plot them and discuss the forecast pattern.

e. Compare your forecasts to the actual realizations. Do the forecasts

perform well? Why or why not?

f. Discuss precisely how your software constructs point and interval fore-

casts. It should certainly match our discussion in spirit, but it may

differ in some of the details. Are you uncomfortable with any of the

assumptions made? How, if at all, could the forecasts be improved?
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7.7 Notes

Our discussion of estimation was a bit fragmented; we discussed estimation of

moving average and ARMA models using nonlinear least squares, whereas we

discussed estimation of autoregressive models using ordinary least squares.

A more unified approach proceeds by writing each model as a regression on

an intercept, with a serially correlated disturbance. Thus the moving average

model is

yt = µ+ εt

εt = Θ(L)vt

vt ∼ WN(0, σ2),

the autoregressive model is

yt = µ+ εt

Φ(L)εt = vt

vt ∼ WN(0, σ2),

and the ARMA model is

yt = µ+ εt

Φ(L)εt = Θ(L)vt

vt ∼ WN(0, σ2).

We can estimate each model in identical fashion using nonlinear least squares.

Eviews and other forecasting packages proceed in precisely that way.15

This framework – regression on a constant with serially correlated distur-

bances – has a number of attractive features. First, the mean of the process

is the regression constant term.16 Second, it leads us naturally toward re-

15That’s why, for example, information on the number of iterations required for convergence is presented
even for estimation of the autoregressive model.

16Hence the notation “µ” for the intercept.
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gression on more than just a constant, as other right-hand side variables can

be added as desired. Finally, it exploits the fact that because autoregres-

sive and moving average models are special cases of the ARMA model, their

estimation is also a special case of estimation of the ARMA model.

Our description of estimating ARMA models – compute the autoregressive

representation, truncate it, and estimate the resulting approximate model by

nonlinear least squares – is conceptually correct but intentionally simplified.

The actual estimation methods implemented in modern software are more

sophisticated, and the precise implementations vary across software packages.

Beneath it all, however, all estimation methods are closely related to our

discussion, whether implicitly or explicitly. You should consult your software

manual for details.



Chapter 8

Noise: Conditional Variance

Dynamics

The celebrated Wold decomposition makes clear that every covariance sta-

tionary series may be viewed as ultimately driven by underlying weak white

noise innovations. Hence it is no surprise that every forecasting model dis-

cussed in this book is driven by underlying white noise. To take a simple

example, if the series yt follows an AR(1) process, then yt = φ yt−1 + εt ,

where εt is white noise. In some situations it is inconsequential whether εt

is weak or strong white noise, that is, whether εt is independent, as opposed

to merely serially uncorrelated. Hence, so to simplify matters we sometimes

assume strong white noise, εt

iid

∼ (0, σ2) . Throughout this book, we have

thus far taken that approach, sometimes explicitly and sometimes implicitly.

When εt is independent, there is no distinction between the unconditional

distribution of εt and the distribution of εt conditional upon its past, by def-

inition of independence. Hence σ2 is both the unconditional and conditional

variance of εt . The Wold decomposition, however, does not require that εt be

serially independent; rather it requires only that εt be serially uncorrelated.

If εt is dependent, then its unconditional and conditional distributions will

differ. We denote the unconditional innovation distribution by εt ∼ (0, σ2) .

273
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We are particularly interested in conditional dynamics characterized by het-

eroskedasticity, or time-varying volatility. Hence we denote the conditional

distribution by εt | Ωt−1 ∼ (0, σ2
t ) , where Ωt−1 = εt−1, εt−2, ... . The

conditional variance σ2
t will in general evolve as Ωt−1 evolves, which focuses

attention on the possibility of time-varying innovation volatility.1

Allowing for time-varying volatility is crucially important in certain eco-

nomic and financial contexts. The volatility of financial asset returns, for

example, is often time-varying. That is, markets are sometimes tranquil and

sometimes turbulent, as can readily be seen by examining the time series of

stock market returns in Figure 1, to which we shall return in detail. Time-

varying volatility has important implications for financial risk management,

asset allocation and asset pricing, and it has therefore become central part

of the emerging field of financial econometrics. Quite apart from financial

applications, however, time-varying volatility also has direct implications for

interval and density forecasting in a wide variety of applications: correct

confidence intervals and density forecasts in the presence of volatility fluc-

tuations require time-varying confidence interval widths and time-varying

density forecast spreads. The forecasting models that we have considered

thus far, however, do not allow for that possibility. In this chapter we do so.

8.1 The Basic ARCH Process

Consider the general linear process,

yt = B(L)εt

B(L) =
∞∑
i=0

biL
i

1 In principle, aspects of the conditional distribution other than the variance, such as conditional skewness,
could also fluctuate. Conditional variance fluctuations are by far the most important in practice, however,
so we assume that fluctuations in the conditional distribution of ε are due exclusively to fluctuations in σ2

t .
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∞∑
i=0

b2
i < ∞

b0 = 1

εt ∼ WN(0, σ2) .

We will work with various cases of this process.

Suppose first that εt is strong white noise, εt

iid

∼ WN(0, σ2). Let us

review some results already discussed for the general linear process, which

will prove useful in what follows. The unconditional mean and variance of y

are

E(yt) = 0

and

E(y2
t ) = σ2

∞∑
i=0

b2
i ,

which are both time-invariant, as must be the case under covariance sta-

tionarity. However, the conditional mean of y is time-varying:

E(yt|Ωt−1) =
∞∑
i=1

biεt−i,

where the information set is

Ωt−1 = εt−1, εt−2, ....

The ability of the general linear process to capture covariance stationary

conditional mean dynamics is the source of its power.

Because the volatility of many economic time series varies, one would hope

that the general linear process could capture conditional variance dynamics
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as well, but such is not the case for the model as presently specified: the

conditional variance of y is constant at

E
(
(yt − E(yt | Ωt−1))

2 | Ωt−1

)
= σ2.

This potentially unfortunate restriction manifests itself in the properties of

the h-step-ahead conditional prediction error variance. The minimum mean

squared error forecast is the conditional mean,

E(yt+h | Ωt) =
∞∑
i=0

bh+iεt−i ,

and so the associated prediction error is

yt+h − E(yt+h | Ωt) =
h−1∑
i=0

biεt+h−i ,

which has a conditional prediction error variance of

E
(

(yt+h − E(yt+h | Ωt))
2 | Ωt

)
= σ2

h−1∑
i=0

b2
i .

The conditional prediction error variance is different from the uncondi-

tional variance, but it is not time-varying: it depends only on h, not on the

conditioning information Ωt. In the process as presently specified, the con-

ditional variance is not allowed to adapt to readily available and potentially

useful conditioning information.

So much for the general linear process with iid innovations. Now we extend

it by allowing εt to be weak rather than strong white noise, with a particular

nonlinear dependence structure. In particular, suppose that, as before,

yt = B(L)εt
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B(L) =
∞∑
i=0

biL
i

∞∑
i=0

b2
i < ∞

b0 = 1 ,

but now suppose as well that

εt | Ωt−1 ∼ N(0, σ2
t )

σ2
t = ω + γ(L)ε2

t

ω > 0 γ(L) =

p∑
i=1

γiL
i γi ≥ 0 for all i

∑
γi < 1 .

Note that we parameterize the innovation process in terms of its condi-

tional density,

εt | Ωt−1,

which we assume to be normal with a zero conditional mean and a con-

ditional variance that depends linearly on p past squared innovations. εt is

serially uncorrelated but not serially independent, because the current con-

ditional variance σ2
t depends on the history of εt .2 The stated regularity

conditions are sufficient to ensure that the conditional and unconditional

variances are positive and finite, and that yt is covariance stationary.

The unconditional moments of εt are constant and are given by

E(εt) = 0

2 In particular, σ2
t depends on the previous p values of εt via the distributed lag

γ(L)ε2t .
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and

E(εt − E(εt))
2 =

ω

1 −
∑
γi
.

The important result is not the particular formulae for the unconditional

mean and variance, but the fact that they are fixed, as required for covariance

stationarity. As for the conditional moments of εt , its conditional variance

is time-varying,

E
(
(εt − E(εt | Ωt−1))

2 | Ωt−1

)
= ω + γ(L)ε2

t ,

and of course its conditional mean is zero by construction.

Assembling the results to move to the unconditional and conditional mo-

ments of y as opposed to εt , it is easy to see that both the unconditional mean

and variance of y are constant (again, as required by covariance stationarity),

but that both the conditional mean and variance are time-varying:

E(yt | Ωt−1) =
∞∑
i=1

biεt−i

E
(
(yt − E(yt | Ωt−1))

2 | Ωt−1

)
= ω + γ(L)ε2

t .

Thus, we now treat conditional mean and variance dynamics in a symmet-

ric fashion by allowing for movement in each, as determined by the evolving

information set Ωt−1 . In the above development, εt is called an ARCH(p)

process, and the full model sketched is an infinite-ordered moving average

with ARCH(p) innovations, where ARCH stands for autoregressive condi-

tional heteroskedasticity. Clearly εt is conditionally heteroskedastic, because

its conditional variance fluctuates. There are many models of conditional

heteroskedasticity, but most are designed for cross-sectional contexts, such

as when the variance of a cross-sectional regression disturbance depends on
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one or more of the regressors.3 However, heteroskedasticity is often present as

well in the time-series contexts relevant for forecasting, particularly in finan-

cial markets. The particular conditional variance function associated with

the ARCH process,

σ2
t = ω + γ(L)ε2

t ,

is tailor-made for time-series environments, in which one often sees volatil-

ity clustering, such that large changes tend to be followed by large changes,

and small by small, of either sign. That is, one may see persistence, or se-

rial correlation, in volatility dynamics (conditional variance dynamics), quite

apart from persistence (or lack thereof) in conditional mean dynamics. The

ARCH process approximates volatility dynamics in an autoregressive fashion;

hence the name autoregressive conditional heteroskedasticity. To understand

why, note that the ARCH conditional variance function links today’s con-

ditional variance positively to earlier lagged ε2
t ’s, so that large ε2

t ’s in the

recent past produce a large conditional variance today, thereby increasing

the likelihood of a large ε2
t today. Hence ARCH processes are to conditional

variance dynamics precisely as standard autoregressive processes are to con-

ditional mean dynamics. The ARCH process may be viewed as a model for

the disturbance in a broader model, as was the case when we introduced it

above as a model for the innovation in a general linear process. Alternatively,

if there are no conditional mean dynamics of interest, the ARCH process may

be used for an observed series. It turns out that financial asset returns often

have negligible conditional mean dynamics but strong conditional variance

dynamics; hence in much of what follows we will view the ARCH process as

a model for an observed series, which for convenience we will sometimes call

a “return.”
3 The variance of the disturbance in a model of household expenditure, for example, may depend on

income.
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8.2 The GARCH Process

Thus far we have used an ARCH(p) process to model conditional variance

dynamics. We now introduce the GARCH(p,q) process (GARCH stands for

generalized ARCH), which we shall subsequently use almost exclusively. As

we shall see, GARCH is to ARCH (for conditional variance dynamics) as

ARMA is to AR (for conditional mean dynamics).

The pure GARCH(p,q) process is given by4

yt = εt

εt | Ωt−1 ∼ N(0, σ2
t )

σ2
t = ω + α(L)ε2

t + β(L)σ2
t

α(L) =

p∑
i=1

αiL
i, β(L) =

q∑
i=1

βiL
i

ω > 0, αi ≥ 0, βi ≥ 0,
∑

αi +
∑

βi < 1 .

The stated conditions ensure that the conditional variance is positive and

that yt is covariance stationary.

Back substitution on σ2
t reveals that the GARCH(p,q) process can be

represented as a restricted infinite-ordered ARCH process,

σ2
t =

ω

1 −
∑
βi

+
α(L)

1 − β(L)
ε2

t =
ω

1 −
∑
βi

+
∞∑

i=1

δiε
2
t−i ,

which precisely parallels writing an ARMA process as a restricted infinite-

ordered AR. Hence the GARCH(p,q) process is a parsimonious approximation

to what may truly be infinite-ordered ARCH volatility dynamics.

4 By “pure” we mean that we have allowed only for conditional variance dynamics, by setting yt = εt .
We could of course also introduce conditional mean dynamics, but doing so would only clutter the discussion
while adding nothing new.
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It is important to note a number of special cases of the GARCH(p,q)

process. First, of course, the ARCH(p) process emerges when

β(L) = 0.

Second, if both α(L) and β(L) are zero, then the process is simply iid Gaus-

sian noise with variance ω. Hence, although ARCH and GARCH processes

may at first appear unfamiliar and potentially ad hoc, they are in fact much

more general than standard iid white noise, which emerges as a potentially

highly-restrictive special case.

Here we highlight some important properties of GARCH processes. All

of the discussion of course applies as well to ARCH processes, which are

special cases of GARCH processes. First, consider the second-order moment

structure of GARCH processes. The first two unconditional moments of the

pure GARCH process are constant and given by

E(εt) = 0

and

E(εt − E(εt))
2 =

ω

1 −
∑
αi −

∑
βi
,

while the conditional moments are

E(εt | Ωt−1) = 0

and of course

E
(
(εt − E(εt|Ωt−1))

2|Ωt−1

)
= ω + α(L)ε2

t + β(L)σ2
t .

In particular, the unconditional variance is fixed, as must be the case under

covariance stationarity, while the conditional variance is time-varying. It is no
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surprise that the conditional variance is time-varying – the GARCH process

was of course designed to allow for a time-varying conditional variance – but

it is certainly worth emphasizing: the conditional variance is itself a serially

correlated time series process.

Second, consider the unconditional higher-order (third and fourth) mo-

ment structure of GARCH processes. Real-world financial asset returns,

which are often modeled as GARCH processes, are typically uncondition-

ally symmetric but leptokurtic (that is, more peaked in the center and with

fatter tails than a normal distribution). It turns out that the implied uncondi-

tional distribution of the conditionally Gaussian GARCH process introduced

above is also symmetric and leptokurtic. The unconditional leptokurtosis of

GARCH processes follows from the persistence in conditional variance, which

produces clusters of “low volatility” and “high volatility” episodes associated

with observations in the center and in the tails of the unconditional distri-

bution, respectively. Both the unconditional symmetry and unconditional

leptokurtosis agree nicely with a variety of financial market data.

Third, consider the conditional prediction error variance of a GARCH

process, and its dependence on the conditioning information set. Because

the conditional variance of a GARCH process is a serially correlated random

variable, it is of interest to examine the optimal h-step-ahead prediction,

prediction error, and conditional prediction error variance. Immediately, the

h-step-ahead prediction is

E(εt+h | Ωt) = 0,

and the corresponding prediction error is

εt+h − E(εt+h | Ωt) = εt+h .

This implies that the conditional variance of the prediction error,
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E
(
(εt+h − E(εt+h | Ωt))

2 | Ωt

)
= E(ε2

t+h | Ωt) ,

depends on both h and

Ωt,

because of the dynamics in the conditional variance. Simple calculations

reveal that the expression for the GARCH(p, q) process is given by

E(ε2
t+h | Ωt) = ω

(
h−2∑
i=0

(α(1) + β(1))i

)
+ (α(1) + β(1))h−1σ2

t+1 .

In the limit, this conditional variance reduces to the unconditional variance

of the process,

lim
h→∞

E(ε2
t+h | Ωt) =

ω

1 − α(1) − β(1)
.

For finite h, the dependence of the prediction error variance on the current

information set Ωt can be exploited to improve interval and density forecasts.

Fourth, consider the relationship between ε2
t and σ2

t . The relationship is

important: GARCH dynamics in σ2
t turn out to introduce ARMA dynamics

in ε2
t .5 More precisely, if εt is a GARCH(p,q) process, then

ε2
t

has the ARMA representation

ε2
t = ω + (α(L) + β(L))ε2

t − β(L)νt + νt ,

where

νt = ε2
t − σ2

t

5 Put differently, the GARCH process approximates conditional variance dynamics in the same way that
an ARMA process approximates conditional mean dynamics.
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is the difference between the squared innovation and the conditional variance

at time t. To see this, note that if εt is GARCH(p,q), then

σ2
t = ω + α(L)ε2

t + β(L)σ2
t .

Adding and subtracting

β(L)ε2
t

from the right side gives

σ2
t = ω + α(L)ε2

t + β(L)ε2
t − β(L)ε2

t + β(L)σ2
t

= ω + (α(L) + β(L))ε2
t − β(L)(ε2

t − σ2
t ) .

Adding

ε2
t

to each side then gives

σ2
t + ε2

t = ω + (α(L) + β(L))ε2
t − β(L)(ε2

t − σ2
t ) + ε2

t ,

so that

ε2
t = ω + (α(L) + β(L))ε2

t − β(L)(ε2
t − σ2

t ) + (ε2
t − σ2

t ) ,

= ω + (α(L) + β(L))ε2
t − β(L)νt + νt .

Thus,

ε2
t

is an ARMA((max(p,q)), p) process with innovation νt , where

νt ∈ [−σ2
t , ∞).

ε2
t is covariance stationary if the roots of α(L)+β(L)=1 are outside the
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unit circle.

Fifth, consider in greater depth the similarities and differences between σ2
t

and

ε2
t .

It is worth studying closely the key expression,

νt = ε2
t − σ2

t ,

which makes clear that

ε2
t

is effectively a “proxy” for σ2
t , behaving similarly but not identically, with

νt being the difference, or error. In particular, ε2
t is a noisy proxy: ε2

t is

an unbiased estimator of σ2
t , but it is more volatile. It seems reasonable,

then, that reconciling the noisy proxy ε2
t and the true underlying σ2

t should

involve some sort of smoothing of ε2
t . Indeed, in the GARCH(1,1) case σ2

t

is precisely obtained by exponentially smoothing ε2
t . To see why, consider

the exponential smoothing recursion, which gives the current smoothed value

as a convex combination of the current unsmoothed value and the lagged

smoothed value,

ε̄2
t = γε2

t + (1− γ)ε̄2
t−1 .

Back substitution yields an expression for the current smoothed value as

an exponentially weighted moving average of past actual values:

ε̄2
t =

∑
wjε

2
t−j ,

where

wj = γ(1− γ)j .

Now compare this result to the GARCH(1,1) model, which gives the cur-

rent volatility as a linear combination of lagged volatility and the lagged
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squared return, σ2
t = ω + αε2

t−1 + βσ2
t−1 .

Back substitution yields σ2
t = ω

1−β + α
∑
βj−1ε2

t−j , so that the GARCH(1,1)

process gives current volatility as an exponentially weighted moving average

of past squared returns.

Sixth, consider the temporal aggregation of GARCH processes. By tem-

poral aggregation we mean aggregation over time, as for example when we

convert a series of daily returns to weekly returns, and then to monthly

returns, then quarterly, and so on. It turns out that convergence toward

normality under temporal aggregation is a feature of real-world financial as-

set returns. That is, although high-frequency (e.g., daily) returns tend to

be fat-tailed relative to the normal, the fat tails tend to get thinner under

temporal aggregation, and normality is approached. Convergence to normal-

ity under temporal aggregation is also a property of covariance stationary

GARCH processes. The key insight is that a low-frequency change is simply

the sum of the corresponding high-frequency changes; for example, an annual

change is the sum of the internal quarterly changes, each of which is the sum

of its internal monthly changes, and so on. Thus, if a Gaussian central limit

theorem can be invoked for sums of GARCH processes, convergence to nor-

mality under temporal aggregation is assured. Such theorems can be invoked

if the process is covariance stationary.

In closing this section, it is worth noting that the symmetry and leptokur-

tosis of the unconditional distribution of the GARCH process, as well as the

disappearance of the leptokurtosis under temporal aggregation, provide nice

independent confirmation of the accuracy of GARCH approximations to as-

set return volatility dynamics, insofar as GARCH was certainly not invented

with the intent of explaining those features of financial asset return data.

On the contrary, the unconditional distributional results emerged as unan-

ticipated byproducts of allowing for conditional variance dynamics, thereby

providing a unified explanation of phenomena that were previously believed
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unrelated.

8.3 Extensions of ARCH and GARCH Models

There are numerous extensions of the basic GARCH model. In this section,

we highlight several of the most important. One important class of extensions

allows for asymmetric response; that is, it allows for last period’s squared

return to have different effects on today’s volatility, depending on its sign.6

Asymmetric response is often present, for example, in stock returns.

8.3.1 Asymmetric Response

The simplest GARCH model allowing for asymmetric response is the thresh-

old GARCH, or TGARCH, model.7 We replace the standard GARCH condi-

tional variance function, σ2
t = ω + αε2

t−1 + βσ2
t−1 , with σ2

t = ω + αε2
t−1 + γε2

t−1Dt−1 + βσ2
t−1 ,

where Dt =
1, if εt < 0

0 otherwise .
.

The dummy variable D keeps track of whether the lagged return is posi-

tive or negative. When the lagged return is positive (good news yesterday),

D=0, so the effect of the lagged squared return on the current conditional

variance is simply α. In contrast, when the lagged return is negative (bad

news yesterday), D=1, so the effect of the lagged squared return on the cur-

rent conditional variance is α+γ. If γ = 0, the response is symmetric and we

have a standard GARCH model, but if γ 6= 0 we have asymmetric response

of volatility to news. Allowance for asymmetric response has proved useful

for modeling “leverage effects” in stock returns, which occur when γ <0.8

6 In the GARCH model studied thus far, only the square of last period’s return affects the current
conditional variance; hence its sign is irrelevant.

7 For expositional convenience, we will introduce all GARCH extensions in the context of GARCH(1,1),
which is by far the most important case for practical applications. Extensions to the GARCH(p,q) case are
immediate but notationally cumbersome.

8 Negative shocks appear to contribute more to stock market volatility than do positive shocks. This is
called the leverage effect, because a negative shock to the market value of equity increases the aggregate
debt/equity ratio (other things the same), thereby increasing leverage.
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Asymmetric response may also be introduced via the exponential GARCH

(EGARCH) model,

ln(σ2
t ) = ω + α

∣∣∣ε t−1
σt−1

∣∣∣ + γε t−1
σt−1

+ β ln(σ2
t−1) .

Note that volatility is driven by both size and sign of shocks; hence the model

allows for an asymmetric response depending on the sign of news.9 The

log specification also ensures that the conditional variance is automatically

positive, because σ2
t is obtained by exponentiating ln(σ2

t ) ; hence the name

“exponential GARCH.”

8.3.2 Exogenous Variables in the Volatility Function

Just as ARMA models of conditional mean dynamics can be augmented to

include the effects of exogenous variables, so too can GARCH models of

conditional variance dynamics.

We simply modify the standard GARCH volatility function in the obvious

way, writing

σ2
t = ω + α ε2

t−1 + β σ2
t−1 + γxt ,

where γ is a parameter and x is a positive exogenous variable.10 Allowance

for exogenous variables in the conditional variance function is sometimes

useful. Financial market volume, for example, often helps to explain market

volatility.

9 The absolute “size” of news is captured by |rt−1/σt−1| , and the sign is captured by rt−1/σt−1 .
10 Extension to allow multiple exogenous variables is straightforward.
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8.3.3 Regression with GARCH disturbances and GARCH-M

Just as ARMA models may be viewed as models for disturbances in regres-

sions, so too may GARCH models. We write

yt = β0 + β1xt + εt

εt|Ωt−1 ∼ N(0, σ2
t )

σ2
t = ω + αε2

t−1 + βσ2
t−1 . Consider now a regression model with GARCH

disturbances of the usual sort, with one additional twist: the conditional vari-

ance enters as a regressor, thereby affecting the conditional mean. We write

yt = β0 + β1xt + γσ2
t + εt

εt|Ωt−1 ∼ N(0, σ2
t )

σ2
t = ω + αε2

t−1 + βσ2
t−1 . This model, which is a special case of the

general regression model with GARCH disturbances, is called GARCH-in-

Mean (GARCH-M). It is sometimes useful in modeling the relationship be-

tween risks and returns on financial assets when risk, as measured by the

conditional variance, varies.11

8.3.4 Component GARCH

Note that the standard GARCH(1,1) process may be written as (σ2
t − ω̄) = α(ε2

t−1 − ω̄) + β(σ2
t−1 − ω̄) ,

where ω̄ = ω
1−α−β is the unconditional variance.12 This is precisely the

GARCH(1,1) model introduced earlier, rewritten it in a slightly different but

equivalent form. In this model, short-run volatility dynamics are governed by

the parameters α and β, and there are no long-run volatility dynamics, be-

cause ω̄ is constant. Sometimes we might want to allow for both long-run and
11 One may also allow the conditional standard deviation, rather than the conditional variance, to enter

the regression.
12 ω̄ is sometimes called the “long-run” variance, referring to the fact that the unconditional variance is

the long-run average of the conditional variance.
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short-run, or persistent and transient, volatility dynamics in addition to the

short-run volatility dynamics already incorporated. To do this, we replace ω̄

with a time-varying process, yielding (σ2
t − qt) = α(ε2

t−1 − qt−1) + β(σ2
t−1 − qt−1) ,

where the time-varying long-run volatility, qt , is given by qt = ω + ρ(qt−1 − ω) + φ(ε2
t−1 − σ2

t−1) .

This “component GARCH” model effectively lets us decompose volatility

dynamics into long-run (persistent) and short-run (transitory) components,

which sometimes yields useful insights. The persistent dynamics are governed

by ρ , and the transitory dynamics are governed by α and

β .13

8.3.5 Mixing and Matching

In closing this section, we note that the different variations and extensions of

the GARCH process may of course be mixed. As an example, consider the fol-

lowing conditional variance function: (σ2
t − qt) = α(ε2

t−1 − qt−1) + γ(ε2
t−1 − qt−1)Dt−1 + β(σ2

t − qt−1) + θxt .

This is a component GARCH specification, generalized to allow for asymmet-

ric response of volatility to news via the sign dummy D, as well as effects from

the exogenous variable x.

8.4 Estimating, Forecasting and Diagnosing GARCH

Models

Recall that the likelihood function is the joint density function of the data,

viewed as a function of the model parameters, and that maximum likelihood

estimation finds the parameter values that maximize the likelihood function.

This makes good sense: we choose those parameter values that maximize

the likelihood of obtaining the data that were actually obtained. It turns

13 It turns out, moreover, that under suitable conditions the component GARCH model introduced here
is covariance stationary, and equivalent to a GARCH(2,2) process subject to certain nonlinear restrictions
on its parameters.
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out that construction and evaluation of the likelihood function is easily done

for GARCH models, and maximum likelihood has emerged as the estimation

method of choice.14 No closed-form expression exists for the GARCH maxi-

mum likelihood estimator, so we must maximize the likelihood numerically.15

Construction of optimal forecasts of GARCH processes is simple. In fact,

we derived the key formula earlier but did not comment extensively on it.

Recall, in particular, that

σ2
t+h,t = E

[
ε2

t+h | Ωt

]
= ω

(
h−1∑
i=1

[α(1) + β(1)]i
)

+ [α(1) + β(1)]h−1 σ2
t+1 .

In words, the optimal h-step-ahead forecast is proportional to the optimal

1-step-ahead forecast. The optimal 1-step-ahead forecast, moreover, is easily

calculated: all of the determinants of σ2
t+1 are lagged by at least one period,

so that there is no problem of forecasting the right-hand side variables. In

practice, of course, the underlying GARCH parameters α and β are unknown

and so must be estimated, resulting in the feasible forecast σ̂2
t+h,t formed in

the obvious way. In financial applications, volatility forecasts are often of di-

rect interest, and the GARCH model delivers the optimal h-step-ahead point

forecast, σ2
t+h,t . Alternatively, and more generally, we might not be intrin-

sically interested in volatility; rather, we may simply want to use GARCH

volatility forecasts to improve h-step-ahead interval or density forecasts of εt

, which are crucially dependent on the h-step-ahead prediction error variance,

σ2
t+h,t . Consider, for example, the case of interval forecasting. In the case

of constant volatility, we earlier worked with Gaussian ninety-five percent

14 The precise form of the likelihood is complicated, and we will not give an explicit expression here, but
it may be found in various of the surveys mentioned in the Bibliographical and Computational Notes at the
end of the chapter.

15 Routines for maximizing the GARCH likelihood are available in a number of modern software packages
such as Eviews. As with any numerical optimization, care must be taken with startup values and convergence
criteria to help insure convergence to a global, as opposed to merely local, maximum.
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interval forecasts of the form

yt+h,t ± 1.96σh ,

where σh denotes the unconditional h-step-ahead standard deviation (which

also equals the conditional h-step-ahead standard deviation in the absence of

volatility dynamics). Now, however, in the presence of volatility dynamics

we use

yt+h,t ± 1.96σt+h,t .

The ability of the conditional prediction interval to adapt to changes in

volatility is natural and desirable: when volatility is low, the intervals are

naturally tighter, and conversely. In the presence of volatility dynamics, the

unconditional interval forecast is correct on average but likely incorrect at any

given time, whereas the conditional interval forecast is correct at all times.

The issue arises as to how to detect GARCH effects in observed returns, and

related, how to assess the adequacy of a fitted GARCH model. A key and

simple device is the correlogram of squared returns, ε2
t . As discussed earlier,

ε2
t is a proxy for the latent conditional variance; if the conditional variance

displays persistence, so too will ε2
t .16 Once can of course

also fit a GARCH model, and assess significance of the GARCH coefficients

in the usual way.

Note that we can write the GARCH process for returns as εt = σtvt ,

where vt

iid

∼ N(0, 1) σ2
t = ω + αε2

t−1 + βσ2
t−1 .

Equivalently, the standardized return, v, is iid,

16 Note well, however, that the converse is not true. That is, if ε2t displays persistence, it does not
necessarily follow that the conditional variance displays persistence. In particular, neglected serial correlation
associated with conditional mean dynamics may cause serial correlation in εt and hence also in ε2t . Thus,
before proceeding to examine and interpret the correlogram of ε2t as a check for volatility dynamics, it is
important that any conditional mean effects be appropriately modeled, in which case εt should be interpreted
as the disturbance in an appropriate conditional mean model.
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Figure 8.1: NYSE Returns

ε t
σ t

= vt

iid

∼ N(0, 1) .

This observation suggests a way to evaluate the adequacy of a fitted

GARCH model: standardize returns by the conditional standard deviation

from the fitted GARCH model, σ̂ , and then check for volatility dynam-

ics missed by the fitted model by examining the correlogram of the squared

standardized return, (εt/σ̂t)
2 . This is routinely done in practice.

8.5 Application: Stock Market Volatility

We model and forecast the volatility of daily returns on the New York Stock

Exchange (NYSE) from January 1, 1988 through December 31, 2001, exclud-

ing holidays, for a total of 3531 observations. We estimate using observations

1-3461, and then we forecast observations 3462-3531.

In Figure 8.1 we plot the daily returns, rt . There is no visual evidence

of serial correlation in the returns, but there is evidence of serial correlation

in the amplitude of the returns. That is, volatility appears to cluster: large
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Figure 8.2: Histogram of NYSE Returns

changes tend to be followed by large changes, and small by

small, of either sign. In Figure 8.2 we show the histogram and related statis-

tics for rt . The mean daily return is slightly positive. Moreover, the returns

are approximately symmetric (only slightly left skewed) but highly leptokur-

tic. The Jarque-Bera statistic indicates decisive rejection of normality.

In Figure 8.3 we show the correlogram for rt . The sample autocorrelations

are tiny and usually insignificant relative to the Bartlett standard errors, yet

the autocorrelation function shows some evidence of a systematic cyclical

pattern, and the Q statistics (not shown), which cumulate the information

across all displacements, reject the null of weak white noise. Despite the weak

serial correlation evidently present in the returns, we will proceed for now as

if returns were weak white noise, which is approximately, if not exactly, the

case.17

In Figure 8.4 we plot r2
t . The volatility clustering is even more evident

than it was in the time series plot of returns. Perhaps the strongest evidence

of all comes from the correlogram of r2
t , which we show in Figure 8.5: all

sample autocorrelations of r2
t are positive, overwhelmingly larger than those

of the returns themselves, and statistically significant. As a crude first pass

at modeling the stock market volatility, we fit an AR(5) model directly to r2
t

17 In the Exercises, Problems and Complements at the end of this chapter we model the conditional mean,
as well as the conditional variance, of returns.
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Figure 8.3: Correlogram of NYSE Returns

Figure 8.4: Squared NYSE Returns

; the results appear in Table 8.6. It is interesting to note that the t-statistics

on the lagged squared returns are often significant, even at long lags, yet the

R2 of the regression is low, reflecting the fact that r2
t is a very noisy volatility

proxy. As a more sophisticated second pass at modeling NYSE volatility, we

fit an ARCH(5) model to rt ; the results appear in Table 8.7. The lagged

squared returns appear significant even at long lags. The correlogram of

squared standardized residuals shown in Figure 8.8, however, displays some

remaining systematic behavior, indicating that the ARCH(5) model fails to
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Figure 8.5: Squared NYSE Returns Correlogram

capture all of the volatility dynamics, potentially because even longer lags

are needed.18

18 In the Exercises, Problems and Complements at the end of this chapter we also examine ARCH(p)
models with p>5.
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Figure 8.6: Squared NYSE Returns, AR(5) Model

Figure 8.7: Squared NYSE Returns, ARCH(5) Model



298 CHAPTER 8. NOISE: CONDITIONAL VARIANCE DYNAMICS

Figure 8.8: NYSE Returns, Correlogram of Squared Standardized Residuals from ARCH(5)
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In Table 8.9 we show the results of fitting a GARCH(1,1) model. All of the

parameter estimates are highly statistically significant, and the “ARCH co-

efficient” (α) and “GARCH coefficient” (β) sum to a value near unity (.987),

with β substantially larger then α, as is commonly found for financial as-

set returns. We show the correlogram of squared standardized GARCH(1,1)

residuals in Figure 8.10. All sample autocorrelations are tiny and inside the

Bartlett bands, and they display noticeably less evidence of any systematic

pattern than for the squared standardized ARCH(5) residuals. In Figure 8.11

we show the time series of estimated conditional standard deviations implied

by the estimated GARCH(1,1) model. Clearly, volatility fluctuates a great

deal and is highly persistent. For comparison we show in Figure 8.12 the

series of exponentially smoothed r2
t , computed using a standard smoothing

parameter of .05.19 Clearly the GARCH and exponential smoothing volatility

estimates behave similarly, although not at all identically. The difference re-

flects the fact that the GARCH smoothing parameter is effectively estimated

by the method of maximum likelihood, whereas the exponential smoothing

parameter is set rather arbitrarily. Now, using the model estimated using

observations 1-3461, we generate a forecast of the conditional standard de-

viation for the out-of-sample observations 3462-3531. We show the results

in Figure 8.13. The forecast period begins just following a volatility burst,

so it is not surprising that the forecast calls for gradual volatility reduction.

For greater understanding, in Figure 8.14 we show both a longer history and

a longer forecast. Clearly the forecast conditional standard deviation is re-

verting exponentially to the unconditional standard deviation (.009), per the

formula discussed earlier.

19 For comparability with the earlier-computed GARCH estimated conditional standard deviation, we
actually show the square root of exponentially smoothed r2t .
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Figure 8.9: Squared NYSE Returns, GARCH(1,1)

Figure 8.10: NYSE Returns, Correlogram of Squared Standardized Residuals from
GARCH(1,1)
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Figure 8.11: Estimated Conditional Standard Deviations from GARCH(1,1)

Figure 8.12: Estimated Conditional Standard Deviations - Exponential Smoothing
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Figure 8.13: Conditional Standard Deviations, History and Forecast from GARCH(1,1)

Figure 8.14: Conditional Standard Deviation, History and Extended Forecast from
GARCH(1,1)
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8.6 Exercises, Problems and Complements

1. Volatility dynamics: correlograms of squares.

In the Chapter 3 EPC, we suggested that a time series plot of a squared

residual, e2
t , can reveal serial correlation in squared residuals, which

corresponds to non-constant volatility, or heteroskedasticity, in the levels

of the residuals. Financial asset returns often display little systematic

variation, so instead of examining residuals from a model of returns,

we often examine returns directly. In what follows, we will continue to

use the notation et , but you should interpret et it as an observed asset

return.

a. Find a high frequency (e.g., daily) financial asset return series, et ,

plot it, and discuss your results.

b. Perform a correlogram analysis of et, and discuss your results.

c. Plot e2
t , and discuss your results.

d. In addition to plotting e2
t , examining the correlogram of e2

t often

proves informative for assessing volatility persistence. Why might

that be so? Perform a correlogram analysis of e2
t and discuss your

results.

2. Removing conditional mean dynamics before modeling volatility dynam-

ics. In the application in the text we noted that NYSE stock returns

appeared to have some weak conditional mean dynamics, yet we ignored

them and proceeded directly to model volatility.

a. Instead, first fit autoregressive models using the SIC to guide order

selection, and then fit GARCH models to the residuals. Redo the

entire empirical analysis reported in the text in this way, and discuss

any important differences in the results.
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b. Consider instead the simultaneous estimation of all parameters of

AR(p)-GARCH models. That is, estimate regression models where

the regressors are lagged dependent variables and the disturbances

display GARCH. Redo the entire empirical analysis reported in the

text in this way, and discuss any important differences in the results

relative to those in the text and those obtained in part a above.

3. Variations on the basic ARCH and GARCH models.

Using the stock return data, consider richer models than the pure ARCH

and GARCH models discussed in the text.

a. Estimate, diagnose and discuss a threshold GARCH(1,1) model.

b. Estimate, diagnose and discuss an EGARCH(1,1) model.

c. Estimate, diagnose and discuss a component GARCH(1,1) model.

d. Estimate, diagnose and discuss a GARCH-M model.

4. Empirical performance of pure ARCH models as approximations to volatil-

ity dynamics.

Here we will fit pure ARCH(p) models to the stock return data, including

values of p larger than p=5 as done in the text, and contrast the results

with those from fitting GARCH(p,q) models.

a. When fitting pure ARCH(p) models, what value of p seems adequate?

b. When fitting GARCH(p,q) models, what values of p and q seem ad-

equate?

c. Which approach appears more parsimonious?

5. Direct modeling of volatility proxies.

In the text we fit an AR(5) directly to a subset of the squared NYSE

stock returns. In this exercise, use the entire NYSE dataset.
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a. Construct, display and discuss the fitted volatility series from the

AR(5) model.

b. Construct, display and discuss an alternative fitted volatility series

obtained by exponential smoothing, using a smoothing parameter of

.10, corresponding to a large amount of smoothing, but less than done

in the text.

c. Construct, display and discuss the volatility series obtained by fitting

an appropriate GARCH model.

d. Contrast the results of parts a, b and c above.

e. Why is fitting of a GARCH model preferable in principle to the AR(5)

or exponential smoothing approaches?

6. GARCH volatility forecasting.

You work for Xanadu, a luxury resort in the tropics. The daily tem-

perature in the region is beautiful year-round, with a mean around

76 (Fahrenheit!) and no conditional mean dynamics. Occasional pres-

sure systems, however, can cause bursts of temperature volatility. Such

volatility bursts generally don’t last long enough to drive away guests,

but the resort still loses revenue from fees on activities that are less pop-

ular when the weather isn’t perfect. In the middle of such a period of

high temperature volatility, your boss gets worried and asks you to make

a forecast of volatility over the next ten days. After some experimenta-

tion, you find that daily temperature yt follows 11111 yt|Ωt−1 ∼ N(µ, σ2
t )

, where σ2
t follows a GARCH(1,1) process, σ2

t = ω + αε2
t−1 + βσ2

t−1

.

a. Estimation of your model using historical daily temperature data

yields µ̂ = 76 , ω̂ = 3, α̂ = .6 , and β̂ = 0 . If yesterday’s temper-

ature was 92 degrees, generate point forecasts for each of the next ten

days conditional variance.
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b. According to your volatility forecasts, how many days will it take until

volatility drops enough such that there is at least a 90% probability

that the temperature will be within 4 degrees of 76?

c. Your boss is impressed by your knowledge of forecasting, and asks

you if your model can predict the next spell of bad weather. How

would you answer him?

7. Assessing volatility dynamics in observed returns and in standardized

returns.

In the text we sketched the use of correlograms of squared observed re-

turns for the detection of GARCH, and squared standardized returns

for diagnosing the adequacy of a fitted GARCH model. Examination

of Ljung-Box statistics is an important part of a correlogram analysis.

McLeod and Li (1983) show that the Ljung-Box statistics may be legit-

imately used on squared observed returns, in which case it will have the

usual

χ2
m

distribution under the null hypothesis of independence. Bollerslev and

Mikkelson (1996) argue that one may also use the Ljung-Box statistic

on the squared standardized returns, but that a better distributional

approximation is obtained in that case by using a

χ2
m−k

distribution, where k is the number of estimated GARCH parameters,

to account for degrees of freedom used in model fitting.

8. Allowing for leptokurtic conditional densities.

Thus far we have worked exclusively with conditionally Gaussian GARCH
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models, which correspond to εt = σtvt vt

iid

∼ N(0, 1) , or equivalently,

to normality of the standardized return, εt/σt .

a. The conditional normality assumption may sometimes be violated.

However, Bollerslev and Wooldridge (1992) show that GARCH pa-

rameters are consistently estimated by Gaussian maximum likelihood

even when the normality assumption is incorrect. Sketch some intu-

ition for this result.

b. Fit an appropriate conditionally Gaussian GARCH model to the stock

return data. How might you use the histogram of the standardized

returns to assess the validity of the conditional normality assumption?

Do so and discuss your results.

c. Sometimes the conditionally Gaussian GARCH model does indeed fail

to explain all of the leptokurtosis in returns; that is, especially with

very high-frequency data, we sometimes find that the conditional den-

sity is leptokurtic. Fortunately, leptokurtic conditional densities are

easily incorporated into the GARCH model. For example, in Boller-

slev’s (1987) conditionally Student’s-t GARCH model, the conditional

density is assumed to be Student’s t, with the degrees-of-freedom d

treated as another parameter to be estimated. More precisely, we

write

vt

iid

∼
td

std(td)
.

εt = σtvt

What is the reason for dividing the Student’s t variable, td , by its
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standard deviation, std(td) ? How might such a model be estimated?

9. Optimal prediction under asymmetric loss.

In the text we stressed GARCH modeling for improved interval and den-

sity forecasting, implicitly working under a symmetric loss function. Less

obvious but equally true is the fact that, under asymmetric loss, volatil-

ity dynamics can be exploited to produce improved point forecasts, as

shown by Christoffersen and Diebold (1996, 1997). The optimal predic-

tor under asymmetric loss is not the conditional mean, but rather the

conditional mean shifted by a time-varying adjustment that depends on

the conditional variance. The intuition for the bias in the optimal pre-

dictor is simple – when errors of one sign are more costly than errors

of the other sign, it is desirable to bias the forecasts in such a way as

to reduce the chance of making an error of the more damaging type.

The optimal amount of bias depends on the conditional prediction error

variance of the process because, as the conditional variance grows, so

too does the optimal amount of bias needed to avoid large prediction

errors of the more damaging type. .

10. Multivariate GARCH models.

In the multivariate case, such as when modeling a set of returns rather

than a single return, we need to model not only conditional variances,

but also conditional covariances .

a. Is the GARCH conditional variance specification introduced earlier,

say for the i− th return, σ2
it = ω + αε2

i,t−1 + βσ2
i,t−1 , still appeal-

ing in the multivariate case? Why or why not?

b. Consider the following specification for the conditional covariance be-

tween i− th and j-th returns: σij,t = ω + αεi,t−1εj,t−1 + βσij,t−1 .

Is it appealing? Why or why not?
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c. Consider a fully general multivariate volatility model, in which ev-

ery conditional variance and covariance may depend on lags of every

conditional variance and covariance, as well as lags of every squared

return and cross product of returns. What are the strengths and

weaknesses of such a model? Would it be useful for modeling, say, a

set of five hundred returns? If not, how might you proceed?

8.7 Notes

This chapter draws upon the survey by Diebold and Lopez (1995), which may

be consulted for additional details. Other broad surveys include Bollerslev,

Chou and Kroner

(1992), Bollerslev, Engle and Nelson (1994), Taylor (2005) and Ander-

sen et al. (2007). Engle (1982) is the original development of the ARCH

model. Bollerslev (1986) provides the important GARCH extension, and

Engle (1995) contains many others. Diebold (1988) shows convergence to

normality under temporal aggregation. TGARCH traces to Glosten, Jagan-

nathan and Runkle (1993), and EGARCH to Nelson (1991). Engle, Lilien and

Robins (1987) introduce the GARCH-M model, and Engle and Lee (1999)

introduce component GARCH. Recently, methods of volatility measurement,

modeling and forecasting have been developed that exploit the increasing

availability of high-frequency financial asset return data. For a fine overview,

see Dacorogna et al. (2001), and for more recent developments see Andersen,

Bollerslev, Diebold and Labys (2003) and Andersen, Bollerslev and Diebold

(2006). For insights into the emerging field of financial econometrics, see

Diebold (2001) and many of the other papers in the same collection.
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Chapter 9

Assembling the Components: U.S.

Liquor Sales

Thus far we’ve focused on modeling trend, seasonals, and cycles one at a

time. In Chapter 5, we introduced models and forecasts of trends and sea-

sonality, respectively. Although cycles were likely present in the retail sales

and housing starts series that we examined empirically, we simply ignored

them. In Chapters 6 and 7 we introduced models and forecasts of cycles. We

forecasted employment using autoregressive models. We didn’t need trends

or seasonals, because our employment series had no trend or seasonality.

In many forecasting situations, however, more than one component is

needed to capture the dynamics in a series to be forecast – frequently they’re

all needed. Here we assemble our tools for forecasting trends, seasonals, and

cycles; we use regression on a trend and calendar-effect dummies, and we

capture cyclical dynamics by allowing for autoregressive effects in the regres-

sion disturbances, or by directly including lagged dependent variables in the

regression.

311
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9.1 Serially Correlated Disturbances

The full model is:

yt = Tt(θ) +
s∑
i=1

γiDit + εt

Φ(L)εt = vt

Φ(L) = 1− φ1L− ...− φpLp

vt ∼ WN(0, σ2).

Tt(θ) is a trend, with underlying parameters θ. For example, linear trend has

θ = β1 and

Tt(θ) = β1TIMEt,

and quadratic trend has θ = (β1, β2) and

Tt(θ) = β1TIMEt + β2TIME2
t .

In addition to the trend, we include seasonal dummies.1,2 The disturbances

follow an AR(p) process. In any particular application, of course, various

trend effects, seasonal and other calendar effects, and autoregressive cycli-

cal effects may not be needed and so could be dropped.3 Finally, vt is the

underlying white noise shock that drives everything.

Now consider constructing an h-step-ahead point forecast at time T , yT+h,T .

At time T + h,

yT+h = TT+h(θ) +
s∑
i=1

γiDi,T+h + εT+h.

Projecting the right-hand side variables on what’s known at time T (that is,

1Note that, because we include a full set of seasonal dummies, the trend does not contain an intercept,
and we don’t include an intercept in the regression.

2Holiday and trading-day dummies could could of course also be included if relevant.
3If the seasonal dummies were dropped, then we’d include an intercept in the regression.
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the time-T information set, ΩT ), yields the point forecast

yT+h,T = TT+h(θ) +
s∑
i=1

γiDi,T+h + εT+h,T .

As with the pure trend and seasonal models discussed earlier, the trend and

seasonal variables on the right-hand side are perfectly predictable. The only

twist concerns the cyclical behavior that may be lurking in the disturbance

term, future values of which don’t necessarily project to zero, because the

disturbance is no longer necessarily white noise. Instead, we construct εT+h,T

using the methods we developed for forecasting cycles.

As always, we make the point forecast operational by replacing unknown

parameters with estimates, yielding

ŷT+h,T = TT+h(θ̂) +

sγ̂i∑
i=1

Di,T+h + ε̂T+h,T .

To construct ε̂T+h,T , in addition to replacing the parameters in the formula

for εT+h,T with estimates, we replace the unobservable disturbances, the εt’s,

with the observable residuals, the et’s.

The complete h-step-ahead density forecast under normality is

N(ŷT+h,T , σ̂
2
h).

where σ̂2
h is the operational estimate of the variance of the error in forecasting

εT+h.

Once again, we don’t actually have to do any of the computations just

discussed; rather, the computer does them all for us. So let’s get on with an

application, now that we know what we’re doing.
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(a) Liquor Sales in Levels, 1968 - 1986 (b) Log Liquor Sales, 1968 - 1993

Figure 9.1: Liquor Sales

9.2 Lagged Dependent Variables

We use:

yt = φ1yt−1 + φ2yt−2 + ...+ φpyt−p + Tt(θ) +
s∑
i=1

γiDit + εt

εt ∼ WN(0, σ2).

9.2.1 Case Study: Forecasting Liquor Sales with Deterministic

Trends and Seasonals

We’ll forecast monthly U.S. liquor sales. In Figure 9.1a, we show the history

of liquor sales, 1968.01 - 1993.12. Notice its pronounced seasonality – sales

skyrocket during the Christmas season. In Figure 9.1b we show log liquor

sales; we take logs to stabilize the variance, which grows over time.4 The

variance of log liquor sales is more stable, and it’s the series for which we’ll

build forecasting models.5

4The nature of the logarithmic transformation is such that it “compresses” an increasing variance. Make
a graph of log(x) as a function of x, and you’ll see why.

5From this point onward, for brevity we’ll simply refer to “liquor sales,” but remember that we’ve taken
logs.
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(a) Liquor Sales, Quadratic Trend Regression

(b) Liquor Sales, Quadratic Trend Regression - Residual Plot

Figure 9.2: Liquor Sales: Quadratic Trend Model

Liquor sales dynamics also feature prominent trend and cyclical effects.

Liquor sales trend upward, and the trend appears nonlinear in spite of the

fact that we’re working in logs. To handle the nonlinear trend, we adopt a

quadratic trend model (in logs). The estimation results are in Table 9.2a.

The residual plot (Figure 9.2b) shows that the fitted trend increases at a

decreasing rate; both the linear and quadratic terms are highly significant.

The adjusted R2 is 89%, reflecting the fact that trend is responsible for a

large part of the variation in liquor sales. The standard error of the regression

is .125; it’s an estimate of the standard deviation of the error we’d expect

to make in forecasting liquor sales if we accounted for trend but ignored
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Figure 9.3: Liquor Sales, Quadratic Trend - Residual Correlogram

seasonality and serial correlation. The Durbin-Watson statistic provides no

evidence against the hypothesis that the regression disturbance is white noise.

The residual plot, however, shows obvious residual seasonality. The Durbin-

Watson statistic missed it, evidently because it’s not designed to have power

against seasonal dynamics.6 The residual plot also suggests that there may be

a cycle in the residual, although it’s hard to tell (hard for the Durbin-Watson

statistic as well), because the pervasive seasonality swamps the picture and

makes it hard to infer much of anything.

The residual correlogram (Table 9.3) and its graph (Figure 9.4) confirm

the importance of the neglected seasonality. The residual sample autocor-

6Recall that the Durbin-Watson test is designed to detect simple AR(1) dynamics. It also has the ability
to detect other sorts of dynamics, but evidently not those relevant to the present application, which are very
different from a simple AR(1).
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Figure 9.4: Liquor Sales, Quadratic Trend Regression - Residual Sample Autocorrelation

relation function has large spikes, far exceeding the Bartlett bands, at the

seasonal displacements, 12, 24, and 36. It indicates some cyclical dynamics

as well; apart from the seasonal spikes, the residual sample autocorrelation

and partial autocorrelation functions oscillate, and the Ljung-Box statistic

rejects the white noise null hypothesis even at very small, non-seasonal, dis-

placements.

In Table 9.5a we show the results of regression on quadratic trend and a

full set of seasonal dummies. The quadratic trend remains highly significant.

The adjusted R2 rises to 99%, and the standard error of the regression falls
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to .046, which is an estimate of the standard deviation of the forecast error

we expect to make if we account for trend and seasonality but ignore serial

correlation. The Durbin-Watson statistic, however, has greater ability to

detect serial correlation now that the residual seasonality has been accounted

for, and it sounds a loud alarm.

The residual plot of Figure 9.5b shows no seasonality, as that’s now picked

up by the model, but it confirms the Durbin-Watson’s warning of serial cor-

relation. The residuals are highly persistent, and hence predictable. We

show the residual correlogram in tabular and graphical form in Table 9.6 and

Figure 9.7. The residual sample autocorrelations oscillate and decay slowly,

and they exceed the Bartlett standard errors throughout. The Ljung-Box

test strongly rejects the white noise null at all displacements. Finally, the

residual sample partial autocorrelations cut off at displacement 3. All of this

suggests that an AR(3) would provide a good approximation to the distur-

bance’s Wold representation.

In Table 9.8a, then, we report the results of estimating a liquor sales model

with quadratic trend, seasonal dummies, and AR(3) disturbances. The R2

is now 100%, and the Durbin-Watson is fine. One inverse root of the AR(3)

disturbance process is estimated to be real and close to the unit circle (.95),

and the other two inverse roots are a complex conjugate pair farther from

the unit circle. The standard error of this regression is an estimate of the

standard deviation of the forecast error we’d expect to make after modeling

the residual serial correlation, as we’ve now done; that is, it’s an estimate of

the standard deviation of v.7

We show the residual plot in Figure 9.8b and the residual correlogram

in Table 9.9 and Figure fig: liquor sales quadratic seasonal dummies and

ar(3) residual sample autocorrelation. The residual plot reveals no patterns;

instead, the residuals look like white noise, as they should. The residual

7Recall that v is the innovation that drives the ARMA process for the regression disturbance, ε. It’s a
very small .027, roughly half that obtained when we ignored serial correlation.
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sample autocorrelations and partial autocorrelations display no patterns and

are mostly inside the Bartlett bands. The Ljung-Box statistics also look good

for small and moderate displacements, although their p-values decrease for

longer displacements.

All things considered, the quadratic trend, seasonal dummy, AR(3) speci-

fication seems tentatively adequate. We also perform a number of additional

checks. In Figure 9.11, we show a histogram and normality test applied to the

residuals. The histogram looks symmetric, as confirmed by the skewness near

zero. The residual kurtosis is a bit higher then three and causes Jarque-Bera

test to reject the normality hypothesis with a p-value of .02, but the residuals

nevertheless appear to be fairly well approximated by a normal distribution,

even if they may have slightly fatter tails.

Now we use the estimated model to produce forecasts. In Figure 9.12 we

show the history of liquor sales and a 12-month-ahead extrapolation forecast

for 1994.8 To aid visual interpretation, we show only two years of history.

The forecast looks reasonable. It’s visually apparent that the model has

done a good job of picking up the seasonal pattern, which dominates the

local behavior of the series. In Figure 9.13, we show the history, the forecast,

and the 1994 realization. The forecast was very good!

In Figure 9.14 we show four years of history together with a 60-month-

ahead (five year) extrapolation forecast, to provide a better feel for the dy-

namics in the forecast. The figure also makes clear the trend forecast is

slightly downward . To put the long-horizon forecast in historical context,

we show in Figure 13 the 60-month-ahead forecast together with the com-

plete history. Finally, in Figure 14, we show the history and point forecast of

the level of liquor sales (as opposed to log liquor sales), which we obtain by

exponentiating the forecast of log liquor sales.9

8We show the point forecast together with 95% intervals.
9Recall that exponentiating “undoes” a natural logarithm.
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(a) Liquor Sales, Quadratic Trend with Seasonal Dummies

(b) Liquor Sales, Quadratic Trend with Seasonal Dummies - Residual Plot

Figure 9.5: Liquor Sales - Trend and Seasonal Model
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Figure 9.6: Liquor Sales, Quadratic Trend with Seasonal Dummies - Residual Correlogram
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Figure 9.7: Liquor Sales, Quadratic Trend with Seasonal Dummies - Residual Sample Au-
tocorrelation
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(a) Liquor Sales, Quadratic Trend with Seasonal Dummies and AR(3)

(b) Liquor Sales, Quadratic Trend with Seasonal Dummies and AR(3) Disturbances - Residual Plot

Figure 9.8: Liquor Sales - Trend, Seasonal, and AR(3) Model
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Figure 9.9: Liquor Sales, Quadratic Trend with Seasonal Dummies and AR(3) Disturbances
- Residual Correlogram
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Figure 9.10: Liquor Sales, Quadratic Trend with Seasonal Dummies and AR(3) Disturbances
- Residual Sample Autocorrelation
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Figure 9.11: Liquor Sales, Quadratic Trend with Seasonal Dummies and AR(3) Disturbances
- Residual Histogram and Normality test

Figure 9.12: Liquor Sales: History and 12-Month-Ahead Forecast
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Figure 9.13: Liquor Sales: History, 12-Month-Ahead Forecast, and Realization

Figure 9.14: Liquor Sales: History and Four-Year-Ahead Forecast
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9.3 Exercises, Problems and Complements

1. Serially correlated disturbances vs. lagged dependent variables. Esti-

mate the quadratic trend model for log liquor sales with seasonal dum-

mies and three lags of the dependent variable included directly. Discuss

your results and compare them to those we obtained when we instead al-

lowed for AR(3) disturbances in the regression. Which model is selected

by AIC and SIC?

2. Assessing the adequacy of the liquor sales forecasting model determinis-

tic trend specification. Critique the liquor sales forecasting model that

we adopted (log liquor sales with quadratic trend, seasonal dummies,

and AR(3) disturbances).10

a. If the trend is not a good approximation to the actual trend in the

series, would it greatly affect short-run forecasts? Long-run forecasts?

b. How might you fit and assess the adequacy of a broken linear trend?

How might you decide on the location of the break point?

3. Improving non-trend aspects of the liquor sales forecasting model.

a. Recall our argument that best practice requires using a χ2
m−k dis-

tribution rather than a χ2
m distribution to assess the significance of

Q-statistics for model residuals, where m is the number of autocorre-

lations included in the Q statistic and k is the number of parameters

estimated. In several places in this chapter, we failed to heed this

advice when evaluating the liquor sales model. If we were instead to

compare the residual Q-statistic p-values to a χ2
m−k distribution, how,

if at all, would our assessment of the model’s adequacy change?

b. Return to the log-quadratic trend model with seasonal dummies, allow

for ARMA(p, q) disturbances, and do a systematic selection of p and
10I thank Ron Michener, University of Virginia, for suggesting parts d and f.
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q using AIC and SIC. Do AIC and SIC select the same model? If

not, which do you prefer? If your preferred disturbance model differs

from the AR(3) that we used, replicate the analysis in the text using

your preferred model, and discuss your results.

c. Discuss and evaluate another possible model improvement: inclusion

of an additional dummy variable indicating the number of Fridays

and/or Saturdays in the month. Does this model have lower AIC or

SIC than the final model used in the text? Do you prefer it to the

one in the text? Why or why not?

9.4 Notes
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Part IV

Forecast Evaluation and Combination
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Chapter 10

Point Forecast Evaluation

As we’ve stressed repeatedly, good forecasts lead to good decisions. The im-

portance of forecast evaluation techniques follows immediately. Given a track

record of forecasts, yt+h,t, and corresponding realizations, yt+h, we naturally

want to monitor and improve forecast performance. In this chapter we show

how to do so. We discuss both absolute aspects of forecast evaluation, focus-

ing on methods for checking forecast optimality, and relative aspects, focusing

on methods for ranking forecast accuracy, quite apart from optimality.

10.1 Absolute Standards for Point Forecasts

Think about evaluating a single forecast, in isolation. Evaluating a single

forecast amounts to checking whether it has the properties expected of an

optimal forecast. Denote by yt the covariance stationary time series to be

forecast. The Wold representation is

yt = µ+ εt + b1εt−1 + b2εt−2 + ...

εt ∼ WN(0, σ2).

Thus the h-step-ahead linear least-squares forecast is

yt+h,t = µ+ bhεt + bh+1εt−1 + ...

333
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and the corresponding h-step-ahead forecast error is

et+h,t = yt+h − yt+h,t = εt+h + b1εt+h−1 + ...+ bh−1εt+1,

with variance

σ2
h = σ2

(
1 +

h−1∑
i=1

b2
i

)
.

The key property of optimal forecast errors, from which all others follow,

(including those cataloged below), is that they should be unforecastable on

the basis of information available at the time the forecast was made. This

unforecastability principle is valid in great generality; it holds, for exam-

ple, regardless of whether linear-projection optimality or conditional-mean

optimality is of interest, regardless of whether the relevant loss function is

quadratic, and regardless of whether the series being forecast is stationary.

Many tests of aspects of optimality are based on the unforecastability prin-

ciple. 1-step-ahead errors, for example, had better be white noise, because

otherwise we could forecast the errors using information readily available

when the forecast is made. Indeed at least four key properties of optimal

forecasts, which we can easily check, follow immediately from the unfore-

castability principle:

a. Optimal forecasts are unbiased

b. Optimal forecasts have 1-step-ahead errors that are white noise

c. Optimal forecasts have h-step-ahead errors that are at most MA(h− 1)

d. Optimal forecasts have h-step-ahead errors with variances that are non-

decreasing in h and that converge to the unconditional variance of the

process.
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10.1.1 Are errors zero-mean?

If the forecast is unbiased, then the forecast error has a zero mean. A va-

riety of tests of the zero-mean hypothesis can be performed, depending on

the assumptions we’re willing to maintain. For example, if et+h,t is Gaus-

sian white noise (as might be reasonably the case for 1-step-ahead errors),

then the standard t-test is the obvious choice. We would simply regress the

forecast error series on a constant and use the reported t-statistic to test the

hypothesis that the population mean is zero. If the errors are non-Gaussian

but remain iid, then the t-test is still applicable in large samples.

If the forecast errors are dependent, then more sophisticated procedures

are required. We maintain the framework of regressing on a constant, but we

must “correct” for any serial correlation in the disturbances. Serial correla-

tion in forecast errors can arise for many reasons. Multi-step-ahead forecast

errors will be serially correlated, even if the forecasts are optimal, because of

the forecast-period overlap associated with multi-step-ahead forecasts. More

generally, serial correlation in forecast errors may indicate that the forecasts

are suboptimal. The upshot is simply that when regressing forecast errors

on an intercept, we need to be sure that any serial correlation in the distur-

bance is appropriately modeled. A reasonable starting point for a regression

involving h-step-ahead forecast errors is MA(h−1) disturbances, which we’d

expect if the forecast were optimal. The forecast may, of course, not be op-

timal, so we don’t adopt MA(h − 1) disturbances uncritically; instead, we

try a variety of models using the AIC and SIC to guide selection in the usual

way.

10.1.2 Are 1-step-ahead errors white noise?

Under various sets of maintained assumptions, we can use standard tests

of the white noise hypothesis. For example, the sample autocorrelation and
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partial autocorrelation functions, together with Bartlett asymptotic standard

errors, are often useful in that regard. Tests based on the first autocorrelation

(e.g., the Durbin-Watson test), as well as more general tests, such as the Box-

Pierce and Ljung-Box tests, are useful as well.

10.1.3 Are h-step-ahead errors are at most MA(h− 1)?

The MA(h− 1) structure implies a cutoff in the forecast error’s autocorrela-

tion function beyond displacement h−1. This immediately suggests examin-

ing the statistical significance of the sample autocorrelations beyond displace-

ment h − 1 using the Bartlett standard errors. In addition, we can regress

the errors on a constant, allowing for MA(q) disturbances with q > (h− 1),

and test whether the moving-average parameters beyond lag h− 1 are zero.

10.1.4 Are h-step-ahead error variances non-decreasing in h?

It’s often useful to examine the sample h-step-ahead forecast error variances

as a function of h, both to be sure they’re non-decreasing in h and to see

their pattern, which may convey useful information.

10.1.5 Are errors orthogonal to available information?

The tests above make incomplete use of the unforecastability principle, in-

sofar as they assess only the univariate properties of the errors. We can

make a more complete assessment by broadening the information set and as-

sessing optimality with respect to various sets of information, by estimating

regressions of the form

et+h,t = α0 +
∑

αixit + ut.

The hypothesis of interest is that all the α’s are zero, which is a necessary

condition for forecast optimality (orthogonality) with respect to available
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information.

The particular case of testing optimality with respect to yt+h,t is very

important in practice. (Note that yt+h,t is obviously in the time-t information

set.) The relevant regression is

et+h,t = α0 + α1yt+h,t + ut,

and optimality corresponds to (α0, α1) = (0, 0).

If the above regression seems a little strange to you, consider what may

seem like a more natural approach to testing optimality, regression of the

realization on the forecast:

yt+h = β0 + β1yt+h,t + ut.

This is called a “Mincer-Zarnowitz regression.” If the forecast is opti-

mal with respect to the information used to construct it, then we’d expect

(β0, β1) = (0, 1), in which case

yt+h = yt+h,t + ut.

Note, however, that if we start with the regression

yt+h = β0 + β1yt+h,t + ut,

and then subtract yt+h,t from each side, we obtain

et+h,t = α0 + α1yt+h,t + ut,

where (α0, α1) = (0, 0) when (β0, β1) = (0, 1). Thus, the two approaches

are identical. We can regress the error on an intercept and the forecast and

test (0, 0), or we can regress the realization on an intercept and the forecast

and test (0, 1).
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10.2 Relative Standards for Point Forecasts

Now think about ranking a set of forecasts, quite apart from how any or all of

them fare regarding the absolute optimality criteria assessed in section 10.1.

10.2.1 Accuracy Rankings via Expected Loss

The crucial object in measuring forecast accuracy is the loss function, L(yt+h, yt+h,t),

often restricted to L(et+h,t), which charts the “loss,” “cost,” or “disutility”

associated with various pairs of forecasts and realizations.1 In addition to

the shape of the loss function, the forecast horizon h is of crucial importance.

Rankings of forecast accuracy may of course be very different across different

loss functions and different horizons.

Let’s discuss a few accuracy measures that are important and popular.

Accuracy measures are usually defined on the forecast errors,

et+h,t = yt+h − yt+h,t,

or percent errors,

pt+h,t = (yt+h − yt+h,t)/yt+h.

Mean error measures forecast-error location, which is one component of

accuracy. In population we write

µet+h,t = E(et+h,t),

and in sample we write

µ̂et+h,t =
1

T

T∑
t=1

et+h,t.

The mean error is the forecast bias. Other things the same, we prefer a

1Because in many applications the loss function will be a direct function of the forecast error,
L(yt, yt+h,t) = L(et+h,t), we write L(et+h,t) from this point on to economize on notation, while recog-
nizing that certain loss functions (such as direction-of-change) don’t collapse to the L(et+h,t) form.
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forecast with small bias.

Error variance measures dispersion of the forecast errors, which is an-

other component of accuracy. In population we write

σ2
et+h,t

= E(et+h,t − µet+h,t)2,

and in sample we write

σ̂2
et+h,t

=
1

T

T∑
t=1

(et+h,t − µ̂et+h,t)2.

Other things the same, we prefer a forecast with small error variance.

Although the mean error and the error variance are components of accu-

racy, neither provides an overall accuracy measure. For example, one forecast

might have a small µ̂et+h,t but a large σ̂2
et+h,t

, and another might have a large

µ̂et+h,t and a small σ̂2
et+h,t

. Hence we would like an accuracy measure that

somehow incorporates both the mean error and error variance.

The mean squared error does just that. It is the most common overall

accuracy measure, by far. In population we write

MSEet+h,t = E(et+h,t)
2,

and in sample we write

M̂SEet+h,t =
1

T

T∑
t=1

e2
t+h,t.

This “bias-variance tradeoff” is a crucially important insight for forecasting.

Among other things, it highlights the fact that bias is not necessarily “bad,”

under quadratic loss (MSE). We’d be happy, for example, to take a small

bias increase in exchange for a massive variance reduction.

We sometimes take square roots to preserve units, yielding the root mean
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squared error. In population we write

RMSEet+h,t =
√
E(et+h,t)2,

and in sample we write

R̂MSEet+h,t =

√√√√ 1

T

T∑
t=1

e2
t+h,t.

To understand the meaning of “preserving units,” and why it’s sometimes

helpful to do so, suppose that the forecast errors are measured in dollars.

Then the mean squared error, which is built up from squared errors, is mea-

sured in dollars squared. Taking square roots – that is, moving from MSE to

RMSE – brings the units back to dollars.

MSE can be decomposed into bias and variance components, reflecting the

tradeoff between bias and variance forecast accuracy under quadratic loss. In

particular, MSE can be decomposed into the sum of variance and squared

bias. In population we write

MSEet+h,t = σ2
et+h,t

+ µ2
et+h,t

,

and in sample we write

M̂SEet+h,t = σ̂2
et+h,t

+ µ̂2
et+h,t

.

Mean absolute error is a less popular, but nevertheless common, overall

accuracy measure. In population we write

MAEet+h,t = E|et+h,t|,
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and in sample we write

M̂AE =
1

T

T∑
t=1

|et+h,t|.

When using MAE we don’t have to take square roots to preserve units.

10.2.2 On MSE vs. MAE

Introspection suggests using MAE – not MSE – as the canonical benchmark

loss function. Consider using the distribution of e directly, ranking forecasts

by the distance of F (e) from F ∗(·), the unit step function at 0 (the cdf of

errors from a perfect forecast, which are 0 w.p. 1). That is, rank forecasts by

SED(F, F ∗) =

∫ ∞
−∞
|F (e)− F ∗(e)| de,

where smaller is better. We call SED(F, F ∗) the stochastic error distance.

In Figure 10.1a we show SED(F, F ∗), and in Figure 10.1b we provide an

example of two error distributions such that one would prefer F1 to F2 under

SED(F, F ∗).

We motivated SED(F, F ∗) as directly appealing and intuitive. It turns

out, moreover, that SED(F, F ∗) is intimately connected to one, and only one,

traditionally-invoked loss function, and it is not quadratic. In particular, for

any forecast error e, with cumulative distribution function F (e) such that

E(|e|) <∞, we have

SED(F, F ∗) =

∫ 0

−∞
F (e) de+

∫ ∞
0

[1− F (e)] d e = E(|e|). (10.1)

That is, SED(F, F ∗) equals expected absolute loss for any error distribution.

Hence if one is comfortable with SED(F, F ∗) and wants to use it to evaluate

forecast accuracy, then one must also be comfortable with expected absolute-

error loss and want to use it to evaluate forecast accuracy. The two criteria
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(a) c.d.f. of e. Under the SED(F, F ∗) criterion, we prefer smaller SED(F, F ∗) = SED−(F, F ∗)+SED+(F, F ∗).

(b) Two forecast error distributions. Under the SED(F, F ∗) criterion, we prefer F1(e) to F2(e).

Figure 10.1: Stochastic Error Distance (SED(F, F ∗))
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are identical.

10.2.3 Benchmark Comparisons

It is sometimes of interest to compare forecast performance to that of an

allegedly-naive benchmark.

Predictive R2

Recall the formula for R2,

R2 = 1−
∑T

t=1 e
2
t∑T

t=1(yt − ȳ)2
,

where et is the in-sample regression residual. If we replace the et’s with

et,t−1’s, out-of-sample 1-step forecast errors, then we get the predictive R2,

R2 = 1−
∑T

t=1 e
2
t,t−1∑T

t=1(yt − ȳ)2
,

Predictive R2 compares an estimate of 1-step-ahead out-of-sample forecast

error variance to an estimate of unconditional variance. Put differently, it

compares actual 1-step forecast accuracy to that of the historical mean fore-

cast, ȳ. The hope is that the former is much smaller than the latter, in which

case the predictive R2 will be near 1.

h-step-ahead versions of predictive R2’s are immediate. We simply replace

et,t−1 with et,t−h in the formulas.

Theil’s U-Statistic

The so-called “Theil U-statistic” is just a predictive R2, but we change the

benchmark from the historical mean forecast, ȳ , to a “no change” forecast,
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yt−1,

U = 1−
∑T

t=1 e
2
t,t−1∑T

t=1(yt − yt−1)2
.

In the meteorological literature measures like U are called “skill scores,”

because they assess actual skill relative to a potentially-naive forecast.

It is important to note that allegedly-naive benchmarks may not be so

naive. For example, many economic variables may in fact be nearly random

walks, in which case forecasters will have great difficulty beating the random

walk through no fault of their own (i.e., the predictive R2 relative to a random

walk “no-change” forecast given by Theil’s U may be near 0)!

10.2.4 Measures of Forecastability

Forecastability measures are a leading example of benchmark comparisons,

as we discuss them here.

It is natural and informative to judge forecasts by their accuracy. How-

ever, actual and forecasted values will differ, even for good forecasts. To take

an extreme example, consider a zero-mean white noise process. The optimal

linear forecast under quadratic loss in this case is simply zero, so the paths of

forecasts and realizations will clearly look different. These differences illus-

trate the inherent limits to predictability, even when using optimal forecasts.

The extent of a series’ predictability depends on how much information the

past conveys regarding future values of this series; as a result, some processes

are inherently easy to forecast, and others are more difficult. Note also that

predictability and volatility are different concepts; predictability is about the

ratio of conditional to unconditional variance, whereas volatility is simply

about unconditional variance.

Below we discuss some of the difficulties involved in predictability mea-

surement and propose a simple measure of relative predictability based on the

ratio of the expected loss of an optimal short-run forecast to the expected loss
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of an optimal long-run forecast. Our measure allows for covariance station-

ary or difference stationary processes, univariate or multivariate information

sets, general loss functions, and different forecast horizons of interest. First

we propose parametric methods for estimating the predictability of observed

series, and then we discuss alternative nonparametric measures, survey-based

measures, and more.

Population Measures

The expected loss of an optimal forecast will in general exceed zero, which

illustrates the inherent limits to predictability, even when using optimal fore-

casts. Put differently, poor forecast accuracy does not necessarily imply that

the forecaster failed. The extent of a series’ predictability in population de-

pends on how much information the past conveys regarding the future; given

an information set, some processes are inherently easy to forecast, and others

are more difficult.

In measuring predictability it is important to keep two points in mind.

First, the question of whether a series is predictable or not should be replaced

by one of how predictable it is. Predictability is always a matter of degree.

Second, the question of how predictable a series is cannot be answered in

general. We have to be clear about the relevant forecast horizon and loss

function. For example, a series may be highly predictable at short horizons,

but not at long horizons.

A natural measure of the forecastability of covariance stationary series

under squared-error loss, patterned after the familiar regression R2, is

G = 1− var(et+j,t)

var(yt+j)
,

where ŷt+j,t is the optimal (i.e., conditional mean) forecast and et+j,t = yt+j − ŷt+j,t.
We can also relax several constraints that limit the broad applicability of

the predictive R2 above. Its essence is basing measures of predictability on
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the difference between the conditionally expected loss of an optimal short-run

forecast, E(L(et+j,t)), and that of an optimal long-run forecast, E(L(et+k,t)),,

j � k, , where E(·) denotes the mathematical expectation conditional on

the information set Ω. If E(L(et+j,t))�E(L(et+k,t)), we say that the series is

highly predictable at horizon j relative to k, and if E(L(et+j,t)) ≈E(L(et+k,t)).

we say that the series is nearly unpredictable at horizon j relative to k. Thus,

we define a general measure of predictability as

P (L,Ω, j, k) = 1− E(L(et+j,t)

E(L(et+k,t)
,

where the information set Ω can be univariate or multivariate, as desired.

The predictive R2 measure emerges when the series is covariance stationary,

L(x) = x2 (and hence the optimal forecast is the conditional mean), the in-

formation set is univariate, and k =∞. The advantages of our generalization

include: (1) It is valid for both covariance stationary and difference station-

ary series, so long as k <∞. (2) It allows for general loss functions. The loss

function L(·) need not be quadratic or even symmetric; we only require that

L(0) = 0 and that L(·) be strictly monotone on each side of the origin. By

the restrictions imposed on L(·) , we have that for all covariance stationary

or difference stationary processes P (L(·),Ω, j, k) ∈ [0, 1], with larger values

indicating greater predictability. (3) It allows for univariate or multivariate

information sets, and economic theory may suggest relevant multivariate in-

formation sets. (4) It allows for flexibility in the choice of j and k and enables

one to tailor the predictability measure to the horizons of economic interest.

Our predictability measure is closely related to Theil’s U statistic, which

we define for the 1-step-ahead horizon as

U =
E(e2

t,t−1)

E((yt − yt−1)2)
.

To see this, specialize P to the quadratic, univariate, j = 1 case and write it
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as

P (quadratic, univariate, 1, k) = 1−
E(e2

t,t−1)

E(e2
t,t−k)

,

or

1− P =
E(e2

t,t−1)

E(e2
t,t−k)

.

Thus, under certain conditions, 1−P is similar in spirit to Theil’s U . The key

difference is that Theil’s U assesses 1-step forecast accuracy relative to that

of a “naive” no-change forecast, whereas P assesses 1-step accuracy relative

to that of a long-horizon (k-step) forecast. In the general case,

P (L(·),Ω, j, k) = 1− E(L(et,t−j))

E(L(et,t−k))
.

Thus, P (L(·),Ω, j, k) is effectively one minus the ratio of expected losses of

two forecasts of the same object, yt. Typically, one forecast, ŷt,t−j, is based

on a rich information set, while the other forecast, ŷt,t−k, is based on a sparse

information set.

The formula for P (L(·),Ω, j, k) also makes clear that the concept of pre-

dictability is related to, but distinct from, the concept of persistence of a

series. Suppose, for example, that the series yt is a random walk. Then

P (e2, univariate, j, k) = 1− j

k
,

as will be shown later. The corresponding j-step variance ratio, a common

persistence measure, is

Vj =
var(yt − yt−j)
var(yt − yt−1)

= j.

It is clear, however, that although P (e2, univariate, j, k) and Vj are deter-

ministically related in the random walk case (P = 1 − V/k), they are not

deterministically related in more general cases.
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Sample Measures

Predictability is a population property of a series, not of any particular sam-

ple path, but predictability can be estimated from a sample path. We pro-

ceed by fitting a parametric model and then transforming estimates of the

parameters into an estimate of P . To keep the discussion tractable, and in

keeping with the empirical analysis of subsequent sections, we postulate a

quadratic loss function L(e) = e2 for estimation, prediction, model selection,

and construction of predictability measures.

It is clear that parametric measures of predictability in general will depend

on the specification of the parametric model. Here we focus on univariate

autoregressive models, although one could easily generalize the discussion

to other parametric models, such as vector ARMA models. We construct

P by simply reading off the appropriate diagonal elements of the forecast

MSE matrices for forecast horizons j and k. To build intuition, consider

a univariate AR(1) population process with innovation variance Σu: yt =

A1yt−1 + ut . Then for A1 = 0 the model reduces to white noise, and short-

run forecasts are just as accurate as long-run forecasts. As a result, relative

predictability is zero: P (j, k) = 1 − Σu / Σu = 0, for all j. In contrast, for

A1 = 1 the model becomes a random walk, and relative predictability steadily

declines as the forecast horizon increases: P (j, k) = 1 − (jΣu)/(kΣu) = 1 −
j/k.

Forecast errors from consistently estimated processes and processes with

known parameters are asymptotically equivalent. In practice, we estimate

P by replacing the underlying unknown parameters by their least squares

estimates.
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10.2.5 Statistical Assessment of Accuracy Rankings

Once we’ve decided on a loss function, it is often of interest to know whether

one forecast is more accurate than another. In hypothesis testing terms, we

might want to test the equal accuracy hypothesis,

E[L(eat+h,t)] = E[L(ebt+h,t)],

against the alternative hypothesis that one or the other is better. Equiva-

lently, we might want to test the hypothesis that the expected loss differential

is zero,

E(dt) = E[L(eat+h,t)]− E[L(ebt+h,t)] = 0.

The hypothesis concerns population expected loss; we test it using sample

average loss.

A Motivational Example

Consider a model-free forecasting environment, as for example with forecasts

based on surveys, forecasts extracted from financial markets, forecasts ob-

tained from prediction markets, or forecasts based on expert judgment. One

routinely has competing model-free forecasts of the same object, gleaned for

example from surveys or financial markets, and seeks to determine which is

better.

To take a concrete example, consider U.S. inflation forecasting. One might

obtain survey-based forecasts from the Survey of Professional Forecasters (S),

{πSt }Tt=1, and simultaneously one might obtain market-based forecasts from

inflation-indexed bonds (B), {πBt }Tt=1. Suppose that loss is quadratic and that

during t = 1, ..., T the sample mean-squared errors are M̂SE(πSt ) = 1.80 and

M̂SE(πBt ) = 1.92. Evidently “S wins,” and one is tempted to conclude that

S provides better inflation forecasts than does B. The forecasting literature is

filled with such horse races, with associated declarations of superiority based
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on outcomes.

Obviously, however, the fact that M̂SE(πSt ) < M̂SE(πBt ) in a particular

sample realization does not mean that S is necessarily truly better than B

in population. That is, even if in population MSE(πSt ) = MSE(πBt ), in any

particular sample realization t = 1, ..., T one or the other of S and B must

“win,” so the question arises in any particular sample as to whether S is truly

superior or merely lucky. The Diebold-Mariano test answers that question,

allowing one to assess the significance of apparent predictive superiority. It

provides a test of the hypothesis of equal expected loss (in our example,

MSE(πSt ) = MSE(πBt )), valid under quite general conditions including, for

example, wide classes of loss functions and forecast-error serial correlation of

unknown form.

The Diebold-Mariano Perspective

The essence of the DM approach is to take forecast errors as primitives,

intentionally, and to make assumptions directly on those forecast errors. (In

a model-free environment there are obviously no models about which to make

assumptions.) More precisely, DM relies on assumptions made directly on the

forecast error loss differential. Denote the loss associated with forecast error

et by L(et); hence, for example, time-t quadratic loss would be L(et) = e2
t .

The time-t loss differential between forecasts 1 and 2 is then d12t = L(e1t)−
L(e2t). DM requires only that the loss differential be covariance stationary.2

That is, DM assumes that:

Assumption DM :


E(d12t) = µ, ∀t
cov(d12t, d12(t−τ)) = γ(τ), ∀t
0 < var(d12t) = σ2 <∞.

(10.2)

2Actually covariance stationarity is sufficient but may not be strictly necessary, as less-restrictive types
of mixing conditions could presumably be invoked.
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The key hypothesis of equal predictive accuracy (i.e., equal expected loss)

corresponds to E(d12t) = 0, in which case, under the maintained Assumption

DM :

DM12 =
d̄12

σ̂d̄12

d

→ N(0, 1), (10.3)

where d̄12 = 1
T

∑T
t=1 d12t is the sample mean loss differential and σ̂d̄12 is a

consistent estimate of the standard deviation of d̄12 (more on that shortly).

That’s all: If Assumption DM holds, then the N(0, 1) limiting distribution

of test statistic DM must hold.

DM is simply an asymptotic z-test of the hypothesis that the mean of a

constructed but observed series (the loss differential) is zero. The only wrinkle

is that forecast errors, and hence loss differentials, may be serially correlated

for a variety of reasons, the most obvious being forecast sub-optimality. Hence

the standard error in the denominator of the DM statistic (10.3) should

be calculated robustly. A simple approach is to recognize that DM is just

a t-statistic for the hypothesis of a zero population mean loss differential,

adjusted to reflect the fact that the loss differential series is not necessarily,

so that we can compute it via HAC regression (e.g., Newey-West or Kiefer-

Vogelsang) on an intercept. Perhaps an even simpler approach is to regress

the loss differential on an intercept, allowing for AR(p) disturbances, and

using information criterion like AIC to select p.

DM is also readily extensible. The key is to recognize that the DM

statistic can be trivially calculated by regression of the loss differential on an

intercept, using heteroskedasticity and autocorrelation robust (HAC) stan-

dard errors. Immediately, then (and as noted in the original Diebold-Mariano

paper), one can potentially extend the regression to condition on additional

variables that may explain the loss differential, thereby moving from an un-
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conditional to a conditional expected loss perspective.3 For example, com-

parative predictive performance may differ by stage of the business cycle, in

which case one might include a 0-1 NBER business cycle chronology variable

(say) in the DM HAC regression.

Thoughts on Assumption DM

Thus far I have praised DM rather effusively, and its great simplicity and

wide applicability certainly are virtues: There is just one Assumption DM ,

just one DM test statistic, and just one DM limiting distribution, always

and everywhere. But of course everything hinges on Assumption DM . Here

I offer some perspectives on the validity of Assumption DM .

First, as George Box (1979) famously and correctly noted, “All models

are false, but some are useful.” Precisely the same is true of assumptions.

Indeed all areas of economics benefit from assumptions that are surely false

if taken literally, but that are nevertheless useful. So too with Assumption

DM . Surely dt is likely never precisely covariance stationary, just as surely

no economic time series is likely precisely covariance stationary. But in many

cases Assumption DM may be a useful approximation.

Second, special forecasting considerations lend support to the validity of

Assumption DM . Forecasters strive to achieve forecast optimality, which cor-

responds to unforecastable covariance-stationary errors (indeed white-noise

errors in the canonical 1-step-ahead case), and hence unforecastable covariance-

stationary loss differentials. Of course forecasters may not achieve optimality,

resulting in serially-correlated, and indeed forecastable, forecast errors. But

I(1) non-stationarity of forecast errors takes serial correlation to the extreme.4

Third, even in the extreme case where nonstationary components somehow

do exist in forecast errors, there is reason to suspect that they may be shared.
3Important subsequent work takes the conditional perspective farther; see Giacomini and White (2006).
4Even with apparent nonstationarity due to apparent breaks in the loss differential series, Assumption

DM may nevertheless hold if the breaks have a stationary rhythm, as for example with hidden-Markov
processes in the tradition of Hamilton (1989).
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In particular, information sets overlap across forecasters, so that forecast-

error nonstationarities may vanish from the loss differential. For example, two

loss series, each integrated of order one, may nevertheless be cointegrated with

cointegrating vector (1,−1). Suppose for example that L(e1t) = xt + ε1t and

L(e2t) = xt + ε2t, where xt is a common nonstationary I(1) loss component,

and ε1t and ε2t are idiosyncratic stationary I(0) loss components. Then d12t =

L(e1t)−L(e2t) = ε1t−ε2t is I(0), so that the loss differential series is covariance

stationary despite the fact that neither individual loss series is covariance

stationary.

Fourth, and most importantly, standard and powerful tools enable em-

pirical assessment of Assumption DM . That is, the approximate validity of

Assumption DM is ultimately an empirical matter, and a wealth of diagnos-

tic procedures are available to help assess its validity. One can plot the loss

differential series, examine its sample autocorrelations and spectrum, test it

for unit roots and other nonstationarities including trend, structural breaks

or evolution, and so on.

10.3 OverSea Shipping

We’ll work with an application to OverSea Services, Inc., a major interna-

tional cargo shipper. To help guide fleet allocation decisions, each week Over-

Sea makes forecasts of volume shipped over each of its major trade lanes, at

horizons ranging from 1-week ahead through 16-weeks-ahead. In fact, Over-

Sea produces two sets of forecasts – a quantitative forecast is produced using

modern quantitative techniques, and a judgmental forecast is produced by

soliciting the opinion of the sales representatives, many of whom have years

of valuable experience.

Here we’ll examine the realizations and 2-week-ahead forecasts of vol-

ume on the Atlantic East trade lane (North America to Europe). We have
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nearly ten years of data on weekly realized volume (V OL) and weekly 2-

week-ahead forecasts (the quantitative forecast V OLQ, and the judgmental

forecast V OLJ), from January 1988 through mid-July 1997, for a total of

499 weeks.

In Figure 1, we plot realized volume vs. the quantitative forecast, and in

Figure 2 we show realized volume vs. the judgmental forecast. The two plots

look similar, and both forecasts appear quite accurate; it’s not too hard to

forecast shipping volume just two weeks ahead.

In Figures 3 and 4, we plot the errors from the quantitative and judgmental

forecasts, which are more revealing. The quantitative error, in particular,

appears roughly centered on zero, whereas the judgmental error seems to be

a bit higher than zero on average. That is, the judgmental forecast appears

biased in a pessimistic way – on average, actual realized volume is a bit higher

than forecasted volume.

In Figures 5 and 6, we show histograms and related statistics for the

quantitative and judgmental forecast errors. The histograms confirm our

earlier suspicions based on the error plots; the histogram for the quantitative

error is centered on a mean of -.03, whereas that for the judgmental error

is centered on 1.02. The error standard deviations, however, reveal that the

judgmental forecast errors vary a bit less around their mean than do the

quantitative errors. Finally, the Jarque-Bera test can’t reject the hypothesis

that the errors are normally distributed.

In Tables 1 and 2 and Figures 7 and 8, we show the correlograms of the

quantitative and judgmental forecast errors. In each case, the errors appear to

have MA(1) structure; the sample autocorrelations cut off at displacement

1, whereas the sample partial autocorrelations display damped oscillation,

which is reasonable for 2-step-ahead forecast errors.

To test for the statistical significance of bias, we need to account for the

MA(1) serial correlation. To do so, we regress the forecast errors on a con-
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stant, allowing for MA(1) disturbances. We show the results for the quanti-

tative forecast errors in Table 3, and those for the judgmental forecast errors

in Table 4. The t-statistic indicates no bias in the quantitative forecasts, but

sizable and highly statistically significant bias in the judgmental forecasts.

In Tables 5 and 6, we show the results of Mincer-Zarnowitz regressions;

both forecasts fail miserably. We expected the judgmental forecast to fail,

because it’s biased, but until now no defects were found in the quantitative

forecast.

Now let’s compare forecast accuracy. We show the histogram and descrip-

tive statistics for the squared quantitative and judgmental errors in Figures 9

and 10. The histogram for the squared judgmental error is pushed rightward

relative to that of the quantitative error, due to bias. The RMSE of the

quantitative forecast is 1.26, while that of the judgmental forecast is 1.48.

In Figure 11 we show the (quadratic) loss differential; it’s fairly small

but looks a little negative. In Figure 12 we show the histogram of the loss

differential; the mean is -.58, which is small relative to the standard deviation

of the loss differential, but remember that we have not yet corrected for serial

correlation. In Table 7 we show the correlogram of the loss differential, which

strongly suggests MA(1) structure. The sample autocorrelations and partial

autocorrelations, shown in Figure 13, confirm that impression. Thus, to test

for significance of the loss differential, we regress it on a constant and allow

for MA(1) disturbances; we show the results in Table 8. The mean loss

differential is highly statistically significant, with a p-value less than .01; we

conclude that the quantitative forecast is more accurate than the judgmental

forecast under quadratic loss.
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10.4 Exercises, Problems and Complements

1. Forecast evaluation in action.

Discuss in detail how you would use forecast evaluation techniques to

address each of the following questions.

a. Are asset returns (e.g., stocks, bonds, exchange rates) forecastable

over long horizons?

b. Do forward exchange rates provide unbiased forecasts of future spot

exchange rates at all horizons?

c. Are government budget projections systematically too optimistic, per-

haps for strategic reasons?

d. Can interest rates be used to provide good forecasts of future infla-

tion?

2. Forecast error analysis.

You work for a London-based hedge fund, Thompson Energy Investors,

and your boss has assigned you to assess a model used to forecast U.S.

crude oil imports. On the last day of each quarter, the model is used to

forecast oil imports at horizons of 1-quarter-ahead through 4-quarters-

ahead. Thompson has done this for each of 80 quarters and has kept

the corresponding four forecast error series, which appear on the book’s

web page.

a. Based on a correlogram analysis, assess whether the 1-quarter-ahead

forecast errors are white noise. (Be sure to discuss all parts of the cor-

relogram: sample autocorrelations, sample partial autocorrelations,

Bartlett standard errors and Ljung-Box statistics.) Why care?

b. Regress each of the four forecast error series on constants, in each case

allowing for a MA(5) disturbances. Comment on the significance of
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the MA coefficients in each of the four cases and use the results to

assess the optimality of the forecasts at each of the four horizons. Does

your 1-step-ahead MA(5)-based assessment match the correlogram-

based assessment obtained in part a? Do the multi-step forecasts

appear optimal?

c. Overall, what do your results suggest about the model’s ability to

predict U.S. crude oil imports?

3. The mechanics of practical forecast evaluation.

For the following, use the time series of shipping volume, quantitative

forecasts, and judgmental forecasts used in this chapter.

a. Replicate the empirical results reported in this chapter. Explore and

discuss any variations or extensions that you find interesting.

b. Using the first 250 weeks of shipping volume data, specify and es-

timate a univariate autoregressive model of shipping volume (with

trend and seasonality if necessary), and provide evidence to support

the adequacy of your chosen specification.

c. Use your model each week to forecast two weeks ahead, each week

estimating the model using all available data, producing forecasts for

observations 252 through 499, made using information available at

times 250 through 497. Calculate the corresponding series of 248

2-step-ahead recursive forecast errors.

d. Using the methods of this chapter, evaluate the quality of your fore-

casts, both in isolation and relative to the original quantitative and

judgmental forecasts. Discuss.

4. Forecasting Competitions.

There are many forecasting competitions. Kaggle.com, for example, is a

well-known online venue. Participants are given a “training sample” of
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data and asked to forecast a “test sample”; that is, to make an out-of-

sample forecast of hold-out data, which they are not shown

(a) Check out Kaggle. Also read “A Site for Data Scientists to Prove

Their Skills and Make Money,” by Claira Cain Miller, New York

Times, November 3, 2011. What’s good about the Kaggle approach?

What’s bad? What happened to Kaggle since its launch in 2011?

(b) “Kaggle competitions” effectively outsource forecasting. What are

pros and cons of in-house experts vs. outsourcing?

(c) Kaggle strangely lets people peek at the test sample by re-submitting

forecasts once per day.

(d) Kaggle scores extrapolation forecasts rather than h-step. This blends

apples and oranges.

(e) Kaggle is wasteful from a combining viewpoint. One doesn’t just

want to find the “winner.”

5. The Peso Problem.

Suppose someone assigns a very high probability to an event that fails

to occur, or a very low probability to an event that does occur. Is

the person a bad probability forecaster? The answer is perhaps, but

not at all necessarily. Even events correctly forecast to occur with high

probability may simply fail to occur, and conversely.

Thus, for example, a currency might sell forward at a large discount,

indicating that the market has assigned a high probability of a large

depreciation. In the event, that depreciation might fail to occur, but that

does not necessarily mean that the market was in any sense “wrong” in

assigning a high depreciation probability. The term “Peso problem”

refers to exactly such issues in a long-ago situation involving the Mexican

Peso.
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6. Measuring forecastability with canonical correlations.

One can measure forecastability via canonical correlation between “past”

and “future,” as in Jewell and Bloomfield 1983, Hannan and Poskitt

1988.

7. Forecast Evaluation When Realizations are Unobserved.

Sometimes we never see the realization of the variable being forecast.

This occurs for example in forecasting ultimate resource recovery, such

as the total amount of oil in an underground reserve. The actual value,

however, won’t be known until the reserve is depleted, which may be

decades away. Such situations obviously make for difficult accuracy eval-

uation!

If the resource recovery example sounds a bit exotic, rest assured that

it’s not. In volatility forecasting, for example, “true” volatility is never

observed. And in any sort of state-space model, such as a dynamic factor

model, the true state vector is never observed. (See Chapters ***.)

(a) Nordhaus tests.

– Some optimality tests can be obtained even when the forecast

target is unobservable (Patton and Timmermann 2010, building on

Nordhaus 1987). In particular, (1) forecast revisions (for fixed target

date) should be MDS, and (2) forecast variance (not error variance,

but forecast variance) should decrease with distance from terminal

date. PT 2010 also have a nice generalized MZ test that builds on

these ideas.

(b) Patton tests.

8. Nonparametric predictabilty assessment.

We presented our autoregressive modeling approach as a parametric

method. However, in general, we need not assume that the fitted autore-
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gression is the true data-generating process; rather, it may be considered

an approximation, the order of which can grow with sample size. Thus

the autoregressive model can be viewed as a sieve, so our approach ac-

tually is nonparametric.

Nevertheless, the sieve approach has a parametric flavor. For any fixed

sample size, we assess predictability through the lens of a particular

autoregressive model. Hence it may be of interest to develop an approach

with a more thoroughly nonparametric flavor by exploiting Kolmogorov’s

well-known spectral formula for the univariate innovation variance,

σ2 = exp(
1

2π

∫ π

−π
ln 2πf(ω)dω),

where f is the spectral density function. Kolmogorov’s result has been

extended to univariate h-step-ahead forecast error variances by Bhansali

(1992).

9. Can unskilled density forecasters successfully disguise themselves as skilled?

10. Cross section forecast evaluation.

Most of the basic lessons for time-series forecast evaluation introduced in

this chapter are also relevant for cross-section forecast evaluation. Cross-

section forecast errors (appropriately standardized if heteroskedasticity

is present) should be iid white noise over space, and unpredictable using

any available covariates. DM-type tests can be done for point forecasts,

and DGT-type test for density forecasts.

11. Turning point forecasts into density forecasts.

As we have shown, Mincer-Zarnowitz corrections can be used to “cor-

rect” sub-optimal point forecasts. They can also be used to produce

density forecasts, by drawing from an estimate of the density of the MZ

regression disturbances, as we did in a different context in section 4.1.
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10.5 Notes



Chapter 11

Interval and Density Forecast

Evaluation

11.1 Interval Forecast Evaluation

Interval forecast evaluation is largely, but not entirely, subsumed by density

forecast evaluation. There is a simple method for absolute interval forecast

evaluation that must be mentioned. It is of great practical use, and moreover

is establishes the proper notion of a 1-step-ahead interval forecast error (which

should be unforecastable), and which then translates into the proper notion

of a 1-step-ahead density forecast error (which should also be unforecastable).

11.1.1 Absolute Standards

On Correct Unconditional vs. Conditional Coverage

A (1− α)% interval is correctly unconditionally calibrated if it brackets the

truth (1 − α)% of the time, on average over the long run. But an inter-

val can be correctly unconditionally calibrated and still poorly conditionally

calibrated insofar as it’s poorly calibrated at any given time, despite being

correct on average. In environments of time-varying conditional variance,

for example, constant-width intervals may be correctly unconditionally cal-

ibrate, but they cannot be correctly conditionally calibrated, because they
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Figure 11.1: True Exceedance Probabilities of Nominal one-sideed 1% Interval When Volatil-
ity is Persistent. We simulate returns from a realistically-calibrated dynamic volatility model. We plot
the series of true conditional exceedance probabilities, which we infer from the model. For visual reference
we include a horizontal line at the desired 1% probability level. Adapted from Andersen et al. 2013.

fail to tighten appropriately in low-volatility times and widen appropriately

in high-volatility times. Intervals can be completely mis-calibrated, correctly

calibrated unconditionally but not conditionally, or correctly conditionally

calibrated (which automatically implies correct conditional calibration). Fig-

ure 11.1 says it all

Christoffersen’s Absolute Interval Forecast Evaluation

Christoffersen (1998) considers likelihood-ratio tests of correct (1−α)% con-

ditional coverage. Define the sequence of hit indicators of a 1-step-ahead

forecast interval (the “hit series”) as

I
(1−1α)
t = 1{realized yt falls inside the interval}
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Under the null hypothesis of correct conditional calibration,

I
(1−α)
t ∼ iid Bernoulli(1− α).

Note well the two-part characterization. The hit series must have the

correct mean, (1−α), which corresponds to correct unconditional calibration.

But there’s more: the hit series must also be iid.1 When both hold, we have

correct conditional calibration. Conversely, rejection of the iid Bernoulli null

could be due to rejection of iid, rejection of the Bernoulli mean of (1− α),

or both. Hence it is advisable to use constructive procedures, which, when

rejections occur, convey information as to why rejections occur.

On Testing iid in Forecast Evaluation

Note that in (1-step) forecast evaluation we’re always testing some sort of

1-step error for iid (or at least white noise) structure.

For point forecasts the forecast errors are immediately at hand. If they’re

dependent, then, in general, today’s error is informative regarding tomorrow’s

likely error, and we could we could generally use that information to adjust

today’s point forecast to make it better, which means something is wrong.

For interval forecasts, the correct notion of “error” is the hit sequence,

which is readily constructed. If the hit sequence is dependent, then, in gen-

eral, today’s hit value (0 or 1) is informative regarding tomorrow’s likely

hit value, and we could we could generally use that information to adjust

today’s interval forecast to make it better conditionally calibrated, which

means something is wrong.

Soon in section 11.2.1 we will introduce yet another generalized “forecast

error” series for density forecasts, which again should be iid if all is well.

1In h-step-ahead contests the hit sequence need not be iid but should have h-dependent structure.
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11.1.2 Relative Standards

Little studied. It seems clear that for two correctly conditionally calibrated

interval forecasts, one should prefer the one with shorter average length. But,

just as with bias-variance tradeoffs for point forecast evaluation, presumably

one should willing to accept a little mis-calibration in exchange for a big

length reduction. One would have to define a loss function over miscalibration

and length.

11.2 Density Forecast Evaluation

11.2.1 Absolute Standards

Theory

We seek to characterize the properties of a density forecast that is optimal

with respect to an information set, that is, a density forecast that coincides

with the true conditional expectation.

The task of determining whether {pt(yt|Ωt)}mt=1 = {ft(yt|Ωt)}mt=1 appears

difficult, perhaps hopeless, because {ft(yt|Ωt)}mt=1 is never observed, even after

the fact. Moreover, and importantly, the true density ft(yt|Ωt) may exhibit

structural change, as indicated by its time subscript. As it turns out, the

challenges posed by these subtleties are not insurmountable.

Our methods are based on the relationship between the data generat-

ing process, ft(yt), and the sequence of density forecasts, pt(yt), as related

through the probability integral transform, zt , of the realization of the process

taken with respect to the density forecast. The probability integral transform

is simply the cumulative density function corresponding to the density pt(yt)

evaluated at yt,

zt =

∫ yt

−∞
pt(u)du

= Pt(yt).
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The density of zt, qt(zt), is of particular significance. Assuming that ∂P−1t (zt)
∂zt

is continuous and nonzero over the support of yt, then because pt(yt) = ∂Pt(yt)
∂yt

and yt = P−1
t (zt), zt has support on the unit interval with density

qt(zt) =

∣∣∣∣∂P−1
t (zt)

∂zt

∣∣∣∣ ft(P−1
t (zt))

=
ft(P

−1
t (zt))

pt(P
−1
t (zt))

.

Note, in particular, that if pt(yt) = ft(yt) , then qt(zt) is simply the U(0, 1)

density.

Now we go beyond the one-period characterization of the density of z when

pt(yt) = ft(yt) and characterize both the density and dependence structure of

the entire z sequence when pt(yt) = ft(yt) .

Proposition Suppose {yt}mt=1 is generated from {ft(yt|Ωt)}mt=1 where Ωt = {yt−1, yt−2, ...}.
If a sequence of density forecasts {pt(yt)mt=1} coincides with {ft(yt|Ωt)}mt=1,

then under the usual condition of a non-zero Jacobian with continuous par-

tial derivatives, the sequence of probability integral transforms of {yt}mt=1 with

respect to {pt(yt)}mt=1 is iid U(0, 1). That is,

{zt}mt=1 ∼ U(0, 1).

The intuition for the above result may perhaps be better understood from

the perspective of Christoffersen’s method for interval forecast evaluation,

If a sequence of density forecasts is correctly conditionally calibrated, then

every interval will be correctly conditionally calibrated and will generate an

iid Bernoulli hit sequence. This fact manifests itself in the iid uniformity of

the corresponding probability integral transforms.
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Practical Application

The theory developed thus far suggests that we evaluate density forecasts

by assessing whether the probability integral transform series, {zt}mt=1 , is iid

U(0, 1). Simple tests of iid U(0, 1) behavior are readily available, such as

those of Kolmogorov-Smirnov and Cramer-vonMises. Alone, however, such

tests are not likely to be of much value in the practical applications that

we envision, because they are not constructive; that is, when rejection oc-

curs, the tests generally provide no guidance as to why . If, for example, a

Kolmogorov-Smirnov test rejects the hypothesis of iid U(0, 1) behavior, is it

because of violation of unconditional uniformity, violation of iid, or both?

Moreover, even if we know that rejection comes from violation of uniformity,

we would like to know more: What, precisely, is the nature of the violation of

uniformity, and how important is it? Similarly, even if we know that rejection

comes from a violation of iid, what precisely is its nature? Is z heterogeneous

but independent, or is z dependent? If z is dependent, is the dependence

operative primarily through the conditional mean, or are higher-ordered con-

ditional moments, such as the variance, relevant? Is the dependance strong

and important, or is iid an economically adequate approximation, even if

strictly false?

Hence we adopt less formal, but more revealing, graphical methods, which

we supplement with more formal tests. First, as regards unconditional unifor-

mity, we suggest visual assessment using the obvious graphical tool, a density

estimate. Simple histograms are attractive in the present context because

they allow straightforward imposition of the constraint that z has support on

the unit interval, in contrast to more sophisticated procedures such as kernel

density estimates with the standard kernel functions. We visually compare

the estimated density to a U(0, 1), and we compute confidence intervals under

the null hypothesis of iid U(0, 1) exploiting the binomial structure, bin-by-

bin.
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Second, as regards evaluating whether z is iid, we again suggest visual

assessment using the obvious graphical tool, the correlogram, supplemented

with the usual Bartlett confidence intervals. The correlogram assists with

the detection of particular dependence patterns in z and can provide useful

information about the deficiencies of density forecasts. For example, serial

correlation in the z series indicates that conditional mean dynamics have been

inadequately modeled captured by the forecasts. Because we are interested

in potentially sophisticated nonlinear forms of dependence, not simply linear

dependence, we examine not only the correlogram of (z − z̄), but also those

of powers of (z − z̄) . Examination of the correlograms of (z − z̄), (z − z̄)2,

(z − z̄)3 and (z − z̄)4 should be adequate; it will reveal dependence operative

through the conditional mean, conditional variance, conditional skewness, or

conditional kurtosis.

11.2.2 Additional Discussion

Parameter Estimation Uncertainty

Our decision to ignore parameter estimation uncertainty was intentional. In

our framework, the forecasts are the primitives, and we do not require that

they be based on a model. This is useful because many density forecasts of

interest, such as those from surveys, do not come from models. A second and

very important example of model-free density forecasts is provided by the

recent finance literature, which shows how to use options written at differ-

ent strike prices to extract a model-free estimate of the market’s risk-neutral

density forecast of returns on the underlying asset. Moreover, many density

forecasts based on estimated models already incorporate the effects of pa-

rameter estimation uncertainty, for example by using simulation techniques.

Finally, sample sizes are often so large as to render negligible the effects of

parameter estimation uncertainty, as for example in our simulation study.
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Improving Mis-Calibrated Density Forecasts

It is apparent that our methods can be used to improve defective density

forecasts, in a fashion parallel to standard procedures for improving defective

point forecasts. Recall that in the case of defective point forecasts case we

can regress the y’s on the ŷ’s (the point forecasts) and use the estimated

relationship to construct improved point forecasts. Similarly, in the context

of density forecasts that are defective in that they produce an iid but non-

uniform z sequence, we can exploit the fact that (in period m+ 1, say)

fm+1(ym+1) = pm+1(ym+1) qm+1(P (ym+1))

= pm+1(ym+1) qm+1(zm+1).

Thus if we know qm+1(zm+1), we would know the actual distribution fm+1(ym+1).

Because qm+1(zm+1) is unknown, we obtain an estimate q̂m+1(zm+1) using the

historical series of zt
m
t=1, and we use that estimate to construct an improved

estimate, f̂m+1(ym+1), of the true distribution. Standard density estimation

techniques can be used to produce the estimate q̂m+1(zm+1).
2

Multi-Step Density Forecasts

Our methods may be generalized to handle multi-step-ahead density fore-

casts, so long as we make provisions for serial correlation in z, in a fashion

to the usual MA(h − 1) structure for optimal h-step ahead point forecast

errors. It may prove most effective to partition the z series into groups for

which we expect iid uniformity if the density forecasts were indeed correct.

For instance, for correct 2-step ahead forecasts, the sub-series z1, z3, z5, ... and

z2, z4, z6, ... should each be iid U(0, 1), although the full series would not be

iid U(0, 1). If a formal test is desired, it may be obtained via Bonferroni

2In finite samples, of course, there is no guarantee that the “improved” forecast will actually be superior
to the original, because it is based on an estimate of q rather than the true q, and the estimate could be
very poor. In large samples, however, very precise estimation should be possible.
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bounds, as suggested in a different context by Campbell and Ghysels (1995).

Under the assumption that the z series is (h − 1)-dependent, each of the

following h sub-series will be iid: {z1, z1+h, z1+2h, ...}, {z2, z2+h, z2+2h, ...},
..., {zh, z2h, z3h, ...}. Thus, a test with size bounded by α can be obtained

by performing h tests, each of size α/h, on each of the h sub-series of z,

and rejecting the null hypothesis of iid uniformity if the null is rejected for

any of the h sub-series. With the huge high-frequency datasets now available

in finance, such sample splitting, although inefficient, is not likely to cause

important power deterioration.

11.2.3 Relative Standards

The time-t one-step-ahead point predictive likelihood is

Pt = pt,t−1(yt)

It is simply the height of the earlier-made density forecast, pt,t−1(·) at the

realized value, yt. The full predictive likelihood is then

P =
N∏
i=1

Pt.

We can rank density forecasts using P . The sequence of density forecasts

with the largest P is the the sequence for which the subsequently-observed

realizations were most likely.

11.3 Stock Return Density Forecasting

11.3.1 A Preliminary GARCH Simulation

Before proceeding to apply our density forecast evaluation methods to real

data, it is useful to examine their efficacy on simulated data, for which we
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know the true data-generating process. We examine a simulated sample of

length 8000 from the t-GARCH(1,1) process:

yt =

√
2ht
3
t(6)

ht = .01 + .13y2
t−1 + .86ht−1.

Both the sample size and the parameter values are typical for financial asset

returns.3 Throughout, we split the sample in half and use the “in-sample””

observations 1 through 4000 for estimation, and the “out-of-sample” obser-

vations 4001 through 8000 for density forecast evaluation.

We will examine the usefulness of our density forecast evaluation methods

in assessing four progressively better density forecasts. To establish a bench-

mark, we first evaluate forecasts based on the naive and incorrect assumption

that the process is iid N(0, 1).4 That is, in each of the periods 4001-8000, we

simply issue the forecast “N(0, 1).”

In Figure *** we show two histograms of z, one with 20 bins and one with

40 bins.5 The histograms have a distinct non-uniform “butterfly” shape – a

hump in the middle and two wings on the sides – indicating that too many of

the realizations fall in middle and in the tails of the forecast densities relative

to what we would expect if the data were really iid normal. This is exactly

what we hope the histograms would reveal, given that the data-generating

process known to be unconditionally leptokurtic.

In Figure *** we show the correlograms of (z − z̄) , (z − z̄)2 , (z − z̄)3

and (z − z̄)4 .6 The strong serial correlation in (z − z̄)2 (and hence (z − z̄)4)

3The conditional variance function intercept of .01 is arbitrary but inconsequential; it simply amounts to
a normalization of the unconditional variance to 1 (.01/(1-.13-.86)).

4The process as specified does have mean zero and variance 1, but it is neither iid nor unconditionally
Gaussian.

5The dashed lines superimposed on the histogram are approximate 95% confidence intervals for the
individual bin heights under the null that z is iid U(0, 1).

6The dashed lines superimposed on the correlograms are Bartlett’s approximate 95% confidence intervals
under the null that z is iid.



11.3. STOCK RETURN DENSITY FORECASTING 393

makes clear another key deficiency of the N(0, 1) forecasts – they fail to

capture the volatility dynamics operative in the process. Again, this is what

we hope the correlograms would reveal, given our knowledge of the true data-

generating process.

Second, we evaluate forecasts produced under the incorrect assumption

that the process is iid but not necessarily Gaussian. We estimate the uncon-

ditional distribution from observations 1 through 4000, freeze it, and then

issue it as the density forecast in each of the periods 4001 through 8000. Fig-

ures *** and ***contain the results. The z histogram is now almost perfect

(as it must be, apart from estimation error, which is small in a sample of size

4000), but the correlograms correctly continue to indicate neglected volatility

dynamics.

Third, we evaluate forecasts that are based on a GARCH(1, 1) model es-

timated under the incorrect assumption that the conditional density is Gaus-

sian. We use observations 1 through 4000 to estimate the model, freeze the

estimated model, and then use it to make (time-varying) density forecasts

from 4001 through 8000. Figures *** and *** contain the z histograms and

correlograms. The histograms are closer to uniform than those of Figure ***,

but they still display slight peaks at either end and a hump in the middle.

We would expect to see such a reduction, but not elimination, of the but-

terfly pattern, because allowance for conditionally Gaussian GARCH effects

should account for some, but not all, unconditional leptokurtosis.7 The cor-

relograms now show no evidence of neglected conditional volatility dynamics,

again as expected because the conditionally Gaussian GARCH model deliv-

ers consistent estimates of the conditional variance parameters, despite the

fact that the conditional density is misspecified, so that the estimated model

tracks the volatility dynamics well.

Finally, we forecast with an estimated correctly-specified t−GARCH(1, 1)

7Recall that the data generating process is conditionally , as well as unconditionally, fat-tailed.
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model. We show the z histogram and correlograms in Figures *** and ***.

Because we are forecasting with a correctly specified model, estimated using

a large sample, we would expect that the histogram and correlograms would

fail to find flaws with the density forecasts, which is the case.

In closing this section, we note that at each step of the above simulation

exercise, our density forecast evaluation procedures clearly and correctly re-

vealed the strengths and weaknesses of the various density forecasts. The

results, as with all simulation results, are specific to the particular data-

generating process examined, but the process and the sample size were cho-

sen to be realistic for the leading applications in high-frequency finance. This

gives us confidence that the procedures will perform well on real financial

data, to which we now turn, and for which we do not have the luxury of

knowing the true data-generating process.

11.3.2 Daily S&P 500 Returns

We study density forecasts of daily value-weighted S&P 500 returns, with div-

idends, from 02/03/62 through 12/29/95. As before, we split the sample into

in-sample and out-of-sample periods for model estimation and density fore-

cast evaluation. There are 4133 in-sample observations (07/03/62 - 12/29/78)

and 4298 out-of-sample observations (01/02/79 - 12/29/95). As before, we

assess a series of progressively more sophisticated density forecasts.

As in the simulation example, we begin with an examination of N(0, 1)

density forecasts, in spite of the fact that high-frequency financial data are

well-known to be unconditionally leptokurtic and conditionally heteroskedas-

tic. In Figures *** and *** we show the histograms and correlograms of

z. The histograms have the now-familiar butterfly shape, indicating that

the S&P realizations are leptokurtic relative to the N(0, 1) density forecasts,

and the correlograms of (z − z̄)2 and (z − z̄)4 indicate that the N(0, 1) fore-

casts are severely deficient, because they neglect strong conditional volatility
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dynamics.

Next, we generate density forecasts using an apparently much more so-

phisticated model. Both the Akaike and Schwarz information criteria select

an MA(1)−GARCH(1, 1) model for the in-sample data, which we estimate,

freeze, and use to generate out-of-sample density forecasts.

Figures *** and *** contain the z histograms and correlograms. The his-

tograms are closer to uniform and therefore improved, although they still

display slight butterfly pattern. The correlograms look even better; all evi-

dence of neglected conditional volatility dynamics has vanished.

Finally, we estimate and then forecast with an MA(1)− t−GARCH(1, 1)

model. We show the z histogram and correlograms in Figures *** and ***.

The histogram is improved, albeit slightly, and the correlograms remain good.

11.4 Exercises, Problems and Complements

1. xxx

11.5 Notes
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Chapter 12

Model-Based Forecast Combination

In forecast accuracy comparison, we ask which forecast is best with respect

to a particular loss function. Such “horse races” arise constantly in practical

work. Regardless of whether one forecast is significantly better than the

others, however, the question arises as to whether competing forecasts may be

fruitfully combined to produce a composite forecast superior to all the original

forecasts. Thus, forecast combination, although obviously related to forecast

accuracy comparison, is logically distinct and of independent interest. We

start with what one might call “model-based” forecast combination, and then

we proceed to “survey-based” combination and “market-based” combination

(financial markets, prediction markets, ...).

12.1 Forecast Encompassing

Whether there are gains from forecast combination turns out to be funda-

mentally linked to the notion of forecast encompassing, with which we now

begin. We use forecast encompassing tests to determine whether one fore-

cast incorporates (or encompasses) all the relevant information in competing

forecasts. If one forecast incorporates all the relevant information, nothing

can be gained by combining forecasts. For simplicity, let’s focus on the case

397
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of two forecasts, ya,t+h,t and yb,t+h,t. Consider the regression

yt+h = βaya,t+h,t + βbyb,t+h,t + εt+h,t.

If (βa, βb) = (1, 0), we’ll say that model a forecast-encompasses model b, and

if (βa, βb = (0, 1), we’ll say that model b forecast-encompasses model a. For

other (βa, βb) values, neither model encompasses the other, and both forecasts

contain useful information about yt+h. In covariance stationary environments,

encompassing hypotheses can be tested using standard methods.1 If neither

forecast encompasses the other, forecast combination is potentially desirable.

We envision an ongoing, iterative process of model selection and esti-

mation, forecasting, and forecast evaluation. What is the role of forecast

combination in that paradigm? In a world in which information sets can

be instantaneously and costlessly combined, there is no role; it is always

optimal to combine information sets rather than forecasts. That is, if no

model forecast-encompasses the others, we might hope to eventually figure

out what’s gone wrong, learn from our mistakes, and come up with a model

based on a combined information set that does forecast-encompass the oth-

ers. But in the short run – particularly when deadlines must be met and

timely forecasts produced – pooling of information sets is typically either im-

possible or prohibitively costly. This simple insight motivates the pragmatic

idea of forecast combination, in which forecasts rather than models are the

basic object of analysis, due to an assumed inability to combine information

sets. Thus, forecast combination can be viewed as a key link between the

short-run, real-time forecast production process, and the longer-run, ongoing

process of model development.

1Note that εt+h,t may be serially correlated, particularly if h > 1, and any such serial correlation should
be accounted for.
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12.2 Model-Based Combined Forecasts I:

Variance-Covariance Forecast Combination

In forecast accuracy comparison, we ask which forecast is best with respect

to a particular loss function. Such “horse races” arise constantly in practical

work. Regardless of whether one forecast is significantly better than the

others, however, the question arises as to whether competing forecasts may

be fruitfully combined to produce a composite forecast superior to all the

original forecasts. Thus, forecast combination, although obviously related to

forecast accuracy comparison, is logically distinct and of independent interest.

Failure of each model’s forecasts to encompass other model’s forecasts in-

dicates that both models are misspecified, and that there may be gains from

combining the forecasts. It should come as no surprise that such situations are

typical in practice, because forecasting models are likely to be misspecified –

they are intentional abstractions of a much more complex reality. Many com-

bining methods have been proposed, and they fall roughly into two groups,

”variance-covariance” methods and “regression” methods. As we’ll see, the

variance-covariance forecast combination method is in fact a special case of

the regression-based forecast combination method, so there’s really only one

method. However, for historical reasons – and more importantly, to build

valuable intuition – it’s important to understand the variance-covariance fore-

cast combination, so let’s begin with it.

12.2.1 Bivariate Case

Suppose we have two unbiased forecasts. First assume that the errors in ya

and yb are uncorrelated. Consider the convex combination

yC = λ ya + (1− λ) yb,
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where λ ∈ [0, 1].2 Then the associated errors follow the same weighting,

eC = λea + (1− λ)eb,

where eC = y− yC , ea = y− ya and eb = y− yb. Assume that both ya and yb

are unbiased for y, in which case yC is also unbiased, because the combining

weights sum to unity.

Given the unbiasedness assumption, the minimum-MSE combining weights

are just the minimum-variance weights. Immediately, using the assumed zero

correlation between the errors,

σ2
C = λ2σ2

a + (1− λ)2σ2
b , (12.1)

where σ2
C = var(eC), σ2

a = var(ea) and σ2
b = var(eb). Minimization with

respect to λ yields the optimal combining weight,

λ∗ =
σ2
b

σ2
b + σ2

a

=
1

1 + φ2
, (12.2)

where φ = σa/σb.

As σ2
a approaches 0, forecast a becomes progressively more accurate. The

formula for λ∗ indicates that as σ2
a approaches 0, λ∗ approaches 1, so that all

weight is put on forecast a, which is desirable. Similarly, as σ2
b approaches

0, forecast b becomes progressively more accurate. The formula for λ∗ indi-

cates that as σ2
b approaches 0, λ∗ approaches 0, so that all weight is put on

forecast b, which is also desirable. In general, the forecast with the smaller

error variance receives the higher weight, with the precise size of the weight

depending on the disparity between variances.

Now consider the more general and empirically-relevant case of correlated

2Strictly speaking, we need not even impose λ ∈ [0, 1], but λ /∈ [0, 1] would be highly nonstandard for two
valuable and sophisticated y estimates such as ya and yb.
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errors. Under the same conditions as earlier,

σ2
C = λ2σ2

a + (1− λ)2σ2
b + 2λ(1− λ)σab, (12.3)

so

λ∗ =
σ2
b − σab

σ2
b + σ2

a − 2σab

=
1− φρ

1 + φ2 − 2φρ
,

where σab = cov(ea, eb) and ρ = corr(ea, eb).

The optimal combining weight is a simple function of the variances and

covariances of the underlying forecast errors. The forecast error variance as-

sociated with the optimally combined forecast is less than or equal to the

smaller of σ2
a and σ2

b ; thus, in population, we have nothing to lose by com-

bining forecasts, and potentially much to gain. In practical applications,

the unknown variances and covariances that underlie the optimal combining

weights are unknown, so we replace them with consistent estimates; that is,

we estimate λ∗ by replacing unknown error variances and covariances with

estimates, yielding

λ̂∗ =
σ̂2
b − σ̂2

ab

σ̂2
b + σ̂2

a − 2σ̂2
ab

.

The full formula for the optimal combining weight indicates that the vari-

ances and the covariance are relevant, but the basic intuition remains valid.

Effectively, we’re forming a portfolio of forecasts, and as we know from stan-

dard results in finance, the optimal shares in a portfolio depend on the vari-

ances and covariances of the underlying assets.
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12.2.2 General Case

The optimal combining weight solves the following problem:

min
λ

λ′Σtλ

s.t. λ′ι = 1.
(12.4)

where Σ is the N × N covariance matrix of forecast errors and ι is a N × 1

vector of ones. The solution is

λ∗ =
(
ι′Σ−1

t ι
)−1

Σ−1
t ι.

12.3 Model-Based Combined Forecasts II:

Regression-Based Forecast Combination

Now consider the regression method of forecast combination. The form of

forecast-encompassing regressions immediately suggests combining forecasts

by simply regressing realizations on forecasts. This intuition proves accu-

rate, and in fact the optimal variance-covariance combining weights have a

regression interpretation as the coefficients of a linear projection of yt+h onto

the forecasts, subject to two constraints: the weights sum to unity, and the

intercept is excluded.

In practice, of course, population linear projection is impossible, so we sim-

ply run the regression on the available data. Moreover, it’s usually preferable

not to force the weights to add to unity, or to exclude an intercept. Inclu-

sion of an intercept, for example, facilitates bias correction and allows biased

forecasts to be combined. Typically, then, we simply estimate the regression,

yt+h = β0 + βaya,t+h,t + βbyb,t+h,t + εt+h,t.

Extension to the fully general case of more than two forecasts is immediate.
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In general, the regression method is simple and flexible. There are many

variations and extensions, because any regression tool is potentially appli-

cable. The key is to use generalizations with sound motivation. We’ll give

four examples in an attempt to build an intuitive feel for the sorts of exten-

sions that are possible: time-varying combining weights, dynamic combining

regressions, shrinkage of combining weights toward equality, and nonlinear

combining regressions.

12.3.1 Time-Varying Combining Weights

Relative accuracies of different forecasts may change, and if they do, we

naturally want to weight the improving forecasts progressively more heavily

and the worsening forecasts less heavily. Relative accuracies can change for a

number of reasons. For example, the design of a particular forecasting model

may make it likely to perform well in some situations, but poorly in others.

Alternatively, people’s decision rules and firms’ strategies may change over

time, and certain forecasting techniques may be relatively more vulnerable

to such change.

We allow for time-varying combining weights in the regression framework

by using weighted or rolling estimation of combining regressions, or by al-

lowing for explicitly time-varying parameters. If, for example, we suspect

that the combining weights are evolving over time in a trend-like fashion, we

might use the combining regression

yt+h = (β0
0 + β1

0TIME) + (β0
a + β1

aTIME)ya,t+h,t

+(β0
b + β1

bTIME)yb,t+h,t + εt+h,t,

which we estimate by regressing the realization on an intercept, time, each of

the two forecasts, the product of time and the first forecast, and the product

of time and the second forecast. We assess the importance of time variation
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by examining the size and statistical significance of the estimates of β1
0 , β1

a

, and β1
b .

12.3.2 Serial Correlation

It’s a good idea to allow for serial correlation in combining regressions, for

two reasons. First, as always, even in the best of conditions we need to allow

for the usual serial correlation induced by overlap when forecasts are more

than 1-step-ahead. This suggests that instead of treating the disturbance in

the combining regression as white noise, we should allow for MA(h−1) serial

correlation,

yt+h = β0 + βaya,t+h,t + βbyb,t+h,t + εt+h,t

εt+h,t ∼MA(h− 1).

Second, and very importantly, the MA(h − 1) error structure is associated

with forecasts that are optimal with respect to their information sets, of

which there’s no guarantee. That is, although the primary forecasts were

designed to capture the dynamics in y, there’s no guarantee that they do so.

Thus, just as in standard regressions, it’s important in combining regressions

that we allow either for serially correlated disturbances or lagged dependent

variables, to capture any dynamics in y not captured by the various forecasts.

A combining regression with ARMA(p, q) disturbances,

yt+h = β0 + βaya,t+h,t + βbyb,t+h,t + εt+h,t

εt+h,t ∼ ARMA(p, q),

with p and q selected using information criteria in conjunction with other

diagnostics, is usually adequate.
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12.3.3 Shrinkage of Combining Weights Toward Equality

Simple arithmetic averages of forecasts – that is, combinations in which the

weights are constrained to be equal – sometimes perform very well in out-

of-sample forecast competitions, even relative to “optimal” combinations.

The equal-weights constraint eliminates sampling variation in the combining

weights at the cost of possibly introducing bias. Sometimes the benefits of

imposing equal weights exceed the cost, so that the MSE of the combined

forecast is reduced.

The equal-weights constraint associated with the arithmetic average is

an example of extreme shrinkage; regardless of the information contained

in the data, the weights are forced into equality. We’ve seen before that

shrinkage can produce forecast improvements, but typically we want to coax

estimates in a particular direction, rather than to force them. In that way

we guide our parameter estimates toward reasonable values when the data

are uninformative, while nevertheless paying a great deal of attention to the

data when they are informative.

Thus, instead of imposing a deterministic equal-weights constraint, we

might like to impose a stochastic constraint. With this in mind, we some-

times coax the combining weights toward equality without forcing equality.

A simple way to do so is to take a weighted average of the simple average

combination and the least-squares combination. Let the shrinkage parameter

γ be the weight put on the simple average combination, and let (1-γ) be the

weight put on the least-squares combination, where γ is chosen by the user.

The larger is γ, the more the combining weights are shrunken toward equal-

ity. Thus the combining weights are coaxed toward the arithmetic mean, but

the data are still allowed to speak, when they have something important to

say.



406 CHAPTER 12. MODEL-BASED FORECAST COMBINATION

12.3.4 Nonlinear Combining Regressions

There is no reason to force linearity of combining regressions, and various

of the nonlinear techniques that we’ve already introduced may be used.

We might, for example, regress realizations not only on forecasts, but also

on squares and cross products of the various forecasts, in order to capture

quadratic deviations from linearity,

yt+h = β0 + βaya,t+h,t + βbyb,t+h,t

+βaa(ya,t+h,t)
2 + βbb(yb,t+h,t)

2 + βabya,t+h,tyb,t+h,t + εt+h,t.

We assess the importance of nonlinearity by examining the size and statistical

significance of estimates of βaa, βbb, and βab; if the linear combining regression

is adequate, those estimates should differ significantly from zero. If, on the

other hand, the nonlinear terms are found to be important, then the full

nonlinear combining regression should be used.

12.3.5 Regularized Regression for Combining Large Numbers of

Forecasts

Another, related, approach, involving both shrinkage and selection, is lasso

and other “regularization” methods. Lasso can be used to shrink and select,

and it’s a simple matter to make the shrinkage/selection direction “equal

weights” rather than the standard lasso “zero weights.”

12.4 Application: OverSea Shipping Volume Revisited

Now let’s combine the forecasts. Both failed Mincer-Zarnowitz tests, which

suggests that there may be scope for combining. The correlation between

the two forecast errors is .54, positive but not too high. In Table 9 we

show the results of estimating the unrestricted combining regression with
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MA(1) errors (equivalently, a forecast encompassing test). Neither forecast

encompasses the other; both combining weights, as well as the intercept,

are highly statistically significantly different from zero. Interestingly, the

judgmental forecast actually gets more weight than the quantitative forecast

in the combination, in spite of the fact that its RMSE was higher. That’s

because, after correcting for bias, the judgmental forecast appears a bit more

accurate.
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12.5 On the Optimality of Equal Weights

12.5.1 Under Quadratic Loss

In Figure 12.1 we graph λ∗ as a function of φ, for φ ∈ [.75, 1.45]. λ∗ is

of course decreasing in φ, but interestingly, it is only mildly sensitive to φ.

Indeed, for our range of φ values, the optimal combining weight remains close

to 0.5, varying from roughly 0.65 to 0.30. At the midpoint φ = 1.10, we have

λ∗ = 0.45.

It is instructive to compare the error variance of combined y, σ2
C , to σ2

a for

a range of λ values (including λ = λ∗, λ = 0, and λ = 1).3 From (12.1) we

have:
σ2
C

σ2
a

= λ2 +
(1− λ)2

φ2
.

In Figure 12.2 we graph σ2
C/σ

2
a for λ ∈ [0, 1] with φ = 1.1. Obviously the max-

3We choose to examine σ2
C relative to σ2

a, rather than to σ2
b , because ya is the “standard” y estimate used

in practice almost universally. A graph of σ2
C/σ

2
b would be qualitatively identical, but the drop below 1.0

would be less extreme.
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Figure 12.1: λ∗ vs. φ. λ∗ constructed assuming uncorrelated errors. The horizontal line for visual
reference is at λ∗ = .5. See text for details.

imum variance reduction is obtained using λ∗ = 0.45, but even for nonoptimal

λ, such as simple equal-weight combination (λ = 0.5), we achieve substantial

variance reduction relative to using ya alone. Indeed, a key result is that for

all λ (except those very close to 1, of course) we achieve substantial variance

reduction.

In Figure 12.3 we show λ∗ as a function of φ for ρ = 0, 0.3, 0.45 and 0.6;

in Figure 12.4 we show λ∗ as a function of ρ for φ = 0.95, 1.05, 1.15 and 1.25;

and in Figure 12.5 we show λ∗ as a bivariate function of φ and ρ. For φ = 1

the optimal weight is 0.5 for all ρ, but for φ 6= 1 the optimal weight differs

from 0.5 and is more sensitive to φ as ρ grows. The crucial observation

remains, however, that under a wide range of conditions it is optimal to put

significant weight on both ya and yb, with the optimal weights not differing

radically from equality. Moreover, for all φ values greater than one, so that

less weight is optimally placed on ya under a zero-correlation assumption,

allowance for positive correlation further decreases the optimal weight placed

on ya. For a benchmark calibration of φ = 1.1 and ρ = 0.45, λ∗ ≈ 0.41.

Let us again compare σ2
C to σ2

a for a range of λ values (including λ = λ∗,
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Figure 12.2: σ2
C/σ

2
a for λ ∈ [0, 1]. We assume φ = 1.1 and uncorrelated errors. See text for details.

λ = 0, and λ = 1). From (12.3) we have:

σ2
C

σ2
a

= λ2 +
(1− λ)2

φ2
+ 2λ(1− λ)

ρ

φ
.

In Figure 12.6 we graph σ2
C/σ

2
a for λ ∈ [0, 1] with φ = 1.1 and ρ = 0.45.

Obviously the maximum variance reduction is obtained using λ∗ = 0.41, but

even for nonoptimal λ, such as simple equal-weight combination (λ = 0.5),

we achieve substantial variance reduction relative to using ya alone.

The “equal weights puzzle.” It is clear from our analysis above that in re-

alistic situations (similar variances, small or moderate correlations) the gains

from optimally combining can be massive, and that the loss from combin-

ing with equal weights relative to optimal weights is small. That is, optimal

weights are not generally equal, but combining with equal weights is often not

far from the optimum, and much better than any primary forecast. Equal

weights are fully optimal, moreover, in the equi-correlation case, or more gen-

erally, in the Elliott case. Also, from an estimation perspective, equal weights

may be slightly biased, but they have no variance! So the equal weight puzzle

is perhaps not such a puzzle.
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Figure 12.3: λ∗ vs. φ for Various ρ Values. The horizontal line for visual reference is at λ∗ = .5. See
text for details.

12.5.2 Under Minimax Loss

Here we take a more conservative perspective on forecast combination, solv-

ing a different but potentially important optimization problem. We utilize

the minimax framework of ?, which is the main decision-theoretic approach

for imposing conservatism and therefore of intrinsic interest. We solve a

game between a benevolent scholar (the Econometrician) and a malevolent

opponent (Nature). In that game the Econometrician chooses the combining

weights, and Nature selects the stochastic properties of the forecast errors.

The minimax solution yields the combining weights that deliver the smallest

chance of the worst outcome for the Econometrician. Under the minimax

approach knowledge or calibration of objects like φ and ρ is unnecessary,

enabling us to dispense with judgment, for better or worse.

We obtain the minimax weights by solving for the Nash equilibrium in

a two-player zero-sum game. Nature chooses the properties of the forecast

errors and the Econometrician chooses the combining weights λ. For exposi-
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Figure 12.4: λ∗ vs. ρ for Various φ Values. The horizontal line for visual reference is at λ∗ = .5. See
text for details.

tional purposes, we begin with the case of uncorrelated errors, constraining

Nature to choose ρ = 0. To impose some constraints on the magnitude of

forecast errors that Nature can choose, it is useful to re-parameterize the

vector (σb, σa)
′ in terms of polar coordinates; that is, we let σb = ψ cosϕ and

σa = ψ sinϕ. We restrict ψ to the interval [0, ψ̄] and let ϕ ∈ [0, π/2]. Because

cos2 ϕ + sin2 ϕ = 1, the sum of the forecast error variances associated with

ya and yb is constrained to be less than or equal to ψ̄2. The error associated

with the combined forecast is given by

σ2
C(ψ, ϕ, λ) = ψ2

[
λ2 sin2 ϕ+ (1− λ)2 cos2 ϕ

]
. (12.5)

so that the minimax problem is

max
ψ∈[0,ψ̄], ϕ∈[0,π/2]

min
λ∈[0,1]

σ2
C(ψ, ϕ, λ). (12.6)

The best response of the Econometrician was derived in (12.2) and can

be expressed in terms of polar coordinates as λ∗ = cos2 ϕ. In turn, Nature’s
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problem simplifies to

max
ψ∈[0,ψ̄], ϕ∈[0,π/2]

ψ2(1− sin2 ϕ) sin2 ϕ,

which leads to the solution

ϕ∗ = arc sin
√

1/2, ψ∗ = ψ̄, λ∗ = 1/2. (12.7)

Nature’s optimal choice implies a unit forecast error variance ratio, φ =

σa/σb = 1, and hence that the optimal combining weight is 1/2. If, instead,

Nature set ϕ = 0 or ϕ = π/2, that is φ = 0 or φ = ∞, then either ya or yb

is perfect and the Econometrician could choose λ = 0 or λ = 1 to achieve a

perfect forecast leading to a suboptimal outcome for Nature.

Now we consider the case in which Nature can choose a nonzero correlation

between the forecast errors of ya and yb. The loss of the combined forecast
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a for λ ∈ [0, 1]. We assume φ = 1.1 and ρ = 0.45. See text for details.

can be expressed as

σ2
C(ψ, ρ, ϕ, λ) = ψ2

[
λ2 sin2 ϕ+ (1− λ)2 cos2 ϕ+ 2λ(1− λ)ρ sinϕ cosϕ

]
.

(12.8)

It is apparent from (12.8) that as long as λ lies in the unit interval the

most devious choice of ρ is ρ∗ = 1. We will now verify that conditional on

ρ∗ = 1 the solution in (12.7) remains a Nash Equilibrium. Suppose that the

Econometrician chooses equal weights, λ∗ = 1/2. In this case

σ2
C(ψ, ρ∗, ϕ, λ∗) = ψ2

[
1

4
+

1

2
sinϕ cosϕ

]
.

We can deduce immediately that ψ∗ = ψ̄. Moreover, first-order conditions

for the maximization with respect to ϕ imply that cos2 ϕ∗ = sin2 ϕ∗ which in

turn leads to ϕ∗ = arc sin
√

1/2. Conditional on Nature choosing ρ∗, ψ∗, and

ϕ∗, the Econometrician has no incentive to deviate from the equal-weights

combination λ∗ = 1/2, because

σ2
C(ψ∗, ρ∗, ϕ∗, λ) =

ψ̄

2

[
λ2 + (1− λ)2 + 2λ(1− λ)

]
=
ψ̄

2
.
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In sum, the minimax analysis provides a rational for combining ya and yb with

equal weights of λ = 1/2. Of course it does not resolve the equal weights

puzzle, which refers to quadratic loss, but it puts equal weights on an even

higher pedestal, and from a very different perspective.

12.6 Interval Forecast Combination

12.7 Density Forecast Combination

12.7.1 Choosing Weights to Optimize a Predictive Likelihood

Has Bayesian foundations. Geweke-Amisano.

12.7.2 Choosing Weights Optimize Conditional Calibration

Maximize a test statistic for iid uniformity of the PIT.

12.8 Exercises, Problems and Complements

1. Combining Forecasts.

You are a managing director at Paramex, a boutique investment bank

in Los Angeles. Each day during the summer your two interns give you

a 1-day-ahead forecast of the Euro/Dollar exchange rate. At the end of

the summer, you calculate each intern’s series of daily forecast errors.

You find that the mean errors are zero, and the error variances and

covariances are σ̂2
AA = 153.76, σ̂2

BB = 92.16, and σ̂2
AB = .2.

(a) If you were forced to choose between the two forecasts, which would

you choose? Why?

(b) If instead you had the opportunity to combine the two forecasts

by forming a weighted average, what would be the optimal weights
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according to the variance-covariance method? Why?

(c) Is it guaranteed that a combined forecast formed using the “opti-

mal” weights calculated in part 1b will have lower mean squared

prediction error? Why or why not?

2. The algebra of forecast combination.

Consider the combined forecast,

yct+h,t = λyat+h,t + (1− λ)ybt+h,t.

Verify the following claims made in the text:

a. The combined forecast error will satisfy the same relation as the com-

bined forecast; that is,

ect+h,t = λeat+h,t + (1− λ)eb.t+h,t

b. Because the weights sum to unity, if the primary forecasts are unbi-

ased then so too is the combined forecast.

c. The variance of the combined forecast error is

σ2
c = λ2σ2

aa + (1− λ)2σ2
bb + 2λ(1− λ)σ2

ab,

where σ2
aa and σ2

bb are unconditional forecast error variances and σ2
ab

is their covariance.

d. The combining weight that minimizes the combined forecast error

variance (and hence the combined forecast error MSE, by unbiased-

ness) is

λ∗ =
σ2
bb − σ2

ab

σ2
bb + σ2

aa − 2σ2
ab

.
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e. If neither forecast encompasses the other, then

σ2
c < min(σ2

aa, σ
2
bb).

f. If one forecast encompasses the other, then

σ2
c = min(σ2

aa, σ
2
bb).

3. Quantitative forecasting, judgmental forecasting, forecast combination,

and shrinkage.

Interpretation of the modern quantitative approach to forecasting as es-

chewing judgment is most definitely misguided. How is judgment used

routinely and informally to modify quantitative forecasts? How can

judgment be formally used to modify quantitative forecasts via forecast

combination? How can judgment be formally used to modify quanti-

tative forecasts via shrinkage? Discuss the comparative merits of each

approach.

4. The empirical success of forecast combination.

In the text we mentioned that we have nothing to lose by forecast com-

bination, and potentially much to gain. That’s certainly true in popu-

lation, with optimal combining weights. However, in finite samples of

the size typically available, sampling error contaminates the combining

weight estimates, and the problem of sampling error may be exacer-

bated by the collinearity that typically exists between yat+h,t and ybt+h,t.

Thus, while we hope to reduce out-of-sample forecast MSE by combin-

ing, there is no guarantee. Fortunately, however, in practice forecast

combination often leads to very good results. The efficacy of forecast

combination is well-documented in a vast literature.

5. Regression forecasting models with expectations, or anticipatory, data.
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A number of surveys exist of anticipated market conditions, investment

intentions, buying plans, advance commitments, consumer sentiment,

and so on.

(a) Search the World Wide Web for such series and report your results.

A good place to start is the Resources for Economists page men-

tioned in Chapter ??.

(b) How might you use the series you found in a regression forecasting

model of y? Are the implicit forecast horizons known for all the

anticipatory series you found? If not, how might you decide how to

lag them in your regression forecasting model?

(c) How would you test whether the anticipatory series you found pro-

vide incremental forecast enhancement, relative to the own past his-

tory of y?

6. Crowd-sourcing via internet activity.

How, in a sense, are trends identified by search data (on Google, YouTube,

...), tweets, etc. “combined forecasts”?

7. Turning a set of point forecasts into a combined density forecast.

We can produce a combined density forecast by drawing from an estimate

of the density of the combining regression disturbances, as we did in a

different context in section 4.1.

12.9 Notes

The idea of forecast encompassing dates at least to Nelson (1972), and was

formalized and extended by Chong and Hendry (1986) and Fair and Shiller

(1990). The variance-covariance method of forecast combination is due to

Bates and Granger (1969), and the regression interpretation is due to Granger
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and Ramanathan (1984). Surveys of econometric forecast combination in-

clude Diebold and Lopez (1996) and Timmermann (2006). Surveys of survey-

based combination include Pesaran and Weale (2006). Snowberg et al. (2013)

(prediction markets) provide a nice review of prediction markets.
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Chapter 13

Market-Based Forecast Combination

13.1 Financial Markets

Markets can be a spectacularly effective method of information aggregation,

as shown in both classic theoretical treatments of price systems as information

aggregators (e.g., Koopmans (1957)) and similarly classic experimental work

e.g., Plott (2000)). Hence one might suspect that markets would be useful

for combining forecasts. In this section we explore that idea.

Markets and surveys are in certain respects opposite extremes. Markets are

loved by economists (as market participants have real money on the line), and

surveys are often unloved by economists (as survey participants typically have

nothing on the line). That is, because market participants have real money

on the line, markets may be more likely than otherwise to truthfully reveal

traders’ views, via their trading decisions). In any event, both market-based

combined forecasts and survey-based combined forecasts are very different

from forecasts from a simple single model.

Financial markets are naturally forward-looking, and market forecasts can

sometimes be extracted from financial asset prices. There are many examples.

421
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13.1.1 General Principles

Point Forecasts From Forward Markets

A classic example is using forward foreign exchange rates as forecasts of

future spot exchange rates. Under risk neutrality, agents will always buy

forward foreign exchange when it’s “cheap” (under-priced) relative to their

expectations of the future spot rate, and sell when it’s “dear” (over-priced).

Immediately then, we have that under risk neutrality:

Ft(t+ h) = Et(St+h),

where Ft(t + h) is the h-day forward rate prevailing at time t and Et(St+h)

is the optimal (conditional mean) spot-rate forecast made at time t for time

t+ h.

Note well that in this example, and in financial markets more generally,

typically only “risk neutral” forecasts are easy to extract from financial mar-

kets, the real-world usefulness of which remains an issue. That is, risk premia,

which moreover are likely time-varying due to the time-varying financial-

market volatility emphasized in Chapter 8, are always a potential issue.1

Point Forecasts From Futures Markets

Futures markets exist for many many things, trading contracts not only for

standard financials (e.g., currencies, interest rates, ...), but also for myriad

other things, including aspects of energy, agriculture, metals and other com-

modities – even weather, real estate, and stock market volatility!

Because futures are traded on exchanges, you can learn a lot about the

contracts traded and currently-prevailing prices (and hence implied forecasts)

by visiting exchanges’ websites. (Some are listed at the end of this chapter.)

1But much of the evidence looks good, a point to which we will return in some detail.
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Density Forecasts From Options Markets (Using Sets of Options)

We can infer market-based density forecasts of future spot price S by looking

at currently-prevailing options prices across a (hopefully-wide) wide range of

strike prices, k.

Event Probability Forecasts From Digital Options Markets

“Contingent claims,” or “Arrow-Debreu securities,” or “binary options,” or

“digital options” simply pay $1 if a certain event occurs, and 0 otherwise.

Hence we can infer the market’s event probability assessment from the price

at which the digital option sells. Digital options are now written on a variety

of “underlyings,” from the S&P 500, to the V IX, to the weather.

But digital options can be written on anything and traded by anyone (if

only the regulators would stay away). Effectively they’re just gambles, in

a financial-market disguise.2 This brings up the general idea of so-called

“prediction markets,” which have always been viewed as gambling markets

(e.g., sports betting), to which we now turn.

Density Forecasts From Digital Options Markets (Using Sets of Digital Options)

Estimate sets of probabilities (i.e., a density or cdf) using sets of contracts.

13.1.2 More

Volatility Forecasts From Options Markets

Using no-arbitrage arguments (i.e., not even requiring risk neutrality), we can

price options given a view on volatility, and conversely we can use market

prices of options to infer the market volatility view. The famous Black-

Scholes formula for pricing European options, although surely incorrect, as it

2Of courseall financial markets are effectively casinos in significant part.
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assumes that spot prices follow Gaussian random walks with constant volatil-

ity, nevertheless conveys all of the relevant lessons. We have

Pt = G(σt, it, St, k, τ),

where Pt is a call price, σt is volatility, it is the risk-free rate corresponding

to the remaining lifespan of the option, St is current spot price, k is strike

price, and τ is time to maturity. Alternatively we can invert the equation

and write

σt = G−1(Pt, it, St, k, τ).

This equation gives the current market view (forecast) of σt as a function of

observed market price Pt.

Correlation Forecasts From Trios of Implied Volatilities

By a no-arbitrage argument (i.e., not even requiring risk neutrality), we have

cov(∆ lnY/$,∆ lnD/$) =
1

2
(var(∆ lnY/$) + var(∆ lnD/$)− var (∆ lnY/D)) .

To see why, note that in the absence of triangular arbitrage,

var(∆ ln(Y/D)) = var

(
∆ ln

Y/$

D/$

)
.

But

var

(
∆ ln

Y/$

D/$

)
= var(∆ lnY/$) + var(∆ lnD/$)− 2cov(∆ lnY/$,∆ lnD/$),

so that

cov(∆ lnY/$,∆ lnD/$) =
1

2

(
var(∆ lnY/$) + var(∆ lnD/$)− var

(
∆ ln

Y/$

D/$

))
.

This means that, given exchange-rate volatility forecasts extracted from fi-

nancial markets via options as discussed above, we can also produce market-
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based covariance and correlation forecasts.

Skewness Forecasts From Risk Reversals

In a risk reversal, one buys/sells a call and sells/buys a put, both out of the

money.

Inflation Forecasts From Indexed Bonds

The difference between yields on non-indexed vs. indexed bonds is an imme-

diate risk-neutral forecast of inflation.

Inflation Forecasts from Bond Yields

Under risk neutrality, nominal government bond yields equal real yields plus

expected inflation (the famous “Fisher equation”),

it(t+ h) = rt(t+ h) + Et(πt+h),

where it(t+ h) is the nominal bond yield from time t to time t+ h, rt(t+ h)

is the corresponding real yield, and Et(πt,t+h) the optimal (conditional mean)

forecast of inflation between time t and time t+h. Hence under an assumption

about the real rate one can extract expected inflation.

Bond Yield Forecasts From the Term Premium

Long rates always involve averages of expected future short rates. Under

risk neutrality we get the famous Hicksian “expectations theory” of the yield

curve, in which long rates are precisely averages of expected future short

rates, so that borrowers are indifferent between issuing a long bond or issuing

a short bond and sequentially rolling it over.3

3Put differently (for bond market aficionados), another way to state the expectations theory is that
currently-prevailing forward interest rates should equal expected future short interest rates.
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We have

it(t+ h) =
it(t+ 1) + Etit+1(t+ 2) + ...+ Etit+h−1(t+ h)

h
.

This suggests that a useful predictive regression would relate changes in short

yields to the currently-prevailing long-short spread (“term spread”), a so-

called Campbell-Shiller regression.

Real Activity Forecasts From the Term Premium

Unexpectedly tight monetary policy now, by raising short rates, produces

an inverted (negatively-sloped) yield curve now, and recession often follows

(both theoretically and empirically). Conversely, loose monetary policy now

produces an upward-sloping yield curve now, and a boom later. This suggests

that the shape of the yield curve now, and in particular a long-short term

spread, has predictive content for real activity (real GDP and its components,

and more generally “the business cycle.”)

Real Activity Forecasts From the Default Premium

A simple direct argument regarding market-perceived recession risk suggests

that we compare the prevailing yield on an N -year (“risk-free”) government

bond to an index of N -year (risky, defaultable) corporate bond yields.4 The

larger the spread, the larger the market-perceived corporate bond default

probability, presumably driven by an increase in market-perceived recession

probability.

4The corporate bond yield index can moreover be broken down by grade.
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Long-Run Equity Return Forecasts from the Dividend Yield

13.2 “Prediction Markets”

13.2.1 Arrow-Debreu Contingent Claims

The name “prediction markets” is a misnomer, as predictions are not traded

in those markets; rather, Arrow-Debreu contracts are traded. Hence there’s

really nothing new relative to digital options. As with digital options, we

interpret the prices in markets for Arrow-Debreu securities as market-based

combined forecasts of event probabilities.

But prediction markets are run purely for the purpose of inferring pre-

dictions, so we don’t simply have to take markets “as is,” as with financial

markets. Instead, we design the markets to provide exactly what we want.

Prediction markets are proving useful in many forecasting situations, and

they may be unusually useful in the very hardest forecasting situations, such

as assessing the probability of events like “an earthquake hits Tehran before

December 31, 2050 and kills 100,000 or more people.”

13.2.2 Parimutual Betting Markets

Parimutual is like Arrow-Debreu but without the ability to resell a security

once bought. So it suffers in terms of dynamic tracking of market-based

probabilities. A way to fix it would be to have a secondary market in pari

”receipts”.

13.3 Issues with Market-Based Forecasts

There are many interesting issues yet to be thoroughly explored.
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13.3.1 Market Inefficiencies and No-Arbitrage Conditions

Issues may arise with composite bets (e.g., Duke wins it all in March Mad-

ness). In particular if the market is arbitrage-free, then the price of the

composite bet should equal that of a replicating portfolio of simple bets.

Another no-arbitrage issue is that the the bid price on one exchange should

never be higher than the ask price on another.

A related issue is apparent mis-pricing of extreme events, such as over-

pricing of far out-of-the-money puts. This is often called “favorite / longshot

bias,” in reference to parimutual betting markets.

13.3.2 Moral Hazard and Market Manipulation

Moral hazard – the temptation to be less vigilant against risks that are in-

sured – is always an issue in “insurance” markets such as those under discus-

sion. Related, incentives arise to manipulate markets so as to increase the

likelihood of payoffs.

13.3.3 True Moral Issues

The public sometimes finds trading on extreme events immoral (e.g., “we

shouldn’t let someone profit from an earthquake that kills 100,000 people”).

But the profiting hedgers are precisely those that need help – earthquake

victims who bought earthquake contracts!

13.3.4 Risk Neutrality

The main issue is that market-assessed probabilities are risk neutral, so they

may not be reliable guides to the physical world. Perhaps market can behave

as risk neutral even if individual agents are not. Many of the bets are for small

entertainment purposes, so risk neutrality may not be unreasonable. At any
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rate, as an empiricall matter, event probabilities extracted from prediction

markets are often highly accurate.

13.3.5 Beyond Risk Neutrality

Charles Manski argues that there are problems with market-assessed prob-

abilities even if traders are risk-neutral, as long as they have heterogeneous

beliefs. In particular, he argues that

... the price of a contract in a prediction market reveals nothing

about the dispersion of traders’ beliefs and only partially identifies

the central tendency of beliefs. Most persons have beliefs higher

than price when price is above 0.5, and most have beliefs lower

than price when price is below 0.5. The mean belief of traders lies

in an interval whose midpoint is the equilibrium price.

The first part of Manksi’s critique (that price reveals nothing about the

dispersion of traders’ beliefs) seems disingenuous. Why would anyone think

that price would reveal anything about dispersion of beliefs?

The second part of Manski’s critique (that price only partially identifies

the central tendency of beliefs) seems relevant, if not particularly trenchant.

Indeed he shows that the mean belief of traders nevertheless “lies in an in-

terval whose midpoint is the equilibrium price.” And as an empirical matter,

market-based probability assessments are typically highly accurate, for what-

ever reason. For a broad overview of these and related issues, see Snowberg

et al. (2013).

13.3.6 A Bit More on Market Efficiency

We have seen that groupthink may wreak havoc in certain survey environ-

ments (Delphi, focus-group), but we hasten to add that it can similarly

pollute market-based probability assessments, as price bubbles and the like
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(“panics, manias and crashes,” in the colorful language of Kindleberger and

Aliber (2011)) may seriously compromise the independence of the opinions

being aggregated.

In addition, if surveys may suffer from the fact that “no money is on

the line,” markets may suffer from selection bias – markets aggregate only

the views of those who choose to trade, and traders may be a very special

group with special characteristics, whereas randomized surveys cover entire

populations.

13.4 Exercises, Problems and Complements

1. “Parimutual” market-based forecasts inside Intel.

Read Gillen, Plott and Shum (2014) (GPS), “A Parimutual-Like Mech-

anism for Information Aggregation: A Field Test Inside Intel”.

(a) GPS aggregate information (combine forecasts) using a “parimutual

betting market” as opposed to an Arrow-Debreu (AD) securities

market. Discuss the similarities and differences, pros and cons, etc.

Clearly the GPS parimutual market-based information aggregation

mechanism is different from the AD mechanism, but is it necessarily

better? Why or why not?

(b) Why do GPS reveal the bet distribution in real time? Might that

not promote groupthink? Discuss.

(c) GPS admirably try try to provide new insight into why parimu-

tual prediction markets work. But isn’t it basically the usual story,

namely that people in prediction markets behave in approximately

risk-neutral fashion, for whatever reason, allowing us to infer market-

assessed conditional event probabilities?

(d) Recall Manski’s critique of AD markets: Even under risk neutral-

http://www.ssc.upenn.edu/~fdiebold/papers/misc/GillenPlottandShum2014.pdf
http://www.ssc.upenn.edu/~fdiebold/papers/misc/GillenPlottandShum2014.pdf
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ity AD markets identify only a range for the conditional probability

(centered at the true conditional probability). Perhaps the parimu-

tual mechanism has provably better properties under risk neutrality,

nailing the conditional expectation as opposed to a range? Discuss.

(e) Density forecasts are often evaluated using the sequence of proba-

bility integral transforms (PIT’s). What is the PIT sequence, what

two properties should it have, and why?

(f) Do GPS check the two PIT sequence conditions for their parimutual

density forecast? One? None? Discuss in detail.

(g) Density forecasts are often compared using predictive likelihood

(PL). What is the PL, and how do such comparisons proceed? Do

GPS do a PL comparison of their parimutual forecast to the official

Intel forecast? Why or why not?

(h) GPS compare parimutual forecasts to official Intel forecasts, but

they neglect a key comparison parimutual vs. AD. How would you

do it?

(i) In a forecast combination exercise (GPS vs. official Intel), Intel

receives a negative combining weight. Discuss.

2. Comparing parimutual and AD information aggregation mechanisms.

http://authors.library.caltech.edu/44358/1/wp1131.pdf

3. Are combined prediction markets likely valuable?

PredictWise aggregates prices from alternative prediction markets. But

prediction market forecasts are effectively combined forecasts, so aver-

ages of different prediction markets are effectively combined combined

forecasts. Are such averages likely to be superior to any single prediction

market? And isn’t the existence of different prices for the same contract

in different prediction markets a violation of the law of one price, and

http://authors.library.caltech.edu/44358/1/wp1131.pdf
http://www.predictwise.com
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hence of market efficiency, enabling arbitrage? If the answer is that the

contracts in different markets aren’t identical, then does it really make

sense to average their prices?

4. A diary of experiences trading in prediction markets (among other things).

See the material under “STATISTICS/Predicting and Prediction Mar-

kets” at gwern.net. Much other material on the site is interesting and

also worth a look.

5. Interesting people working on prediction markets.

Miro Dudik, Dan Goldstein, Jake Hofman, Patrick Hummel, Adam Isen,

Neil Malhotra, David Pennock, David Rothchild, Florian Teschner, Dun-

can Watts, Justin Wolfers, Eric Zitzewitz. For links to names not hy-

perlinked, see Rothchild’s site.

6. Prediction markets encourage “foxy” behavior.

Read Silver (2012), Tetlock and Gardner (2015) and Tetlock (2006) on

forecasting “foxes” and “hedgehogs” (e.g., Silver, pp. 53-54). Note

the key to the success of prediction markets – particularly as typically

used for complicated event forecasting – may be their encouragement

of foxy behavior, by virtue of their making non-foxy (hedgehog) be-

havior explicitly costly ! Note also, however, that it’s important that

prediction-market wagers be set at levels not so small as to encour-

age strong risk-seeking, or so high as to encourage strong risk aversion.

We need approximate risk neutrality to be able to credibly interpret

prediction-market prices as probabilities.

13.5 Notes

Financial Markets

http://www.gwern.net
http://www.dartmouth.edu/~ericz
http://researchdmr.com/
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Macroeconomic derivatives. CME futures and options on the S&P Case-

Shiller house price index.

VIX implied volatility index

CBOE options exchange

CME futures exchange

Prediction Markets

ipredict. New Zealand. Wide range of contracts.

Tradesports. In trouble. Re-emerging with virtual currency?

The Journal of Prediction Markets

Lumenogic. “Collective intelligence solutions.” Consultancy providing pre-

diction markets to client firms. Uses virtual currency.

European Betting Markets

Microsoft Prediction Lab

PredictWise Prediction/Betting Market Aggregator. Combined prediction-

market forecasts.

From their FAQ’s (regarding the markets that they follow / combine):

Q:What are the Iowa Electronic Markets, http://tippie.uiowa.edu/

iem/index.cfm?

A:The Iowa Electronic Markets (IEM) is an exchange of real-money predic-

tion markets operated by the University of Iowa Tippie College of Business.

The IEM is not-for-profit; the markets are run for educational and research

purposes. Because of the small sums wagered and the academic focus, the

IEM has received no-action relief from the United States government, mean-

ing U.S.-based speculators can legally risk up to $500 on the exchange.

Q:What is Betfair, https://www.betfair.com/us?

A:Betfair, based in the United Kingdom, is the world’s largest internet

betting exchange. Rather than having a bookmaker create odds, the odds

for every bet are determined by the market of bettors, working similarly to a

stock market. Bettors can either ”Back” (buy) or ”Lay” (sell) a given bet at

http://www.cmegroup.com/trading/real-estate/residential/SandP-case-shiller-home-price-index.html
http://www.cboe.com/micro/VIX/vixintro.aspx
http://www.cboe.com
http://www.cmegroup.com
https://www.ipredict.co.nz/
http://www.tradesports.com
http://ubplj.org/index.php/jpm/index
http://newsfutures.com
http://www.oddschecker.com/awards/brit-awards
https://prediction.microsoft.com
http://www.predictwise.com
http://tippie.uiowa.edu/iem/index.cfm
http://tippie.uiowa.edu/iem/index.cfm
https://www.betfair.com/us
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certain odds, and the odds move as Backs and Lays are matched. Betfair is

legal in the UK and other countries, but it is illegal to bet money on Betfair

as a resident of the United States.

Q:What is Intrade, https://prev.intrade.com/v4/home/?

A:Intrade, based in Ireland, is a prediction market which allows individuals

to trade contracts on whether future events will or will not occur. For any

given contract, the value at expiration is either 100 (if the event happens) or

0 (if it does not). Contracts therefore trade between 0 and 100 at all times,

with the price representing the market’s prediction for the likelihood of that

event. Intrade is legal in the Republic of Ireland and other countries, but it

is illegal to bet money on Intrade as a resident of the United States.

Q:What is HuffPost Pollster, http://www.huffingtonpost.com/news/

pollster/?

A:HuffPost Pollster, is a site that discusses and aggregates polling data.

Polling data is subject to random fluctuations and Pollster’s aggregation

methods cleanly and transparently aggregate polls over time to provide a

more meaningful snapshot of where the polls are at any given moment.

Q:What is PredictIt, https://www.predictit.org/?

A:PredictIt is an exchange of real-money prediction markets operated by

the Victoria University and Aristotle. Because of the small sums wagered

PredictIt has received no-action relief from the United States government,

meaning U.S.-based speculators can legally risk upwards of $850 in any of

the markets.

Q:What is BETDAQ, https://www.betdaq.com/Default.aspx?

A:BETDAQ, based in Ireland, is an internet betting exchange. Rather

than having a bookmaker create odds, the odds for every bet are determined

by the market of bettors, working similarly to a stock market. Bettors can

either ”Back” (buy) or ”Lay” (sell) a given bet at certain odds, and the odds

move as Backs and Lays are matched. BETDAQ is legal in Ireland and other

https://prev.intrade.com/v4/home/
http://www.huffingtonpost.com/news/pollster/
http://www.huffingtonpost.com/news/pollster/
https://www.predictit.org/
https://www.betdaq.com/Default.aspx
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countries, but it is illegal to bet money on BETDAQ as a resident of the

United States.

Q:What is the Hollywood Stock Exchange (HSX), http://www.hsx.com/?

A:The Hollywood Stock Exchange (HSX) is a play-money prediction mar-

ket in which users can buy or sell shares in movies, actors, directors, and

other Hollywood-related topics. For example, users can buy or sell shares of

an upcoming film as a means predicting how well that film will do at the

box office in its first four weekends of wide release, and then be ranked based

on the accuracy of their predictions. Because HSX involves only simulated

money, it is legal for all participants.

Q:What is Smarkets, https://smarkets.com/?

A:Smarkets, based in the United Kingdom, is an internet betting exchange.

Rather than having a bookmaker create odds, the odds for every bet are

determined by the market of bettors, working similarly to a stock market.

Bettors can either bet ”For” (buy) or ”Against” (sell) a given bet at certain

odds, and the odds move as Fors and Againsts are matched. Smarkets is legal

in the UK and other countries, but it is illegal to bet money on Smarkets as

a resident of the United States.

http://www.hsx.com/
https://smarkets.com/
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Chapter 14

Survey-Based Forecast Combination

14.1 Survey-Based Point Forecast Combination

A number of groups regularly survey economic and financial forecasters and

publish “consensus” forecasts, typically the mean or median – essentially the

average! – of the forecasters surveyed. (The median has some desirable ro-

bustness to outliers.) The consensus forecasts often perform very well relative

to the individual forecasts.

The Survey of Professional Forecasters (SPF) is the leading U.S. consensus

macroeconomic forecast. It has been produced each quarter since the late

1960s; currently it is produced by the Federal Reserve Bank of Philadelphia.

A similar Survey of Professional Forecasters for Europe has been produced

each quarter since the late 1990s; it is produced by the European Central

Bank.

Another leading U.S. consensus forecast is the Livingston Survey, which is

now also maintained by the Federal Reserve Bank of Philadelphia. It is only

bi-annual but has been recorded for more than half a century. There are also

many surveys done in the private sector.

437
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14.1.1 Surveys and the Wisdom of Crowds

As emphasized in Surowiecki’s Wisdom of Crowds (Surowiecki (2004)), wise

“crowdsourcing” depends on balanced aggregation across disparate informa-

tion sources. So we need: (1) independent, or at least imperfectly dependent,

people, so that there’s actually something to aggregate, and (2) a dispassion-

ate aggregation mechanism, so that we avoid “groupthink.” Surveys are often

good at (1), and certainly they’re very good at (2). Other more exotic dis-

passionate aggregation mechanisms include Google’s “pagerank” algorithm

and open-source software coding (e.g., Linux).

14.1.2 Delphi, Focus Groups, and Related Methods

The “Delphi method” is a forecasting technique that sometimes proves useful

in very difficult forecasting situations not amenable to quantification, such

as new-technology forecasting. The basic idea is to survey a panel of experts

anonymously, reveal the distribution of opinions to the experts so they can

revise their opinions, repeat the survey, and so on. Typically the diversity

of opinion is reduced as the iterations proceed. However, Delphi may be

problematic insofar as it is actually based on groupthink. “Focus groups”

maybe even worse, as certain individuals may dominate the group. At the

same time, it’s not clear that we should dispense with such techniques; they

may be of some value.

14.1.3 Cross-Sectional Forecast Dispersion vs. True Uncertainty

The two are very different, and in principle unrelated, even if they are often

positively correlated in practice.

In particular, the cross-sectional distribution of survey point forecasts is

not a density forecast, combined or otherwise. Rather, it’s simply the cross-

sectional distribution of survey point forecasts. Density forecasts, combined
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or otherwise, cannot generally be obtained from surveys of point forecasts.

For that, we need a survey density, not point, forecast from each participant,

from which a combined survey density forecast may be constructed.1 (See

Chapter ***).

14.2 Survey-Based Density Forecast Combination

14.3 Exercises, Problems and Complements

1. Wiki Surveys.

See Wiki Surveys. It’s not really a survey; rather, it’s idea generation by

pairwise comparison. Very interesting and evidently useful, even if naive

in its methods for reconstructing preferences from pairwise rankings.

2. Issues in survey design.

(a) Time series of cross sections vs. panels.

Both the SPF and the Livingston Survey are time series of cross

sections as opposed to true panels, insofar as both the number and

composition of underlying forecasters has evolved over time. Other

surveys like the Panel Study of Income Dynamics have true panel

structure. Panel structure is preferable when possible, but it’s not

always possible, as with the SPF.

(b) Framing survey questions to turn individual responses into combined

forecasts.

Rothchild and Wolfers (2013) makes the interesting observation that

election surveys are more accurate when the respondents are not

asked for whom they intend to vote, but rather whom they expect

to win. A natural interpretation is that each response to the latter
1There are, however, conditions under which the cross-sectional distribution of point forecasts can be

interpreted as a density forecast. See ***.

http://www.allourideas.org
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survey is actually an average response over the respondent’s friends,

thereby making the effective sample size much larger than the nomi-

nal size N (more like 10N , say). That is, each response in the latter

survey is not a forecast, but rather a combined forecast.

3. Using surveys to assess forecastability.

As we saw earlier in Chapter ***, forecastability involves comparing

estimates of “best” forecast accuracy to “naive” forecast accuracy. The

question arises as to what to use for the best forecast. A strong case

can be made for using a combined forecast from a survey or market. For

example, to assess GDP forecastability, we might use MSE (assuming

quadratic loss) from a reputable survey of professional forecasters as

“best forecast” accuracy, and a historical GDP sample variance as “naive

forecast” accuracy.

4. Forecastability assessment using surveys.

One could take a survey-based approach, based on the predictions of

competitive professional forecasters. Conditional upon the assumption

that the reported forecasts are optimal, those data can be used for in-

ferences about predictability. The survey-based approach is of interest

because the information sets used by actual forecasters are likely much

richer than simple univariate histories. They are surely multivariate,

for example, and they also contain hard-to-quantify subjective informa-

tion. The survey-based approach does rely on a crucial and disputable

assumption (optimality of reported forecasts), but so too does the model-

based approach (adequacy of the fitted model). The key point is that

the assumptions made by the two approaches are different, and that the

approaches therefore naturally complement one another.

A number of relevant surveys exist, including the former Survey of Pro-

fessional Forecasters by the Federal Reserve Bank of Philadelphia (see
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Croushore 1993). These surveys focus on the major macroeconomic ag-

gregates, such as real GDP growth. It would be interesting to use those

forecasts to compute survey-based estimates of predictability, and to

compare the survey-based and model-based estimates.

5. Adaptive crowdsourcing.

Sometimes forecast combination, particularly when done with surveys

or markets, is called “crowdsourcing.” Sometimes “adaptive crowdsourc-

ing” is appealing.

(a) Traditional forecast combination, but with time-varying combining

weights, is a form of adaptive crowdsourcing.

(b) Another example is the judging of a science fair, with judges re-

allocated as various projects are eliminated.

14.4 Notes

Useful web sites:

Macro / Finance Surveys

U.S. Survey of Professional Forecasters (SPF). Quarterly.

European Survey of Professional Forecasters.

Livingston Survey. Goes way back, spanning many business cycles. Biennial.

Blue Chip

Micro Surveys

Panel Study of Income Dynamics.

Michigan Survey of Consumer Sentiment. Well-known indexes of Consumer

Sentiment, Current Economic Conditions, and Consumer Expectations.

Companies

http://www.phil.frb.org/research-and-data/real-time-center/survey-of-professional-forecasters/
http://www.ecb.europa.eu/stats/prices/indic/forecast/html/index.en.html
http://www.philadelphiafed.org/research-and-data/real-time-center/livingston-survey/
http://www.wklawbusiness.com/bluechip
http://psidonline.isr.umich.edu/
http://www.sca.isr.umich.edu/
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Consensus Economics. Private-sector forecast combination.

Blue Chip

Other

Wiki Surveys

HuffPost Pollster discusses and aggregates polling data. Combined surveys!

http://www.consensuseconomics.com/
http://www.wklawbusiness.com/bluechip
http://www.allourideas.org
http://www.huffingtonpost.com/news/pollster/
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Chapter 15

Selection, Shrinkage, and Distillation

We start with more on selection (“hard threshold” – variables are either

kept or discarded), and then we introduce shrinkage (“soft threshold” – all

variables are kept, but parameter estimates are coaxed in a certain direction),

and then lasso, which blends selection and shrinkage.

15.1 All-Subsets Model Selection I: Information Crite-

ria

All-subsets model selection means that we examine every possible combina-

tion of K regressors and select the best. Examples include SIC and AIC.

Let us now discuss SIC and AIC in greater depth, as they are tremen-

dously important tools for building forecasting models. We often could fit a

wide variety of forecasting models, but how do we select among them? What

are the consequences, for example, of fitting a number of models and select-

ing the model with highest R2? Is there a better way? This issue of model

selection is of tremendous importance in all of forecasting.

It turns out that model-selection strategies such as selecting the model

with highest R2 do not produce good out-of-sample forecasting models. For-

tunately, however, a number of powerful modern tools exist to assist with

model selection. Most model selection criteria attempt to find the model

445
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with the smallest out-of-sample 1-step-ahead mean squared prediction error.

The criteria we examine fit this general approach; the differences among cri-

teria amount to different penalties for the number of degrees of freedom used

in estimating the model (that is, the number of parameters estimated). Be-

cause all of the criteria are effectively estimates of out-of-sample mean square

prediction error, they have a negative orientation – the smaller the better.

First consider the mean squared error,

MSE =

∑T
t=1 e

2
t

T
,

where T is the sample size and et = yt − ŷt. MSE is intimately related to

two other diagnostic statistics routinely computed by regression software, the

sum of squared residuals and R2. Looking at the MSE formula reveals

that the model with the smallest MSE is also the model with smallest sum

of squared residuals, because scaling the sum of squared residuals by 1/T

doesn’t change the ranking. So selecting the model with the smallest MSE

is equivalent to selecting the model with the smallest sum of squared residuals.

Similarly, recall the formula for R2,

R2 = 1−
∑T

t=1 e
2
t∑T

t=1(yt − ȳ)2
= 1− MSE

1
T

∑T
t=1(yt − ȳ)2

.

The denominator of the ratio that appears in the formula is just the sum

of squared deviations of y from its sample mean (the so-called “total sum

of squares”), which depends only on the data, not on the particular model

fit. Thus, selecting the model that minimizes the sum of squared residuals –

which as we saw is equivalent to selecting the model that minimizes MSE –

is also equivalent to selecting the model that maximizes R2.

Selecting forecasting models on the basis of MSE or any of the equiva-

lent forms discussed above – that is, using in-sample MSE to estimate the

out-of-sample 1-step-ahead MSE – turns out to be a bad idea. In-sample



15.1. ALL-SUBSETS MODEL SELECTION I: INFORMATION CRITERIA 447

MSE can’t rise when more variables are added to a model, and typically

it will fall continuously as more variables are added, because the estimated

parameters are explicitly chosen to minimize the sum of squared residuals.

Newly-included variables could get estimated coefficients of zero, but that’s

a probability-zero event, and to the extent that the estimate is anything else,

the sum of squared residuals must fall. Thus, the more variables we include

in a forecasting model, the lower the sum of squared residuals will be, and

therefore the lower MSE will be, and the higher R2 will be. Again, the sum

of squared residuals can’t rise, and due to sampling error it’s very unlikely

that we’d get a coefficient of exactly zero on a newly-included variable even

if the coefficient is zero in population.

The effects described above go under various names, including in-sample

overfitting, reflecting the idea that including more variables in a forecasting

model won’t necessarily improve its out-of-sample forecasting performance,

although it will improve the model’s “fit” on historical data. The upshot is

that in-sample MSE is a downward biased estimator of out-of-sample MSE,

and the size of the bias increases with the number of variables included in

the model. In-sample MSE provides an overly-optimistic (that is, too small)

assessment of out-of-sample MSE.

To reduce the bias associated with MSE and its relatives, we need to

penalize for degrees of freedom used. Thus let’s consider the mean squared

error corrected for degrees of freedom,

s2 =

∑T
t=1 e

2
t

T −K
,

where K is the number of degrees of freedom used in model fitting.1 s2 is just

the usual unbiased estimate of the regression disturbance variance. That is,

it is the square of the usual standard error of the regression. So selecting the

model that minimizes s2 is equivalent to selecting the model that minimizes

1The degrees of freedom used in model fitting is simply the number of parameters estimated.
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the standard error of the regression. s2 is also intimately connected to the

R2 adjusted for degrees of freedom (the “adjusted R2,” or R̄2 ). Recall that

R̄2 = 1−
∑T

t=1 e
2
t/(T −K)∑T

t=1(yt − ȳ)2/(T − 1)
= 1− s2∑T

t=1(yt − ȳ)2/(T − 1)
.

The denominator of the R̄2 expression depends only on the data, not the

particular model fit, so the model that minimizes s2 is also the model that

maximizes R̄2. In short, the strategies of selecting the model that minimizes

s2, or the model that minimizes the standard error of the regression, or the

model that maximizes R̄2, are equivalent, and they do penalize for degrees of

freedom used.

To highlight the degree-of-freedom penalty, let’s rewrite s2 as a penalty

factor times the MSE,

s2 =

(
T

T −K

)∑T
t=1 e

2
t

T
.

Note in particular that including more variables in a regression will not nec-

essarily lower s2 or raise R̄2 – the MSE will fall, but the degrees-of-freedom

penalty will rise, so the product could go either way.

As with s2, many of the most important forecast model selection criteria

are of the form “penalty factor times MSE.” The idea is simply that if we

want to get an accurate estimate of the 1-step-ahead out-of-sample forecast

MSE, we need to penalize the in-sample residual MSE to reflect the degrees

of freedom used. Two very important such criteria are the Akaike Informa-

tion Criterion (AIC) and the Schwarz Information Criterion (SIC).

Their formulas are:

AIC = e(
2K
T )
∑T

t=1 e
2
t

T
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and

SIC = T (KT )
∑T

t=1 e
2
t

T
.

How do the penalty factors associated with MSE, s2, AIC and SIC

compare in terms of severity? All of the penalty factors are functions of

K/T , the number of parameters estimated per sample observation, and we

can compare the penalty factors graphically as K/T varies. In Figure *** we

show the penalties as K/T moves from 0 to .25, for a sample size of T = 100.

The s2 penalty is small and rises slowly with K/T ; the AIC penalty is a bit

larger and still rises only slowly with K/T . The SIC penalty, on the other

hand, is substantially larger and rises much more quickly with K/T .

It’s clear that the different criteria penalize degrees of freedom differently.

In addition, we could propose many other criteria by altering the penalty.

How, then, do we select among the criteria? More generally, what properties

might we expect a “good” model selection criterion to have? Are s2, AIC

and SIC “good” model selection criteria?
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We evaluate model selection criteria in terms of a key property called con-

sistency, also known as the oracle property. A model selection criterion

is consistent if:

a. when the true model (that is, the data-generating process, or DGP)

is among a fixed set models considered, the probability of selecting the

true DGP approaches one as the sample size gets large, and

b. when the true model is not among a fixed set of models considered, so

that it’s impossible to select the true DGP, the probability of selecting the

best approximation to the true DGP approaches one as the sample size

gets large.

We must of course define what we mean by “best approximation” above.

Most model selection criteria – including all of those discussed here – assess

goodness of approximation in terms of out-of-sample mean squared forecast

error.

Consistency is of course desirable. If the DGP is among those considered,

then we’d hope that as the sample size gets large we’d eventually select it.

Of course, all of our models are false – they’re intentional simplifications of

a much more complex reality. Thus the second notion of consistency is the

more compelling.

MSE is inconsistent, because it doesn’t penalize for degrees of freedom;

that’s why it’s unattractive. s2 does penalize for degrees of freedom, but as it

turns out, not enough to render it a consistent model selection procedure. The

AIC penalizes degrees of freedom more heavily than s2, but it too remains

inconsistent; even as the sample size gets large, the AIC selects models that

are too large (“overparameterized”). The SIC, which penalizes degrees of

freedom most heavily, is consistent.

The discussion thus far conveys the impression that SIC is unambigu-

ously superior to AIC for selecting forecasting models, but such is not the
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case. Until now, we’ve implicitly assumed a fixed set of models. In that case,

SIC is a superior model selection criterion. However, a potentially more

compelling thought experiment for forecasting may be that we may want

to expand the set of models we entertain as the sample size grows, to get

progressively better approximations to the elusive DGP. We’re then led to

a different optimality property, called asymptotic efficiency. An asymp-

totically efficient model selection criterion chooses a sequence of models, as

the sample size get large, whose out-of-sample forecast MSE approaches the

one that would be obtained using the DGP at a rate at least as fast as that

of any other model selection criterion. The AIC, although inconsistent, is

asymptotically efficient, whereas the SIC is not.

In practical forecasting we usually report and examine both AIC and SIC.

Most often they select the same model. When they don’t, and despite the

theoretical asymptotic efficiency property of AIC, this author recommends

use of the more parsimonious model selected by the SIC, other things equal.

This accords with the parsimony principle of Chapter 2 and with the results of

studies comparing out-of-sample forecasting performance of models selected

by various criteria.

The AIC and SIC have enjoyed widespread popularity, but they are not

universally applicable, and we’re still learning about their performance in

specific situations. However, the general principle that we need somehow to

inflate in-sample loss estimates to get good out-of-sample loss estimates is

universally applicable.

The versions of AIC and SIC introduced above – and the claimed op-

timality properties in terms of out-of-sample forecast MSE – are actually

specialized to the Gaussian case, which is why they are written in terms of

minimized SSR’s rather than maximized lnL’s.2 More generally, AIC and

SIC are written not in terms of minimized SSR’s, but rather in terms of

2Recall that in the Gaussian case SSR minimization and lnL maximization are equivalent.
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maximized lnL’s. We have:

AIC = −2lnL+ 2K

and

SIC = −2lnL+KlnT.

These are useful for any model estimated by maximum likelihood, Gaussian

or non-Gaussian.

15.2 All-Subsets Model Selection II: Cross Validation

Cross validation (CV) proceeds as follows. Consider selecting among J mod-

els. Start with model 1, estimate it using all data observations except the first,

use it to predict the first observation, and compute the associated squared

prediction error. Then estimate it using all observations except the second,

use it to predict the second observation, and compute the associated squared

error. Keep doing this – estimating the model with one observation deleted

and then using the estimated model to predict the deleted observation – un-

til each observation has been sequentially deleted, and average the squared

errors in predicting each of the T sequentially deleted observations. Repeat

the procedure for the other models, j = 2, ..., J , and select the model with

the smallest average squared prediction error.

Actually this is “T−fold” CV, because we split the data into T parts (the

T individual observations) and predict each of them. More generally we can

split the data into M parts (M < T ) and cross validate on them (“M−fold”

CV). As M falls, M -fold CV eventually becomes consistent. M = 10 often

works well in practice.

It is instructive to compare SIC and CV, both of which have the oracle

property. SIC achieves it by penalizing in-sample residual MSE to obtain

an approximately-unbiased estimate of out-of-sample MSE. CV, in contrast,
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achieves it by directly obtaining an unbiased estimated out-of-sample MSE.

CV is more general than information criteria insofar as it can be used even

when the model degrees of freedom is unclear. In addition, non-quadratic loss

can be introduced easily. Generalizations to time-series contexts are available.

15.3 Stepwise Selection

All-subsets selection, whether by AIC, SIC or CV, quickly gets hard as there

are 2K subsets of K regressors. Other procedures, like the stepwise selection

procedures that we now introduce, don’t explore every possible subset. They

are more ad hoc but very useful.

15.3.1 Forward

Algorithm:

– Begin regressing only on an intercept

– Move to a one-regressor model by including that variable with the small-

est t-stat p-value

– Move to a two-regressor model by including that variable with the small-

est p-value

– Move to a three-regressor model by including that variable with the

smallest p-value

Often people use information criteria or CV to select from the stepwise

sequence of models. This is a “greedy algorithm,” producing an increasing

sequence of candidate models. Often people use information criteria or CV

to select from the stepwise sequence of models. No guaranteed optimality

properties of the selected model.

“forward stepwise regression”

– Often people use information criteria or cross validation to select from

the stepwise sequence of models.
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15.3.2 Backward

Algorithm:

– Start with a regression that includes all K variables

– Move to a K−1 variable model by dropping the variable with the largest

t-stat p-value

– Move to a K−2 variable model by dropping the variable with the largest

p-value

Often people use information criteria or CV to select from the stepwise

sequence of models. This is a “greedy algorithm,” producing a decreasing

sequence of candidate models. Often people use information criteria or CV

to select from the stepwise sequence of models. No guaranteed optimality

properties of the selected model.

15.4 One-Shot Estimation: Bayesian Shrinkage

Shrinkage is a generic feature of Bayesian estimation. The Bayes rule under

quadratic loss is the posterior mean, which is a weighted average of the MLE

and the prior mean,

β̂bayes = ω1β̂MLE + ω2β0,

where the weights depend on prior precision. Hence the the Bayes rule pulls,

or “shrinks,” the MLE toward the prior mean.

A classic shrinkage estimator is ridge regression,,3

β̂ridge = (X ′X + λI)−1X ′y.

λ → 0 produces OLS, whereas λ → ∞ shrinks completely to 0. λ can be

chosen by CV. (Notice that λ can not be chosen by information criteria,

as K regressors are included regardless of λ. Hence CV is a more general

3The ridge regression estimator can be shown to be the posterior mean for a certain prior and likelihood.
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selection procedure, useful for selecting various “tuning parameters” (like λ)

as opposed to just numbers of variables in hard-threshold procedures.

15.5 One-Shot Estimation: Selection and Shrinkage

15.5.1 Penalized Estimation

Consider the penalized estimator,

β̂PEN = argminβ

 T∑
t=1

(
yt −

∑
i

βixit

)2

+ λ
K∑
i=1

|βi|q
 ,

or equivalently

β̂PEN = argminβ

T∑
t=1

(
yt −

∑
i

βixit

)2

s.t.
K∑
i=1

|βi|q ≤ c.

Concave penalty functions non-differentiable at the origin produce selection.

Smooth convex penalties produce shrinkage. Indeed one can show that taking

q → 0 produces subset selection, and taking q = 2 produces ridge regression.

Hence penalized estimation nests those situations and includes an intermedi-

ate case (q = 1) that produces the lasso, to which we now turn.

15.5.2 The Lasso

The lasso solves the L1-penalized regression problem of finding

β̂LASSO = argminβ

 T∑
t=1

(
yt −

∑
i

βixit

)2

+ λ
K∑
i=1

|βi|
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or equivalently

β̂LASSO = argminβ

T∑
t=1

(
yt −

∑
i

βixit

)2

s.t.
K∑
i=1

|βi| ≤ c.

Ridge shrinks, but the lasso shrinks and selects. Figure ?? says it all. No-

tice that, like ridge and other Bayesian procedures, lasso requires only one

estimation. And moreover, the lasso uses minimization problem is convex

(lasso uses the smallest q for which it is convex), which renders the single

estimation highly tractable computationally.

Lasso also has a very convenient d.f. result. The effective number of

parameters is precisely the number of variables selected (number of non-

zero β’s). This means that we can use info criteria to select among “lasso

models” for various λ. That is, the lasso is another device for producing an

“increasing” sequence of candidate models (as λ increases). The “best” λ can

then be chosen by information criteria (or cross-validation, of course).

Elastic Net

β̂EN = argminβ

 T∑
t=1

(
yt −

∑
i

βixit

)2

+ λ

K∑
i=1

(
α|βi|+ (1− α)β2

i

)
• A mixture of Lasso and Ridge regression; that is, it combines L1 and L2

penalties.

• Unlike Lasso, it moves strongly correlated predictors in or out of the

model together, hopefully producing improving prediction accuracy rel-

ative to Lasso.

• Unlike Lasso, there are two tuning parameters in the elastic net λ and α.
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Figure 15.1: Lasso and Ridge Comparison
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For α = 1 elastic net turns into a Lasso model, For α = 0 it is equivalent

to ridge regression.

Adaptive Lasso

β̂ALASSO = argminβ

 T∑
t=1

(
yt −

∑
i

βixit

)2

+ λ
K∑
i=1

wi|βi|

 ,

where wi = 1/β̂νi , β̂i is the OLS estimate, and ν > 0.

• Every parameter in the penalty function is weighted differently, in con-

trast to the “regular” Lasso.

• The weights are calculated by OLS.

• Oracle property.

Adaptive Elastic Net

β̂AEN = argminβ

 T∑
t=1

(
yt −

∑
i

βixit

)2

+ λ

K∑
i=1

wi
(
α|βi|+ (1− α)β2

i

) ,

where wi = 1/β̂νi , β̂i is the OLS estimate, and ν > 0.

• A combination of elastic net and adaptive Lasso.

• Oracle property.

15.6 Distillation: Principal Components

15.6.1 Distilling “X Variables” into Principal Components

Data Summarization. Think of a giant (wide) X matrix and how to “distill”

it.
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X ′X eigen-decomposition:

X ′X = V D2V ′

The jth column of V , vj, is the jth eigenvector of X ′X

Diagonal matrix D2 contains the descending eigenvalues of X ′X

First principal component (PC):

z1 = Xv1

var(z1) = d2
1/T

(maximal sample variance among all possible l.c.’s of columns of X)

In general:

zj = Xvj ⊥ zj′, j
′ 6= j

var(zj) ≤ d2
j/T

15.6.2 Principal Components Regression

The idea is to enforce parsimony with little information loss by regressing not

on the full X, but rather on the first few PC’s of X. We speak of “Principal

components regression” (PCR), or “Factor-Augmented Regression”.

Ridge regression and PCR are both shrinkage procedures involving PC’s.

Ridge effectively includes all PC’s and shrinks according to sizes of eigenvalues

associated with the PC’s. PCR effectively shrinks some PCs completely to

zero (those not included) and doesn’t shrink others at all (those included).

15.7 Exercises, Problems and Complements

1. Information criteria in time-series environments.

This chapter, and hence it’s discussion of information criteria, empha-

sizes cross-section environments. We motivated SIC and AIC in terms

of out-of-sample forecast MSE. Everything goes through in time-series
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environments, but in time series there is also a horizon issue. SIC and

AIC are then linked to 1-step-ahead out-of-sample forecast MSE. Mod-

ifications for multi-step time-series forecasting are also available.

15.8 Notes



Chapter 16

Multivariate: Vector Autoregression

The regression model is an explicitly multivariate model, in which variables

are explained and forecast on the basis of their own history and the histories

of other, related, variables. Exploiting such cross-variable linkages may lead

to good and intuitive forecasting models, and to better forecasts than those

obtained from univariate models.

Regression models are often called causal, or explanatory, models. For

example, in the linear regression model,

yt = β0 + β1xt + εt

εt ∼ WN(0, σ2),

the presumption is that x helps determine, or cause, y, not the other way

around. For this reason the left-hand-side variable is sometimes called the

“endogenous” variable, and the right-hand side variables are called “exoge-

nous” or “explanatory” variables.

But ultimately regression models, like all statistical models, are models of

correlation, not causation. Except in special cases, all variables are endoge-

nous, and it’s best to admit as much from the outset. In this chapter we’ll

explicitly do so; we’ll work with systems of regression equations called vector

autoregressions (V ARs).

461
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16.1 Distributed Lag Models

An unconditional forecasting model like

yt = β0 + δxt−1 + εt

can be immediately generalized to the distributed lag model,

yt = β0 +

Nx∑
i=1

δixt−i + εt.

We say that y depends on a distributed lag of past x’s. The coefficients

on the lagged x’s are called lag weights, and their pattern is called the lag

distribution.

One way to estimate a distributed lag model is simply to include all Nx

lags of x in the regression, which can be estimated by least squares in the

usual way. In many situations, however, Nx might be quite a large number, in

which case we’d have to use many degrees of freedom to estimate the model,

violating the parsimony principle. Often we can recover many of those degrees

of freedom without seriously worsening the model’s fit by constraining the lag

weights to lie on a low-order polynomial. Such polynomial distributed lags

promote smoothness in the lag distribution and may lead to sophisticatedly

simple models with improved forecasting performance.

Polynomial distributed lag models are estimated by minimizing the sum

of squared residuals in the usual way, subject to the constraint that the

lag weights follow a low-order polynomial whose degree must be specified.

Suppose, for example, that we constrain the lag weights to follow a second-

degree polynomial. Then we find the parameter estimates by solving the
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problem

min

β0, δi

T∑
t=Nx+1

[
yt − β0 −

Nx∑
i=1

δixt−i

]2

,

subject to

δi = P (i) = a+ bi+ ci2, i = 1, ..., Nx.

This converts the estimation problem from one of estimating 1 +Nx param-

eters, β0, δ1, ..., δNx, to one of estimating four parameters, β0, a, b and c.

Sometimes additional constraints are imposed on the shape of the polyno-

mial, such as P (Nx) = 0, which enforces the idea that the dynamics have

been exhausted by lag Nx.

Polynomial distributed lags produce aesthetically appealing, but basically

ad hoc, lag distributions. After all, why should the lag weights necessarily

follow a low-order polynomial? An alternative and often preferable approach

makes use of the rational distributed lags that we introduced in Chapter

7 in the context of univariate ARMA modeling. Rational distributed lags

promote parsimony, and hence smoothness in the lag distribution, but they

do so in a way that’s potentially much less restrictive than requiring the lag

weights to follow a low-order polynomial. We might, for example, use a model

like

yt =
A(L)

B(L)
xt + εt,

where A(L) and B(L) are low-order polynomials in the lag operator. Equiv-

alently, we can write

B(L)yt = A(L)xt +B(L)εt,

which emphasizes that the rational distributed lag of x actually brings both

lags of x and lags of y into the model. One way or another, it’s crucial to

allow for lags of y, and we now study such models in greater depth.
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16.2 Regressions with Lagged Dependent Variables, and

Regressions with ARMA Disturbances

There’s something missing in distributed lag models of the form

yt = β0 +

Nx∑
i=1

δixt−i + εt.

A multivariate model (in this case, a regression model) should relate the

current value y to its own past and to the past of x. But as presently written,

we’ve left out the past of y! Even in distributed lag models, we always want

to allow for the presence of the usual univariate dynamics. Put differently,

the included regressors may not capture all the dynamics in y, which we need

to model one way or another. Thus, for example, a preferable model includes

lags of the dependent variable,

yt = β0 +

Ny∑
i=1

αiyt−i +

Nx∑
j=1

δjxt−j + εt.

This model, a distributed lag regression model with lagged dependent vari-

ables, is closely related to, but not exactly the same as, the rational dis-

tributed lag model introduced earlier. (Why?) You can think of it as arising

by beginning with a univariate autoregressive model for y, and then intro-

ducing additional explanatory variables. If the lagged y’s don’t play a role, as

assessed with the usual tests, we can always delete them, but we never want

to eliminate from the outset the possibility that lagged dependent variables

play a role. Lagged dependent variables absorb residual serial correlation and

can dramatically enhance forecasting performance.

Alternatively, we can capture own-variable dynamics in distributed-lag re-

gression models by using a distributed-lag regression model with ARMA dis-

turbances. Recall that our ARMA(p, q) models are equivalent to regression
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models, with only a constant regressor, and with ARMA(p, q) disturbances,

yt = β0 + εt

εt =
Θ(L)

Φ(L)
vt

vt ∼ WN(0, σ2).

We want to begin with the univariate model as a baseline, and then generalize

it to allow for multivariate interaction, resulting in models such as

yt = β0 +

Nx∑
i=1

δixt−i + εt

εt =
Θ(L)

Φ(L)
vt

vt ∼ WN(0, σ2).

Regressions with ARMA disturbances make clear that regression (a statis-

tical and econometric tool with a long tradition) and the ARMA model of

time-series dynamics (a more recent innovation) are not at all competitors;

rather, when used appropriately they can be highly complementary.

It turns out that the distributed-lag regression model with autoregressive

disturbances – a great workhorse in econometrics – is a special case of the

more general model with lags of both y and x and white noise disturbances.

To see this, let’s take the simple example of an unconditional (1-step-ahead)

regression forecasting model with AR(1) disturbances:

yt = β0 + β1xt−1 + εt

εt = φεt−1 + vt

vt ∼ WN(0, σ2).
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In lag operator notation, we write the AR(1) regression disturbance as

(1− φL)εt = vt,

or

εt =
1

(1− φL)
vt.

Thus we can rewrite the regression model as

yt = β0 + β1xt−1 +
1

(1− φL)
vt.

Now multiply both sides by (1− φL) to get

(1− φL)yt = (1− φ)β0 + β1(1− φL)xt−1 + vt,

or

yt = φyt−1 + (1− φ)β0 + β1xt−1 − φβ1xt−2 + vt.

Thus a model with one lag of x on the right and AR(1) disturbances is equiv-

alent to a model with yt−1, xt−1, and xt−2 on the right-hand side and white

noise errors, subject to the restriction that the coefficient on the second lag of

xt−2 is the negative of the product of the coefficients on yt−1 and xt−1. Thus,

distributed lag regressions with lagged dependent variables are more general

than distributed lag regressions with dynamic disturbances. In practice, the

important thing is to allow for own-variable dynamics somehow , in order to

account for dynamics in y not explained by the right-hand-side variables.

Whether we do so by including lagged dependent variables or by allowing

for ARMA disturbances can occasionally be important, but usually it’s a

comparatively minor issue.
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16.3 Vector Autoregressions

A univariate autoregression involves one variable. In a univariate autore-

gression of order p, we regress a variable on p lags of itself. In contrast,

a multivariate autoregression – that is, a vector autoregression, or V AR –

involves N variables. In an N -variable vector autoregression of order p, or

V AR(p), we estimate N different equations. In each equation, we regress the

relevant left-hand-side variable on p lags of itself, and p lags of every other

variable.1 Thus the right-hand-side variables are the same in every equation

– p lags of every variable.

The key point is that, in contrast to the univariate case, vector autore-

gressions allow for cross-variable dynamics. Each variable is related not only

to its own past, but also to the past of all the other variables in the system.

In a two-variable V AR(1), for example, we have two equations, one for each

variable (y1 and y2) . We write

y1,t = φ11y1,t−1 + φ12y2,t−1 + ε1,t

y2,t = φ21y1,t−1 + φ22y2,t−1 + ε2,t.

Each variable depends on one lag of the other variable in addition to one lag

of itself; that’s one obvious source of multivariate interaction captured by the

V AR that may be useful for forecasting. In addition, the disturbances may

be correlated, so that when one equation is shocked, the other will typically

be shocked as well, which is another type of multivariate interaction that

univariate models miss. We summarize the disturbance variance-covariance

structure as

ε1,t ∼ WN(0, σ2
1)

ε2,t ∼ WN(0, σ2
2)

1Trends, seasonals, and other exogenous variables may also be included, as long as they’re all included in
every equation.
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cov(ε1,t, ε2,t) = σ12.

The innovations could be uncorrelated, which occurs when σ12 = 0, but they

needn’t be.

You might guess that V ARs would be hard to estimate. After all, they’re

fairly complicated models, with potentially many equations and many right-

hand-side variables in each equation. In fact, precisely the opposite is true.

V ARs are very easy to estimate, because we need only run N linear re-

gressions. That’s one reason why V ARs are so popular – OLS estimation

of autoregressive models is simple and stable, in contrast to the numerical

estimation required for models with moving-average components.2 Equation-

by-equation OLS estimation also turns out to have very good statistical prop-

erties when each equation has the same regressors, as is the case in standard

V ARs. Otherwise, a more complicated estimation procedure called seem-

ingly unrelated regression, which explicitly accounts for correlation across

equation disturbances, would be required to obtain estimates with good sta-

tistical properties.3

When fitting V ARs to data, we use the Schwarz and Akaike criteria, just

as in the univariate case. The formulas differ, however, because we’re now

working with a multivariate system of equations rather than a single equation.

To get an AIC or SIC value for a V AR system, we could add up the equation-

by-equation AICs or SICs, but unfortunately, doing so is appropriate only

if the innovations are uncorrelated across equations, which is a very special

and unusual situation. Instead, explicitly multivariate versions of the AIC

and SIC – and more advanced formulas – are required that account for cross-

equation innovation correlation. It’s beyond the scope of this book to derive

and present those formulas, because they involve unavoidable use of matrix

2Estimation of MA and ARMA models is stable enough in the univariate case but rapidly becomes
unwieldy in multivariate situations. Hence multivariate ARMA models are used infrequently in practice, in
spite of the potential they hold for providing parsimonious approximations to the Wold representation.

3For an exposition of seemingly unrelated regression, see Pindyck and Rubinfeld (1997).
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algebra, but fortunately we don’t need to. They’re pre-programmed in many

computer packages, and we interpret the AIC and SIC values computed for

V ARs of various orders in exactly the same way as in the univariate case: we

select that order p such that the AIC or SIC is minimized.

We construct V AR forecasts in a way that precisely parallels the univari-

ate case. We can construct 1-step-ahead point forecasts immediately, because

all variables on the right-hand side are lagged by one period. Armed with

the 1-step-ahead forecasts, we can construct the 2-step-ahead forecasts, from

which we can construct the 3-step-ahead forecasts, and so on in the usual way,

following the chain rule of forecasting. We construct interval and density fore-

casts in ways that also parallel the univariate case. The multivariate nature

of V ARs makes the derivations more tedious, however, so we bypass them.

As always, to construct practical forecasts we replace unknown parameters

by estimates.

16.4 Predictive Causality

There’s an important statistical notion of causality that’s intimately related

to forecasting and naturally introduced in the context of V ARs. It is based

on two key principles: first, cause should occur before effect, and second,

a causal series should contain information useful for forecasting that is not

available in the other series (including the past history of the variable being

forecast). In the unrestricted V ARs that we’ve studied thus far, everything

causes everything else, because lags of every variable appear on the right of

every equation. Cause precedes effect because the right-hand-side variables

are lagged, and each variable is useful in forecasting every other variable.

We stress from the outset that the notion of predictive causality contains

little if any information about causality in the philosophical sense. Rather,

the statement “yi causes yj” is just shorthand for the more precise, but long-
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winded, statement, “ yi contains useful information for predicting yj (in the

linear least squares sense), over and above the past histories of the other

variables in the system.” To save space, we simply say that yi causes yj.

To understand what predictive causality means in the context of a V AR(p),

consider the j-th equation of the N -equation system, which has yj on the left

and p lags of each of the N variables on the right. If yi causes yj, then at

least one of the lags of yi that appear on the right side of the yj equation

must have a nonzero coefficient.

It’s also useful to consider the opposite situation, in which yi does not

cause yj. In that case, all of the lags of that yi that appear on the right

side of the yj equation must have zero coefficients.4 Statistical causality tests

are based on this formulation of non-causality. We use an F -test to assess

whether all coefficients on lags of yi are jointly zero.

Note that we’ve defined non-causality in terms of 1-step-ahead prediction

errors. In the bivariate V AR, this implies non-causality in terms of h-step-

ahead prediction errors, for all h. (Why?) In higher dimensional cases, things

are trickier; 1-step-ahead noncausality does not necessarily imply noncausal-

ity at other horizons. For example, variable i may 1-step cause variable j,

and variable j may 1-step cause variable k. Thus, variable i 2-step causes

variable k, but does not 1-step cause variable k.

Causality tests are often used when building and assessing forecasting

models, because they can inform us about those parts of the workings of

complicated multivariate models that are particularly relevant for forecasting.

Just staring at the coefficients of an estimated V AR (and in complicated

systems there are many coefficients) rarely yields insights into its workings.

Thus we need tools that help us to see through to the practical forecasting

properties of the model that concern us. And we often have keen interest

in the answers to questions such as “Does yi contribute toward improving

4Note that in such a situation the error variance in forecasting yj using lags of all variables in the system
will be the same as the error variance in forecasting yj using lags of all variables in the system except yi.
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forecasts of yj?,” and “Does yj contribute toward improving forecasts of yi?”

If the results violate intuition or theory, then we might scrutinize the model

more closely. In a situation in which we can’t reject a certain noncausality

hypothesis, and neither intuition nor theory makes us uncomfortable with it,

we might want to impose it, by omitting certain lags of certain variables from

certain equations.

Various types of causality hypotheses are sometimes entertained. In any

equation (the j-th, say), we’ve already discussed testing the simple noncausal-

ity hypothesis that:

(a) No lags of variable i aid in one-step-ahead prediction of variable j.

We can broaden the idea, however. Sometimes we test stronger noncausal-

ity hypotheses such as:

(b) No lags of a set of other variables aid in one-step-ahead prediction of

variable j.

(b) No lags of any other variables aid in one-step-ahead prediction of variable

j.

All of hypotheses (a), (b) and (c) amount to assertions that various co-

efficients are zero. Finally, sometimes we test noncausality hypotheses

that involve more than one equation, such as:

(b) No variable in a set A causes any variable in a set B, in which case we

say that the variables in A are block non-causal for those in B.

This particular noncausality hypothesis corresponds to exclusion restric-

tions that hold simultaneously in a number of equations. Again, however,

standard test procedures are applicable.
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16.5 Impulse-Response Functions

The impulse-response function is another device that helps us to learn about

the dynamic properties of vector autoregressions of interest to forecasters.

We’ll introduce it first in the univariate context, and then we’ll move to

V ARs. The question of interest is simple and direct: How does a unit inno-

vation to a series affect it, now and in the future? To answer the question,

we simply read off the coefficients in the moving average representation of

the process.

We’re used to normalizing the coefficient on εt to unity in moving-average

representations, but we don’t have to do so; more generally, we can write

yt = b0εt + b1εt−1 + b2εt−2 + ...

εt ∼ WN(0, σ2).

The additional generality introduces ambiguity, however, because we can

always multiply and divide every εt by an arbitrary constant m, yielding an

equivalent model but with different parameters and innovations,

yt = (b0m)

(
1

m
εt

)
+ (b1m)

(
1

m
εt−1

)
+ (b2m)

(
1

m
εt−2

)
+ ...

εt ∼ WN(0, σ2)

or

yt = b′0ε
′
t + b′1ε

′
t−1 + b′2ε

′
t−2 + ...

ε′t ∼ WN(0,
σ2

m2
),

where b′i = bim and ε′t = εt
m .

To remove the ambiguity, we must set a value of m. Typically we set

m = 1, which yields the standard form of the moving average representation.

For impulse-response analysis, however, a different normalization turns out
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to be particularly convenient; we choose m = σ, which yields

yt = (b0σ)

(
1

σ
εt

)
+ (b1σ)

(
1

σ
εt−1

)
+ (b2σ)

(
1

σ
εt−2

)
+ ...

εt ∼ WN(0, σ2),

or

yt = b′0ε
′
t + b′1ε

′
t−1 + b′2ε

′
t−2 + ...

ε′t ∼ WN(0, 1),

where b′i = biσ and ε′t = εt
σ . Taking m = σ converts shocks to “standard de-

viation units,” because a unit shock to ε′t corresponds to a one standard

deviation shock to εt.

To make matters concrete, consider the univariate AR(1) process,

yt = φyt−1 + εt

εt ∼ WN(0, σ2).

The standard moving average form is

yt = εt + φεt−1 + φ2εt−2 + ...

εt ∼ WN(0, σ2),

and the equivalent representation in standard deviation units is

yt = b0ε
′
t + b1ε

′
t−1 + b2ε

′
t−2 + ...

ε′t ∼ WN(0, 1)

where bi = φiσ and ε′t = εt
σ . The impulse-response function is { b0, b1, ...

}. The parameter b0 is the contemporaneous effect of a unit shock to ε′t,

or equivalently a one standard deviation shock to εt; as must be the case,
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then, b0 = σ. Note well that b0 gives the immediate effect of the shock at

time t, when it hits. The parameter b1, which multiplies ε′t−1, gives the effect

of the shock one period later, and so on. The full set of impulse-response

coefficients, {b0, b1, ...}, tracks the complete dynamic response of y to the

shock.

Now we consider the multivariate case. The idea is the same, but there

are more shocks to track. The key question is, “How does a unit shock to εi

affect yj, now and in the future, for all the various combinations of i and j?”

Consider, for example, the bivariate V AR(1),

y1t = φ11y1,t−1 + φ12y2,t−1 + ε1t

y2t = φ21y1,t−1 + φ22y2,t−1 + ε2t

ε1,t ∼ WN(0, σ2
1)

ε2,t ∼ WN(0, σ2
2)

cov(ε1, ε2) = σ12.

The standard moving average representation, obtained by back substitution,

is

y1t = ε1t + φ11ε1,t−1 + φ12ε2,t−1 + ...

y2t = ε2t + φ21ε1,t−1 + φ22ε2,t−1 + ...

ε1,t ∼ WN(0, σ2
1)

ε2,t ∼ WN(0, σ2
2)

cov(ε1, ε2) = σ12.

Just as in the univariate case, it proves fruitful to adopt a different nor-

malization of the moving average representation for impulse-response analy-

sis. The multivariate analog of our univariate normalization by σ is called
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normalization by the Cholesky factor.5 The resulting VAR moving average

representation has a number of useful properties that parallel the univari-

ate case precisely. First, the innovations of the transformed system are in

standard deviation units. Second, although the current innovations in the

standard representation have unit coefficients, the current innovations in the

normalized representation have non-unit coefficients. In fact, the first equa-

tion has only one current innovation, ε1t. (The other has a zero coefficient.)

The second equation has both current innovations. Thus, the ordering of the

variables can matter.6

If y1 is ordered first, the normalized representation is

y1,t = b0
11ε
′
1,t + b1

11ε
′
1,t−1 + b1

12ε
′
2,t−1 + ...

y2,t = b0
21ε
′
1,t + b0

22ε
′
2,t + b1

21ε
′
1,t−1 + b1

22ε
′
2,t−1 + ...

ε′1,t ∼ WN(0, 1)

ε′2,t ∼ WN(0, 1)

cov(ε′1, ε
′
2) = 0.

Alternatively, if y2 ordered first, the normalized representation is

y2,t = b0
22ε
′
2,t + b1

21ε
′
1,t−1 + b1

22ε
′
2,t−1 + ...

y1,t = b0
11ε
′
1,t + b0

12ε2,t + b1
11ε1,t−1 + b1

12ε2,t−1 + ...

ε′1,t ∼ WN(0, 1)

ε′2,t ∼ WN(0, 1)

cov(ε′1, ε
′
2) = 0.

5For detailed discussion and derivation of this advanced topic, see Hamilton (1994).
6In higher-dimensional V AR’s, the equation that’s first in the ordering has only one current innovation,

ε′1t. The equation that’s second has only current innovations ε′1t and ε′2t, the equation that’s third has only
current innovations ε′1t, ε

′
2t and ε′3t, and so on.
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Finally, the normalization adopted yields a zero covariance between the

disturbances of the transformed system. This is crucial, because it lets us

perform the experiment of interest – shocking one variable in isolation of the

others, which we can do if the innovations are uncorrelated but can’t do if

they’re correlated, as in the original unnormalized representation.

After normalizing the system, for a given ordering, say y1 first, we compute

four sets of impulse-response functions for the bivariate model: response of

y1 to a unit normalized innovation to y1, { b0
11, b

1
11, b

2
11, ... }, response of y1 to

a unit normalized innovation to y2, { b1
12, b

2
12, ... }, response of y2 to a unit

normalized innovation to y2, { b0
22, b

1
22, b

2
22, ... }, and response of y2 to a unit

normalized innovation to y1, { b0
21, b

1
21, b

2
21, ... }. Typically we examine the set

of impulse-response functions graphically. Often it turns out that impulse-

response functions aren’t sensitive to ordering, but the only way to be sure

is to check.7

In practical applications of impulse-response analysis, we simply replace

unknown parameters by estimates, which immediately yields point estimates

of the impulse-response functions. Getting confidence intervals for impulse-

response functions is trickier, however, and adequate procedures are still un-

der development.

16.6 Variance Decompositions

Another way of characterizing the dynamics associated with V ARs, closely

related to impulse-response functions, is the variance decomposition. Vari-

ance decompositions have an immediate link to forecasting – they answer the

question, “How much of the h-step-ahead forecast error variance of variable

i is explained by innovations to variable j, for h = 1, 2, ...” As with impulse-

response functions, we typically make a separate graph for every (i, j) pair.

7Note well that the issues of normalization and ordering only affect impulse-response analysis; for fore-
casting we only need the unnormalized model.
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Figure 16.1: Housing Starts and Completions, 1968 - 1996

Impulse-response functions and the variance decompositions present the same

information (although they do so in different ways). For that reason it’s not

strictly necessary to present both, and impulse-response analysis has gained

greater popularity. Hence we offer only this brief discussion of variance

decomposition. In the application to housing starts and completions that

follows, however, we examine both impulse-response functions and variance

decompositions. The two are highly complementary, as with information cri-

teria and correlograms for model selection, and the variance decompositions

have a nice forecasting motivation.

16.7 Application: Housing Starts and Completions

We estimate a bivariate V AR for U.S. seasonally-adjusted housing starts and

completions, two widely-watched business cycle indicators, 1968.01-1996.06.

We use the V AR to produce point extrapolation forecasts. We show housing

starts and completions in Figure 16.1. Both are highly cyclical, increasing

during business-cycle expansions and decreasing during contractions. More-

over, completions tend to lag behind starts, which makes sense because a

house takes time to complete.
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Figure 16.2: Housing Starts Correlogram

We split the data into an estimation sample, 1968.01-1991.12, and a hold-

out sample, 1992.01-1996.06 for forecasting. We therefore perform all model

specification analysis and estimation, to which we now turn, on the 1968.01-

1991.12 data. We show the starts correlogram in Table 16.2 and Figure 16.3.

The sample autocorrelation function decays slowly, whereas the sample par-

tial autocorrelation function appears to cut off at displacement 2. The pat-

terns in the sample autocorrelations and partial autocorrelations are highly

statistically significant, as evidenced by both the Bartlett standard errors

and the Ljung-Box Q-statistics. The completions correlogram, in Table 16.4

and Figure 16.5, behaves similarly.

We’ve not yet introduced the cross correlation function. There’s been no

need, because it’s not relevant for univariate modeling. It provides important

information, however, in the multivariate environments that now concern us.

Recall that the autocorrelation function is the correlation between a variable

and lags of itself. The cross-correlation function is a natural multivariate

analog; it’s simply the correlation between a variable and lags of another
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Figure 16.3: Housing Starts Autocorrelations and Partial Autocorrelations

variable. We estimate those correlations using the usual estimator and graph

them as a function of displacement along with the Bartlett two- standard-

error bands, which apply just as in the univariate case.

The cross-correlation function (Figure 16.6) for housing starts and com-

pletions is very revealing. Starts and completions are highly correlated at all

displacements, and a clear pattern emerges as well: although the contempo-

raneous correlation is high (.78), completions are maximally correlated with

starts lagged by roughly 6-12 months (around .90). Again, this makes good

sense in light of the time it takes to build a house.

Now we proceed to model starts and completions. We need to select the

order, p, of our V AR(p). Based on exploration using multivariate versions of

SIC and AIC, we adopt a V AR(4).
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Figure 16.4: Housing Completions Correlogram

First consider the starts equation (Table 16.7a), residual plot (Figure

16.7b), and residual correlogram (Table 16.8, Figure 16.9). The explana-

tory power of the model is good, as judged by the R2 as well as the plots

of actual and fitted values, and the residuals appear white, as judged by

the residual sample autocorrelations, partial autocorrelations, and Ljung-Box

statistics. Note as well that no lag of completions has a significant effect on

starts, which makes sense – we obviously expect starts to cause completions,

but not conversely. The completions equation (Table 16.10a), residual plot

(Figure 16.10b), and residual correlogram (Table 16.11, Figure 16.12) appear

similarly good. Lagged starts, moreover, most definitely have a significant

effect on completions.

Table 16.13 shows the results of formal causality tests. The hypothesis

that starts don’t cause completions is simply that the coefficients on the four

lags of starts in the completions equation are all zero. The F -statistic is

overwhelmingly significant, which is not surprising in light of the previously-
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Figure 16.5: Housing Completions Autocorrelations and Partial Autocorrelations

Figure 16.6: Housing Starts and Completions Sample Cross Correlations
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(a) VAR Starts Equation

(b) VAR Starts Equation - Residual Plot

Figure 16.7: VAR Starts Model

noticed highly-significant t-statistics. Thus we reject noncausality from starts

to completions at any reasonable level. Perhaps more surprising, we also

reject noncausality from completions to starts at roughly the 5% level. Thus

the causality appears bi-directional, in which case we say there is feedback.



16.7. APPLICATION: HOUSING STARTS AND COMPLETIONS 483

Figure 16.8: VAR Starts Residual Correlogram
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Figure 16.9: VAR Starts Equation - Sample Autocorrelation and Partial Autocorrelation
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(a) VAR Completions Equation

(b) VAR Completions Equation - Residual Plot

Figure 16.10: VAR Completions Model
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Figure 16.11: VAR Completions Residual Correlogram
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Figure 16.12: VAR Completions Equation - Sample Autocorrelation and Partial Autocorre-
lation
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Figure 16.13: Housing Starts and Completions - Causality Tests

In order to get a feel for the dynamics of the estimated V AR before pro-

ducing forecasts, we compute impulse-response functions and variance de-

compositions. We present results for starts first in the ordering, so that a

current innovation to starts affects only current starts, but the results are

robust to reversal of the ordering.

In Figure 16.14, we display the impulse-response functions. First let’s

consider the own-variable impulse responses, that is, the effects of a starts

innovation on subsequent starts or a completions innovation on subsequent

completions; the effects are similar. In each case, the impulse response is

large and decays in a slow, approximately monotonic fashion. In contrast, the

cross-variable impulse responses are very different. An innovation to starts

produces no movement in completions at first, but the effect gradually builds

and becomes large, peaking at about fourteen months. (It takes time to build

houses.) An innovation to completions, however, produces little movement

in starts at any time. Figure 16.15 shows the variance decompositions. The

fraction of the error variance in forecasting starts due to innovations in starts

is close to 100 percent at all horizons. In contrast, the fraction of the error

variance in forecasting completions due to innovations in starts is near zero at

short horizons, but it rises steadily and is near 100 percent at long horizons,

again reflecting time-to-build effects.

Finally, we construct forecasts for the out-of-sample period, 1992.01-1996.06.

The starts forecast appears in Figure 16.16. Starts begin their recovery before

1992.01, and the V AR projects continuation of the recovery. The V AR fore-
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Figure 16.14: Housing Starts and Completions - VAR Impulse Response Functions. Response
is to 1 SD innovation.

casts captures the general pattern quite well, but it forecasts quicker mean

reversion than actually occurs, as is clear when comparing the forecast and

realization in Figure 16.17. The figure also makes clear that the recovery

of housing starts from the recession of 1990 was slower than the previous

recoveries in the sample, which naturally makes for difficult forecasting. The

completions forecast suffers the same fate, as shown in Figures 16.18 and

16.19. Interestingly, however, completions had not yet turned by 1991.12,

but the forecast nevertheless correctly predicts the turning point. (Why?)
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Figure 16.15: Housing Starts and Completions - VAR Variance Decompositions
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Figure 16.16: Housing Starts Forecast

Figure 16.17: Housing Starts Forecast and Realization
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Figure 16.18: Housing Completions Forecast

Figure 16.19: Housing Completions Forecast and Realization
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16.8 Exercises, Problems and Complements

1. Housing starts and completions, continued.

Our VAR analysis of housing starts and completions, as always, involved

many judgment calls. Using the starts and completions data, assess the

adequacy of our models and forecasts. Among other things, you may

want to consider the following questions:

a. Should we allow for a trend in the forecasting model?

b. How do the results change if, in light of the results of the causality

tests, we exclude lags of completions from the starts equation, re-

estimate by seemingly-unrelated regression, and forecast?

c. Are the VAR forecasts of starts and completions more accurate than

univariate forecasts?

2. Forecasting crop yields.

Consider the following dilemma in agricultural crop yield forecasting:

The possibility of forecasting crop yields several years in advance would,

of course, be of great value in the planning of agricultural production.

However, the success of long-range crop forecasts is contingent not only

on our knowledge of the weather factors determining yield, but also on

our ability to predict the weather. Despite an abundant literature in

this field, no firm basis for reliable long-range weather forecasts has yet

been found. (Sanderson, 1953, p. 3)

a. How is the situation related to our concerns in this chapter, and

specifically, to the issue of conditional vs. unconditional forecasting?

b. What variables other than weather might be useful for predicting crop

yield?

c. How would you suggest that the forecaster should proceed?
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3. Econometrics, time series analysis, and forecasting.

As recently as the early 1970s, time series analysis was mostly univari-

ate and made little use of economic theory. Econometrics, in contrast,

stressed the cross-variable dynamics associated with economic theory,

with equations estimated using multiple regression. Econometrics, more-

over, made use of simultaneous systems of such equations, requiring

complicated estimation methods. Thus the econometric and time series

approaches to forecasting were very different.8

As Klein (1981) notes, however, the complicated econometric system

estimation methods had little payoff for practical forecasting and were

therefore largely abandoned, whereas the rational distributed lag pat-

terns associated with time-series models led to large improvements in

practical forecast accuracy.9 Thus, in more recent times, the distinction

between econometrics and time series analysis has largely vanished, with

the union incorporating the best of both. In many respects the V AR is

a modern embodiment of both econometric and time-series traditions.

V ARs use economic considerations to determine which variables to in-

clude and which (if any) restrictions should be imposed, allow for rich

multivariate dynamics, typically require only simple estimation tech-

niques, and are explicit forecasting models.

4. Business cycle analysis and forecasting: expansions, contractions, turn-

ing points, and leading indicators10.

The use of anticipatory data is linked to business cycle analysis in gen-

eral, and leading indicators in particular. During the first half of this

8Klein and Young (1980) and Klein (1983) provide good discussions of the traditional econometric si-
multaneous equations paradigm, as well as the link between structural simultaneous equations models and
reduced-form time series models. Wallis (1995) provides a good summary of modern large-scale macroecono-
metric modeling and forecasting, and Pagan and Robertson (2002) provide an intriguing discussion of the
variety of macroeconomic forecasting approaches currently employed in central banks around the world.

9For an acerbic assessment circa the mid-1970s, see Jenkins (1979).
10This complement draws in part upon Diebold and Rudebusch (1996).
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century, much research was devoted to obtaining an empirical character-

ization of the business cycle. The most prominent example of this work

was Burns and Mitchell (1946), whose summary empirical definition was:

Business cycles are a type of fluctuation found in the aggregate eco-

nomic activity of nations that organize their work mainly in business

enterprises: a cycle consists of expansions occurring at about the same

time in many economic activities, followed by similarly general reces-

sions, contractions, and revivals which merge into the expansion phase

of the next cycle. (p. 3)

The comovement among individual economic variables was a key fea-

ture of Burns and Mitchell’s definition of business cycles. Indeed, the

comovement among series, taking into account possible leads and lags

in timing, was the centerpiece of Burns and Mitchell’s methodology. In

their analysis, Burns and Mitchell considered the historical concordance

of hundreds of series, including those measuring commodity output, in-

come, prices, interest rates, banking transactions, and transportation

services, and they classified series as leading, lagging or coincident. One

way to define a leading indicator is to say that a series x is a leading indi-

cator for a series y if x causes y in the predictive sense. According to that

definition, for example, our analysis of housing starts and completions

indicates that starts are a leading indicator for completions.

Leading indicators have the potential to be used in forecasting equa-

tions in the same way as anticipatory variables. Inclusion of a lead-

ing indicator, appropriately lagged, can improve forecasts. Zellner and

Hong (1989) and Zellner, Hong and Min (1991), for example, make good

use of that idea in their ARLI (autoregressive leading-indicator) mod-

els for forecasting aggregate output growth. In those models, Zellner

et al . build forecasting models by regressing output on lagged output

and lagged leading indicators; they also use shrinkage techniques to coax
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the forecasted growth rates toward the international average, which im-

proves forecast performance.

Burns and Mitchell used the clusters of turning points in individual se-

ries to determine the monthly dates of the turning points in the overall

business cycle, and to construct composite indexes of leading, coincident,

and lagging indicators. Such indexes have been produced by the National

Bureau of Economic Research (a think tank in Cambridge, Mass.), the

Department of Commerce (a U.S. government agency in Washington,

DC), and the Conference Board (a business membership organization

based in New York).11 Composite indexes of leading indicators are often

used to gauge likely future economic developments, but their usefulness

is by no means uncontroversial and remains the subject of ongoing re-

search. For example, leading indexes apparently cause aggregate output

in analyses of ex post historical data (Auerbach, 1982), but they ap-

pear much less useful in real-time forecasting, which is what’s relevant

(Diebold and Rudebusch, 1991).

5. Spurious regression.

Consider two variables y and x, both of which are highly serially corre-

lated, as are most series in business, finance and economics. Suppose in

addition that y and x are completely unrelated, but that we don’t know

they’re unrelated, and we regress y on x using ordinary least squares.

a. If the usual regression diagnostics (e.g., R2, t-statistics, F -statistic)

were reliable, we’d expect to see small values of all of them. Why?

b. In fact the opposite occurs; we tend to see large R2, t-, and F -

statistics, and a very low Durbin-Watson statistic. Why the low

11The indexes build on very early work, such as the Harvard “Index of General Business Conditions.” For
a fascinating discussion of the early work, see Hardy (1923), Chapter 7.
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Durbin-Watson? Why, given the low Durbin-Watson, might you ex-

pect misleading R2, t-, and F -statistics?

c. This situation, in which highly persistent series that are in fact unre-

lated nevertheless appear highly related, is called spurious regression.

Study of the phenomenon dates to the early twentieth century, and

a key study by Granger and Newbold (1974) drove home the preva-

lence and potential severity of the problem. How might you insure

yourself against the spurious regression problem? (Hint: Consider al-

lowing for lagged dependent variables, or dynamics in the regression

disturbances, as we’ve advocated repeatedly.)

6. Comparative forecasting performance of V ARs and univariate models.

Using the housing starts and completions data on the book’s website,

compare the forecasting performance of the VAR used in this chapter

to that of the obvious competitor: univariate autoregressions. Use the

same in-sample and out-of-sample periods as in the chapter. Why might

the forecasting performance of the V AR and univariate methods differ?

Why might you expect the V AR completions forecast to outperform

the univariate autoregression, but the V AR starts forecast to be no

better than the univariate autoregression? Do your results support your

conjectures?

7. V ARs as Reduced Forms of Simultaneous Equations Models.

V ARs look restrictive in that only lagged values appear on the right.

That is, the LHS variables are not contemporaneously affected by other

variables – instead they are contemporaneously affected only by shocks.

That appearance is deceptive, however, as simultaneous equations sys-

tems have V AR reduced forms. Consider, for example, the simultaneous

system

(A0 + A1L+ ...+ ApL
p)yt = vt
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vt ∼ iid(0,Ω).

Mutiplying through by A−1
0 yields

(I + A−1
0 A1L+ ...+ A−1

0 ApL
p)yt = εt

εt ∼ iid(0, A−1
0 ΩA−1

0
′
)

or

(I + Φ1L+ ...+ ΦpL
p)yt = εt

εt ∼ iid(0,Σ)

Σ = A−1
0 ΩA−1

0
′
,

which is a standard V AR. The V AR structure, moreover, is needed for

forecasting, as everything on the RHS is lagged by at least one period,

making Wold’s chain rule immediately applicable.

8. Transfer Function Models.

We saw that distributed lag regressions with lagged dependent variables

are more general than distributed lag regressions with dynamic distur-

bances. Transfer function models are more general still, and include

both as special cases.12 The basic idea is to exploit the power and par-

simony of rational distributed lags in modeling both own-variable and

cross-variable dynamics. Imagine beginning with a univariate ARMA

model,

yt =
C(L)

D(L)
εt,

which captures own-variable dynamics using a rational distributed lag.

Now extend the model to capture cross-variable dynamics using a ratio-

nal distributed lag of the other variable, which yields the general transfer

12Table 1 displays a variety of important forecasting models, all of which are special cases of the transfer
function model.
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function model,

yt =
A(L)

B(L)
xt +

C(L)

D(L)
εt.

Distributed lag regression with lagged dependent variables is a poten-

tially restrictive special case, which emerges when C(L) = 1 and B(L) =

D(L). (Verify this for yourself.) Distributed lag regression with ARMA

disturbances is also a special case, which emerges when B(L) = 1. (Ver-

ify this too.) In practice, the important thing is to allow for own-variable

dynamics somehow , in order to account for dynamics in y not explained

by the RHS variables. Whether we do so by including lagged dependent

variables, or by allowing for ARMA disturbances, or by estimating gen-

eral transfer function models, can occasionally be important, but usually

it’s a comparatively minor issue.

9. Cholesky-Factor Identified V ARs in Matrix Notation.

10. Inflation Forecasting via “Structural” Phillps-Curve Models vs. Time-

Series Models.

The literature started with Atkinson and Ohanian ****. The basic re-

sult is that Phillips curve information doesn’t improve on univariate time

series, which is interesting. Also interesting is thinking about why. For

example, the univariate time series used is often IMA(0, 1, 1) (i.e., ex-

ponential smoothing, or local level), which Hendry, Clements and others

have argued is robust to shifts. Maybe that’s why exponential smoothing

is still so powerful after all these years.

11. Multivariate point forecast evaluation.

All univariate absolute standards continue to hold, appropriately inter-

preted.

– Zero-mean error vector.

– 1-step-ahead errors are vector white noise.
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– h-step-ahead errors are at most vector MA(h− 1).

– h-step-ahead error covariance matrices are non-decreasing in h. That

is, Σh − Σh−1 is p.s.d. for all h > 1.

– The error vector is orthogonal to all available information.

Relative standards, however, need more thinking, as per Christoffersen

and Diebold (1998) and Primiceri, Giannone and Lenza (2014). trace(MSE),

e′Ie is not necessarily adequate, and neither is e′De for diagonal d;

rather, we generally want e′Σe , so as to reflect preferences regarding

multivariate interactions.

12. Multivariate density forecast evaluation

The principle that governs the univariate techniques in this paper ex-

tends to the multivariate case, as shown in Diebold, Hahn and Tay

(1998). Suppose that the variable of interest y is now an (N ×1) vector,

and that we have on hand m multivariate forecasts and their corre-

sponding multivariate realizations. Further suppose that we are able to

decompose each period’s forecasts into their conditionals, i.e., for each

period’s forecasts we can write

p(y1t, y2t, ..., yNt|Φt−1) = p(yNt|yN−1,t, ..., y1t,Φt−1)...p(y2t|y1t,Φt−1)p(y1t|Φt−1),

where Φt−1 now refers to the past history of (y1t, y2t, ..., yNt). Then for

each period we can transform each element of the multivariate observa-

tion (y1t, y2t, ..., yNt) by its corresponding conditional distribution. This

procedure will produce a set of N z series that will be iid U(0, 1) in-

dividually, and also when taken as a whole, if the multivariate density

forecasts are correct. Note that we will have N ! sets of z series, de-

pending on how the joint density forecasts are decomposed, giving us a

wealth of information with which to evaluate the forecasts. In addition,

the univariate formula for the adjustment of forecasts, discussed above,
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can be applied to each individual conditional, yielding

f(y1t, y2t, ..., yNt|Φt−1) =
∏N

i=1[p(yit|yi−1,t, ..., y1t,Φt−1)q(P (yit|yi−1,t, ..., y1t,Φt−1))]

= p(y1t, y2t, ..., yNt|Φt−1)q(z1t, z2t, ..., zNt|Φt−1) .

16.9 Notes

Some software, such as Eviews, automatically accounts for parameter uncer-

tainty when forming conditional regression forecast intervals by using variants

of the techniques we introduced in Section ***. Similar but advanced tech-

niques are sometimes used to produce unconditional forecast intervals for

dynamic models, such as autoregressions (see Lütkepohl, 1991), but boot-

strap simulation techniques are becoming increasingly popular (Efron and

Tibshirani, 1993).

Chatfield (1993) argues that innovation uncertainty and parameter esti-

mation uncertainty are likely of minor importance compared to specification

uncertainty. We rarely acknowledge specification uncertainty, because we

don’t know how to quantify “what we don’t know we don’t know.” Quan-

tifying it is a major challenge for future research, and useful recent work in

that direction includes Chatfield (1995).

The idea that regression models with serially correlated disturbances are

more restrictive than other sorts of transfer function models has a long history

in econometrics and engineering and is highlighted in a memorably-titled

paper, ”Serial Correlation as a Convenient Simplification, not a Nuisance,”

by Hendry and Mizon (1978). Engineers have scolded econometricians for not

using more general transfer function models, as for example in Jenkins (1979).

But the fact is, as we’ve seen repeatedly, that generality for generality’s sake

in business and economic forecasting is not necessarily helpful, and can be

positively harmful. The shrinkage principle asserts that the imposition of
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restrictions – even false restrictions – can be helpful in forecasting.

Sims (1980) is an influential paper arguing the virtues of V ARs. The

idea of predictive causality and associated tests in V ARs is due to Granger

(1969) and Sims (1972), who build on earlier work by the mathematician

Norbert Weiner. Lütkepohl (1991) is a good reference on V AR analysis and

forecasting.

Gershenfeld and Weigend (1993) provide a perspective on time series

forecasting from the computer-science/engineering/nonlinear/neural-net per-

spective, and Swanson and White (1995) compare and contrast a variety of

linear and nonlinear forecasting methods.
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Some slides that might be usefully incorporated:

Univariate AR(p):

yt = φ1yt−1 + ...+ φpyt−p + εt

yt = φ1Lyt + ...+ φpL
pyt + εt

(I − φ1L− ...− φpLp)yt = εt

φ(L)yt = εt

εt ∼ iid(0, σ2)

But what if we have more than 1 “y” variable?

Cross-variable interactions? Leads? Lags? Causality?

N -Variable V AR(p)

y1t = φ1
11y1,t−1 + ...+ φ1

1NyN,t−1 + ...+ φp11y1,t−p + ...+ φp1NyN,t−p + ε1t

...

yNt = φ1
N1y1,t−1 + ...+ φ1

NNyN,t−1 + ...+ φpN1y1,t−p + ...+ φpNNyN,t−p + εNt


y1t
...

yNt

 =


φ1

11 ... φ1
1N

...
...

φ1
N1 ... φ1

NN



y1,t−1

...

yN,t−1

+...+


φp11 ... φp1N
...

...

φpN1 ... φpNN



y1,t−p

...

yN,t−p

+


ε1t
...

εNt


yt = Φ1yt−1 + ...+ Φpyt−p + εt

yt = Φ1Lyt + ...+ ΦpL
pyt + εt

(I − Φ1L− ...− ΦpL
p)yt = εt
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Φ(L)yt = εt

εt ∼ iid(0,Σ)

Estimation and Selection

Estimation: Equation-by-equation OLS

Selection: AIC, SIC

AIC =
−2lnL

T
+

2K

T

SIC =
−2lnL

T
+
KlnT

T

The Cross-Correlation Function

Recall the univariate autocorrelation function:

ρy(τ) = corr(yt, yt−τ)

In multivariate environments we also have

the cross-correlation function:

ρyx(τ) = corr(yt, xt−τ)

Granger-Sims Causality

Bivariate case:

yi Granger-Sims causes yj if

yi has predictive content for yj,

over and above the past history of yj.

Testing:

Are lags of yi significant in the yj equation?
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Impulse-Response Functions in AR(1) Case

yt = φyt−1 + εt, εt ∼ iid(0, σ2)

=⇒ yt = B(L)εt = εt + b1εt−1 + b2εt−2 + ...

= εt + φεt−1 + φ2εt−2 + ...

IRF is {1, φ, φ2, ...} “dynamic response to a unit shock in ε”

Alternatively write εt = σvt, vt ∼ iid(0, 1)

=⇒ yt = σvt + (φσ)vt−1 + (φ2σ)vt−2 + ...

IRF is {σ, φσ, φ2σ, ...} “dynamic response to a one-σ shock in ε”

Impulse-Response Functions in V AR(p)Case

yt = Φyt−1 + εt, εt ∼ iid(0,Σ)

=⇒ yt = B(L)εt = εt +B1εt−1 +B2εt−2 + ...

= εt + Φεt−1 + Φ2εt−2 + ...

But we need orthogonal shocks. Why?

So write εt = Pvt, vt ∼ iid(0, I), where P is Cholesky factor of Σ

=⇒ yt = Pvt + (ΦP )vt−1 + (Φ2P )vt−2 + ...

ij’th IRF is the sequence of ij’th elements of {P, ΦP Φ2P, ...} “Dynamic

response of yi to a one-σ shock in εj”
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Appendix A

Elements of Probability and Statistics

You’ve already studied some probability and statistics, but chances are that

you could use a bit of review, so we supply it here, with emphasis on ideas

that we will use repeatedly. Be warned, however: this section is no substitute

for a full introduction to probability and statistics, which you should have

had already.

A.1 Populations: Random Variables, Distributions and

Moments

A.1.1 Univariate

Consider an experiment with a set O of possible outcomes. A random

variable Y is simply a mapping from O to the real numbers. For exam-

ple, the experiment might be flipping a coin twice, in which case O =

{(Heads,Heads), (Tails, Tails), (Heads, Tails), (Tails,Heads)}. We might

define a random variable Y to be the number of heads observed in the two

flips, in which case Y could assume three values, y = 0, y = 1 or y = 2.1

Discrete random variables, that is, random variables with discrete

probability distributions, can assume only a countable number of values

1Note that, in principle, we use capitals for random variables (Y ) and small letters for their realizations
(y). We will often neglect this formalism, however, as the meaning will be clear from context.

509
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yi, i = 1, 2, ..., each with positive probability pi such that
∑

i pi = 1 . The

probability distribution f(y) assigns a probability pi to each such value yi .

In the example at hand, Y is a discrete random variable, and f(y) = 0.25 for

y = 0, f(y) = 0.50 for y = 1, f(y) = 0.25 for y = 2, and f(y) = 0 otherwise.

In contrast, continuous random variables can assume a continuous

range of values, and the probability density function f(y) is a non-

negative continuous function such that the area under f(y) between any

points a and b is the probability that Y assumes a value between a and b.2

In what follows we will simply speak of a “distribution,” f(y). It will

be clear from context whether we are in fact speaking of a discrete random

variable with probability distribution f(y) or a continuous random variable

with probability density f(y).

Moments provide important summaries of various aspects of distribu-

tions. Roughly speaking, moments are simply expectations of powers of ran-

dom variables, and expectations of different powers convey different sorts of

information. You are already familiar with two crucially important moments,

the mean and variance. In what follows we’ll consider the first four moments:

mean, variance, skewness and kurtosis.3

The mean, or expected value, of a discrete random variable is a probability-

weighted average of the values it can assume,4

E(y) =
∑
i

piyi.

Often we use the Greek letter µ to denote the mean, which measures the

location, or central tendency, of y.

2In addition, the total area under f(y) must be 1.
3In principle, we could of course consider moments beyond the fourth, but in practice only the first four

are typically examined.
4A similar formula holds in the continuous case.
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The variance of y is its expected squared deviation from its mean,

var(y) = E(y − µ)2.

We use σ2 to denote the variance, which measures the dispersion, or scale,

of y around its mean.

Often we assess dispersion using the square root of the variance, which is

called the standard deviation,

σ = std(y) =
√
E(y − µ)2.

The standard deviation is more easily interpreted than the variance, because

it has the same units of measurement as y. That is, if y is measured in dollars

(say), then so too is std(y). V ar(y), in contrast, would be measured in rather

hard-to-grasp units of “dollars squared”.

The skewness of y is its expected cubed deviation from its mean (scaled

by σ3 for technical reasons),

S =
E(y − µ)3

σ3
.

Skewness measures the amount of asymmetry in a distribution. The larger

the absolute size of the skewness, the more asymmetric is the distribution.

A large positive value indicates a long right tail, and a large negative value

indicates a long left tail. A zero value indicates symmetry around the mean.

The kurtosis of y is the expected fourth power of the deviation of y from

its mean (scaled by σ4, again for technical reasons),

K =
E(y − µ)4

σ4
.

Kurtosis measures the thickness of the tails of a distribution. A kurtosis

above three indicates “fat tails” or leptokurtosis, relative to the normal,

or Gaussian distribution that you studied earlier. Hence a kurtosis above
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three indicates that extreme events (“tail events”) are more likely to occur

than would be the case under normality.

A.1.2 Multivariate

Suppose now that instead of a single random variable Y , we have two random

variables Y and X.5 We can examine the distributions of Y or X in isolation,

which are called marginal distributions. This is effectively what we’ve

already studied. But now there’s more: Y andX may be related and therefore

move together in various ways, characterization of which requires a joint

distribution. In the discrete case the joint distribution f(y, x) gives the

probability associated with each possible pair of y and x values, and in the

continuous case the joint density f(y, x) is such that the area in any region

under it gives the probability of (y, x) falling in that region.

We can examine the moments of y or x in isolation, such as mean, variance,

skewness and kurtosis. But again, now there’s more: to help assess the

dependence between y and x, we often examine a key moment of relevance

in multivariate environments, the covariance. The covariance between y

and x is simply the expected product of the deviations of y and x from their

respective means,

cov(y, x) = E[(yt − µy)(xt − µx)].

A positive covariance means that y and x are positively related; that is, when

y is above its mean x tends to be above its mean, and when y is below its

mean x tends to be below its mean. Conversely, a negative covariance means

that y and x are inversely related; that is, when y is below its mean x tends

to be above its mean, and vice versa. The covariance can take any value in

the real numbers.
5We could of course consider more than two variables, but for pedagogical reasons we presently limit

ourselves to two.



A.2. SAMPLES: SAMPLE MOMENTS 513

Frequently we convert the covariance to a correlation by standardizing

by the product of σy and σx,

corr(y, x) =
cov(y, x)

σyσx
.

The correlation takes values in [-1, 1]. Note that covariance depends on units

of measurement (e.g., dollars, cents, billions of dollars), but correlation does

not. Hence correlation is more immediately interpretable, which is the reason

for its popularity.

Note also that covariance and correlation measure only linear dependence;

in particular, a zero covariance or correlation between y and x does not neces-

sarily imply that y and x are independent. That is, they may be non-linearly

related. If, however, two random variables are jointly normally distributed

with zero covariance, then they are independent.

Our multivariate discussion has focused on the joint distribution f(y, x).

In various chapters we will also make heavy use of the conditional distri-

bution f(y|x), that is, the distribution of the random variable Y conditional

upon X = x. Conditional moments are similarly important. In partic-

ular, the conditional mean and conditional variance play key roles in

econometrics, in which attention often centers on the mean or variance of a

series conditional upon the past.

A.2 Samples: Sample Moments

A.2.1 Univariate

Thus far we’ve reviewed aspects of known distributions of random variables,

in population. Often, however, we have a sample of data drawn from an

unknown population distribution f ,

{yi}Ni=1 ∼ f(y),
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and we want to learn from the sample about various aspects of f , such as

its moments. To do so we use various estimators.6 We can obtain estima-

tors by replacing population expectations with sample averages, because the

arithmetic average is the sample analog of the population expectation. Such

“analog estimators” turn out to have good properties quite generally. The

sample mean is simply the arithmetic average,

ȳ =
1

N

N∑
i=1

yi.

It provides an empirical measure of the location of y.

The sample variance is the average squared deviation from the sample

mean,

σ̂2 =

∑N
i=1(yi − ȳ)2

N
.

It provides an empirical measure of the dispersion of y around its mean.

We commonly use a slightly different version of σ̂2, which corrects for the

one degree of freedom used in the estimation of ȳ, thereby producing an

unbiased estimator of σ2,

s2 =

∑N
i=1(yi − ȳ)2

N − 1
.

Similarly, the sample standard deviation is defined either as

σ̂ =
√
σ̂2 =

√∑N
i=1(yi − ȳ)2

N

or

s =
√
s2 =

√∑N
i=1(yi − ȳ)2

N − 1
.

It provides an empirical measure of dispersion in the same units as y.

6An estimator is an example of a statistic, or sample statistic, which is simply a function of the sample
observations.
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The sample skewness is

Ŝ =
1
N

∑N
i=1(yi − ȳ)3

σ̂3
.

It provides an empirical measure of the amount of asymmetry in the distri-

bution of y.

The sample kurtosis is

K̂ =
1
N

∑N
i=1(yi − ȳ)4

σ̂4
.

It provides an empirical measure of the fatness of the tails of the distribution

of y relative to a normal distribution.

Many of the most famous and important statistical sampling distributions

arise in the context of sample moments, and the normal distribution is the

father of them all. In particular, the celebrated central limit theorem es-

tablishes that under quite general conditions the sample mean ȳ will have a

normal distribution as the sample size gets large. The χ2 distribution arises

from squared normal random variables, the t distribution arises from ratios

of normal and χ2 variables, and the F distribution arises from ratios of

χ2 variables. Because of the fundamental nature of the normal distribution

as established by the central limit theorem, it has been studied intensively,

a great deal is known about it, and a variety of powerful tools have been

developed for use in conjunction with it.

Because of the fundamental nature of the normal distribution as estab-

lished by the central limit theorem, it has been studied intensively, a great

deal is known about it, and a variety of powerful tools have been developed

for use in conjunction with it. Hence it is often of interest to assess whether

the normal distribution governs a given sample of data. A simple strategy

is to check various implications of normality, such as S = 0 and K = 3,

via informal examination of Ŝ and K̂. Alternatively and more formally, the
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Jarque-Bera test (JB) effectively aggregates the information in the data

about both skewness and kurtosis to produce an overall test of the hypothesis

that S = 0 and K = 3, based upon Ŝ and K̂. The test statistic is

JB =
T

6

(
Ŝ2 +

1

4
(K̂ − 3)2

)
,

where T is the number of observations. Under the null hypothesis of iid Gaus-

sian observations, the Jarque-Bera statistic is distributed in large samples as

a χ2 random variable with two degrees of freedom.7

A.2.2 Multivariate

We also have sample versions of moments of multivariate distributions. In

particular, the sample covariance is

ĉov(y, x) =
1

N

N∑
i=1

[(yi − ȳ)(xi − x̄)],

and the sample correlation is

ĉorr(y, x) =
ĉov(y, x)

σ̂yσ̂x
.

A.3 Finite-Sample and Asymptotic Sampling Distri-

butions of the Sample Mean

Here we refresh your memory on the sampling distribution of the most im-

portant sample moment, the sample mean.

7Other tests of conformity to the normal distribution exist and may of course be used, such as the
Kolmogorov-Smirnov test. The Jarque-Bera test, however, has the convenient and intuitive decomposition
into skewness and kurtosis components.
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A.3.1 Exact Finite-Sample Results

In your earlier studies you learned about statistical inference, such as how

to form confidence intervals for the population mean based on the sample

mean, how to test hypotheses about the population mean, and so on. Here

we partially refresh your memory.

Consider the benchmark case of Gaussian simple random sampling,

yi ∼ iidN(µ, σ2), i = 1, ..., N,

which corresponds to a special case of what we will later call the “full ideal

conditions” for regression modeling. The sample mean ȳ is the natural es-

timator of the population mean µ. In this case, as you learned earlier, ȳ is

unbiased, consistent, normally distributed with variance σ2/N , and indeed

the minimum variance unbiased (MVUE) estimator. We write

ȳ ∼ N

(
µ,
σ2

N

)
,

or equivalently √
N(ȳ − µ) ∼ N(0, σ2).

We construct exact finite-sample confidence intervals for µ as

µ ∈
[
ȳ ± t1−α2 (N − 1)

s√
N

]
w.p. α,

where t1−α2 (N − 1) is the 1 − α
2 percentile of a t distribution with N − 1

degrees of freedom. Similarly, we construct exact finite-sample (likelihood

ratio) hypothesis tests of H0 : µ = µ0 against the two-sided alternative

H0 : µ 6= µ0 using
ȳ − µ0

s√
N

∼ t1−α2 (N − 1).
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A.3.2 Approximate Asymptotic Results (Under Weaker Assump-

tions)

Much of statistical inference is linked to large-sample considerations, such

as the law of large numbers and the central limit theorem, which you also

studied earlier. Here we again refresh your memory.

Consider again a simple random sample, but without the normality as-

sumption,

yi ∼ iid(µ, σ2), i = 1, ..., N.

Despite our dropping the normality assumption we still have that ȳ is unbi-

ased, consistent, asymptotically normally distributed with variance σ2/N ,

and best linear unbiased (BLUE). We write,

ȳ

a

∼ N

(
µ,
σ2

N

)
.

More precisely, as T →∞,

√
N(ȳ − µ)→d N(0, σ2).

This result forms the basis for asymptotic inference. It is a Gaussian central

limit theorem, and it also has a law of large numbers (ȳ →p µ) imbedded

within it.

We construct asymptotically-valid confidence intervals for µ as

µ ∈
[
ȳ ± z1−α2

σ̂√
N

]
w.p. α,

where z1−α2 is the 1 − α
2 percentile of a N(0, 1) distribution. Similarly, we

construct asymptotically-valid hypothesis tests of H0 : µ = µ0 against the
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two-sided alternative H0 : µ 6= µ0 using

ȳ − µ0

σ̂√
N

∼ N(0, 1).

A.4 Exercises, Problems and Complements

1. (Interpreting distributions and densities)

The Sharpe Pencil Company has a strict quality control monitoring pro-

gram. As part of that program, it has determined that the distribution

of the amount of graphite in each batch of one hundred pencil leads

produced is continuous and uniform between one and two grams. That

is, f(y) = 1 for y in [1, 2], and zero otherwise, where y is the graphite

content per batch of one hundred leads.

a. Is y a discrete or continuous random variable?

b. Is f(y) a probability distribution or a density?

c. What is the probability that y is between 1 and 2? Between 1 and

1.3? Exactly equal to 1.67?

d. For high-quality pencils, the desired graphite content per batch is 1.8

grams, with low variation across batches. With that in mind, discuss

the nature of the density f(y).

2. (Covariance and correlation)

Suppose that the annual revenues of world’s two top oil producers have

a covariance of 1,735,492.

a. Based on the covariance, the claim is made that the revenues are

“very strongly positively related.” Evaluate the claim.

b. Suppose instead that, again based on the covariance, the claim is

made that the revenues are “positively related.” Evaluate the claim.
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c. Suppose you learn that the revenues have a correlation of 0.93. In

light of that new information, re-evaluate the claims in parts a and b

above.

3. (Simulation)

You will often need to simulate data from various models. The simplest

model is the iidN(µ, σ2) (Gaussian simple random sampling) model.

a. Using a random number generator, simulate a sample of size 30 for

y, where y ∼ iidN(0, 1).

b. What is the sample mean? Sample standard deviation? Sample skew-

ness? Sample kurtosis? Discuss.

c. Form an appropriate 95 percent confidence interval for E(y).

d. Perform a t test of the hypothesis that E(y) = 0.

e. Perform a t test of the hypothesis that E(y) = 1.

4. (Sample moments of the wage data)

Use the 1995 wage dataset.

a. Calculate the sample mean wage and test the hypothesis that it equals

$9/hour.

b. Calculate sample skewness.

c. Calculate and discuss the sample correlation between wage and years

of education.

5. Notation.

We have used standard cross-section notation: i = 1, ..., N . The stan-

dard time-series notation is t = 1, ..., T . Much of our discussion will

be valid in both cross-section and time-series environments, but still we

have to pick a notation. Without loss of generality, henceforth we will

typically use t = 1, ..., T .
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A.5 Notes

Numerous good introductory probability and statistics books exist. Wonna-

cott and Wonnacott (1990) remains a time-honored classic, which you may

wish to consult to refresh your memory on statistical distributions, estima-

tion and hypothesis testing. Anderson et al. (2008) is a well-written recent

text.
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Appendix B

Elements of Nonparametrics

B.1 Density Estimation

B.1.1 The Basic Problem

{xi}Ni=1

iid

∼ f(x)

f smooth in [x0 − h, x0 + h]

Goal: Estimate f(x) at arbitrary point x = x0

By the mean-value theorem,

f(x0) ≈
1

2h

∫ x0+h

x0−h
f(u)du =

1

2h
P (x ∈ [x0 − h, x0 + h])

Estimate P (x ∈ [x0 − h, x0 + h]) by #xi∈[x0−h, x0+h]
N

f̂h(x0) =
1

2h

#xi ∈ [x0 − h, x0 + h]

N

=
1

Nh

N∑
i=1

1

2
I

(∣∣∣∣x0 − xi
h

∣∣∣∣ ≤ 1

)

523
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“Rosenblatt estimator”

Kernel density estimator with

kernel: K(u) = 1
2I(|u| ≤ 1)

bandwidth: h

B.1.2 Kernel Density Estimation

Issues with uniform kernels:

1. Why weight distant observations as heavily as nearby ones?

2. Why use a discontinuous kernel if we think that f is smooth?

Obvious solution: Choose smooth kernel

Standard conditions:

∫
K(u)du = 1

K(u) = K(−u)

Common Kernel Choices

Standard normal: K(u) = 1√
2π
e−

u
2
2

Triangular K(u) = (1− |u|)I(|u| ≤ 1)

Epinechnikov: K(u) = 3
4(1− u2)I(|u| ≤ 1)

General Form of the Kernel Density Estimator

f̂h(x0) =
1

Nh

N∑
i=1

K

(
x0 − xi
h

)

“Rosenblatt-Parzen estimator”
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Figure B.1: Bandwidth Choice – from Silverman (1986)

B.1.3 Bias-Variance Tradeoffs

Inescapable Bias-Variance Tradeoff (in Practice, Fixed N)

Escapable Bias-Variance Tradeoff (in Theory, N →∞)

E(f̂h(x0)) ≈ f(x0) + h2

2 ·Op(1)

(So h→ 0 =⇒ bias→ 0)

var (f̂h(x0)) ≈ 1
Nh ·Op(1)

(So Nh→∞ =⇒ var → 0)

Thus,

h→ 0

Nh→∞

}
=⇒ f̂h(x0)

p

→ f(x0)

Convergence Rate

√
Nh(f̂h(x0)− f(x0))

d

→ D

Effects of K minor; effects of h major.
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B.1.4 Optimal Bandwidth Choice

MSE
(
f̂h(x0)

)
= E

(
f̂h(x0)− f(xo)

)2

IMSE =
∫
MSE

(
f̂h(x0)

)
f(x) dx

Choose bandwidth to minimize IMSE:

h∗ = γ∗N−1/5

Corresponding Optimal Convergence Rate

Recall:

√
Nh

(
f̂h(x0)− f(x0)

) d

→ D

h∗ ∝ N−1/5

Substituting yields the best obtainable rate:

√
N 4/5

(
f̂h(x0)− f(x0)

) d

→ D

“Stone optimal rate”

Silverman’s Rule

For the Gaussian case,

h∗ = 1.06σN−1/5

So use:

ĥ∗ = 1.06σ̂N−1/5

Better to err on the side of too little smoothing:

ĥ∗ = σ̂N−1/5
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B.2 Multivariate

Earlier univariate kernel density estimator:

f̂h(x0) =
1

Nh

N∑
i=1

K

(
x0 − xi
h

)

Can be written as:

f̂h(x0) =
1

N

N∑
i=1

Kh(x0 − xi)

where Kh(·) = 1
hK( ·h)

or Kh(·) = h−1K(h−1·)
Multivariate Version (d-Dimensional)

Precisely follows equation (B.2):

f̂H(x0) =
1

N

N∑
i=1

KH(x0 − xi),

where KH(·) = |H|−1K(H−1·), and H (d× d) is psd.

Common choice: K(u) = N(0, I), H = hI

=⇒ KH(·) =
1

hd
K

(
1

h
·
)

=
1

hd
K

(
x0 − xi
h

)

=⇒ f̂h(x0) =
1

Nhd

N∑
i=1

K

(
x0 − xi
h

)
Bias-Variance Tradeoff, Convergence Rate, Optimal Bandwidth, Correp-

sonding Optimal Convergence Rate
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h→ 0

Nhd →∞

}
=⇒ f̂h(x0)

p

→ f(x0)

√
Nhd

(
f̂h(x0)− f(x0)

) d

→ D

h∗ ∝ N−
1
d+4

√
N 1− d

d+4

(
f̂h(x0)− f(x0)

) d

→ D

Stone-optimal rate drops with d

“Curse of dimensionality”

Silverman’s Rule

ĥ∗ =

(
4

d+ 2

) 1
d+4

σ̂N−
1
d+4

where

σ̂2 =
1

d

d∑
i=1

σ̂2
i

(average sample variance)
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B.3 Functional Estimation

Conditional Mean (Regression)

E(y|x) = M(x) =

∫
y
f(y, x)

f(x)
dy

Regression Slope

β(x) =
∂M(x)

∂xj
= lim

h→0

(M(x+ h
2)−M(x− h

2))

h

Regression Disturbance Density

f(u), u = y −M(x)

Conditional Variance

var(y|x) = V (x) =

∫
y2f(y, x)

f(x)
dy −M(x)2

Hazard Function

λ(t) =
f(t)

1− F (t)

Curvature (Higher-Order Derivative Estimation)

C(x) =
∂

∂ xj
β(x) = (

∂2

∂ xj2
)M(x) =

lim

h→ 0

β(x+ h
2)− β(x− h

2)

h

The curse of dimensionality is much worse for curvature...

d-vector: r = (r1, ..., rd), |r| = Σd
i=1 ri
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Define M (r)(x) ≡ ∂
|r|

∂r1x1,...,∂
rdxd M(x)

Then
√
Nh

2|r|+d
[M̂ (r)(x0)−M (r)(x0)]→d D

B.4 Local Nonparametric Regression

B.4.1 Kernel Regression

M(x0) =

∫
yf(y|x0)dy =

∫
y
f(x0, y)

f(x0)
dy

Using multivariate kernel density estimates and manipulating gives the

“Nadaraya-Watson” estimator:

M̂h(x0) =
N∑
i=1

[
K
(
x0−xi
h

)∑N
i=1K

(
x0−xi
h

)] yi
h→ 0, Nh→∞ =⇒

√
Nhd (M̂h(x0)−M(x0))

d

→ N(0, V )

B.4.2 Nearest-Neighbor Regression

Basic Nearest-Neighbor Regression

M̂k(x0) = 1
k

∑
i∈n(x0) yi (Locally Constant, uniform weighting)

k →∞, k
N → 0 ⇒ M̂k (x0)

P

→
M(x0)

√
k (M̂k(x0)−M(x0))

d

→
D

Equivalent to Nadaraya-Watson kernel regression with:

K(u) = 1
2 I(|u| ≤ 1) (uniform)
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and h = R(k) (distance from x0 to kth nearest neighbor)

⇒ Variable bandwidth!

Locally-Weighted Nearest-Neighbor Regression (Locally Polynomial, Non-Uniform

Weighting)

yt = g(xt) + εt

Computation of ĝ(x∗) :

0 < ξ ≤ 1

kT = int(ξ · T )

Find KT nearest neighbors using norm:

λ(x∗, x∗kT ) = [ΣP
j=1(x

∗
kT j − x∗j)2]

1
2

Neighborhood weight function:

vt(xt, x
∗, x∗kT ) = C

(
λ(xt, x

∗)
λ(x∗, x∗kT

)

)
C(u) =

{
(1− u3)3 for u < 1

0 otherwise

B.5 Global Nonparametric Regression

B.5.1 Series (Sieve, Projection, ...)

M(x0) = Σ∞j=0 βj φj (x0)

(the φj are orthogonal basis functions)

M̂J(x0) = ΣJ
j=0 β̂j φj(x0)

J →∞, J
N → 0 ⇒ M̂J(x0)

P

→
M(x0)

Stone-optimal convergence rate, for suitable choice of J .
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B.5.2 Neural Networks

Run linear combinations of inputs through “squashing functions” i = 1, ..., R inputs, j =

1, ..., S neurons

hjt = Ψ(γjo + ΣR
i=1 γij xit), j = 1, ..., S (Neuron j)

e.g. Ψ(·) can be logistic (regression), 0-1 (classification)

Ot = Φ(β0 + ΣS
j=1 βj hjt)

e.g. Φ(·) can be the identity function

Compactly: Ot = Φ(β0 + ΣS
j=1βjΨ(γjo + ΣR

i=1γijxit) ≡ f(xt; θ)

Universal Approximator: S →∞, S
N → 0 ⇒ Ô(x0)→p O(x0)

Same as other nonparametric methods.

B.5.3 More

Ace, projection pursuit, regression splines, smoothing splines, CART,

B.6 Time Series Aspects

1. Many results go through under mixing or Markov conditions.

2. Recursive kernel regression.

Use recursive kernel estimator:

f̂N(x0) = (N−1
N )fN−1(x0) + 1

Nhd
K(x0−xNh )

to get:

M̂N(x0) =
(N−1)hdf̂N−1(x0)M̂N−1(x0) + YNK(

x0−xN
h )

(N−1)hdf̂N−1(x0) + K(
x0−xN

h )
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3. Bandwidth selection via recursive prediction.

4. Nonparametric nonlinear autoregression.

yt = g(yt−1, ..., yt−p) + εt

E(yt+1 | yt, ..., yt−p+1) =
∫
yt+1 f(yt+1 | yt, ..., yt−p+1) dy

=
∫
yt+1

f(yt+1,...,yt−p+1)
f(yt,...,yt−p+1) dy

Implementation: Kernel, Series, NN, LWR

5. Recurrent neural nets.

hjt = Ψ(γjo + ΣR
i=1γijxit + ΣS

l=1δjlhl, t−1), j = 1, ..., S

Ot = Φ(β0 + ΣS
j=1βjhjt)

Compactly: Ot = Φ(β0 + ΣS
j=1βjΨ (γj0 + ΣR

i=1γijxit + ΣS
l=1δjlhl, t−1)

Back substitution:

Ot = g(xt, xt−1, ..., x1; θ)

B.7 Exercises, Problems and Complements

1. Tightly parametric models are often best for time-series prediction.

Generality isn’t so great; restrictions often help!

2. Semiparametric and related approaches.
√
N consistent estimation. Adaptive estimation.

B.8 Notes
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Appendix C

“Problems and Complements” Data

Here we provide data for the in-chapter examples as well as end-of-chapter

EPC’s. The data are also available on the web.

C.1 Liquor Sales

480 467 514 505 534 546 539 541 551 537 584 854 522 506 558 538 605 583

607 624 570 609 675 861 605 537 575 588 656 623 661 668 603 639 669 915

643 563 616 645 703 684 731 722 678 713 725 989 687 629 687 706 754 774

825 755 751 783 804 1139 711 693 790 754 799 824 854 810 798 807 832 1142

740 713 791 768 846 884 886 878 813 840 884 1245 796 750 834 838 902 895

962 990 882 936 997 1305 866 805 905 873 1024 985 1049 1034 951 1010 1016

1378 915 854 922 965 1014 1040 1137 1026 992 1052 1056 1469 916 934 987

1018 1048 1086 1144 1077 1036 1076 1114 1595 949 930 1045 1015 1091 1142

1182 1161 1145 1119 1189 1662 1048 1019 1129 1092 1176 1297 1322 1330

1263 1250 1341 1927 1271 1238 1283 1283 1413 1371 1425 1453 1311 1387

1454 1993 1328 1250 1308 1350 1455 1442 1530 1505 1421 1485 1465 2163

1361 1284 1392 1442 1504 1488 1606 1488 1442 1495 1509 2135 1369 1320

1448 1495 1522 1575 1666 1617 1567 1551 1624 2367 1377 1294 1401 1362

1466 1559 1569 1575 1456 1487 1549 2178 1423 1312 1465 1488 1577 1591

1669 1697 1659 1597 1728 2326 1529 1395 1567 1536 1682 1675 1758 1708

535
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1561 1643 1635 2240 1485 1376 1459 1526 1659 1623 1731 1662 1589 1683

1672 2361 1480 1385 1505 1576 1649 1684 1748 1642 1571 1567 1637 2397

1483 1390 1562 1573 1718 1752 1809 1759 1698 1643 1718 2399 1551 1497

1697 1672 1805 1903 1928 1963 1807 1843 1950 2736 1798 1700 1901 1820

1982 1957 2076 2107 1799 1854 1968 2364 1662 1681 1725 1796 1938 1871

2001 1934 1825 1930 1867 2553 1624 1533 1676 1706 1781 1772 1922 1743

1669 1713 1733 2369 1491 1445 1643 1683 1751 1774 1893 1776 1743 1728

1769 2431

C.2 Housing Starts and Completions

”OBS” ”STARTS” ”COMPS”

”1968M01” 1.38 1.257

”1968M02” 1.52 1.174

”1968M03” 1.466 1.323

”1968M04” 1.554 1.328

”1968M05” 1.408 1.367

”1968M06” 1.405 1.184

”1968M07” 1.512 1.37

”1968M08” 1.495 1.279

”1968M09” 1.556 1.397

”1968M10” 1.569 1.348

”1968M11” 1.63 1.367

”1968M12” 1.548 1.39

”1969M01” 1.769 1.257

”1969M02” 1.705 1.414

”1969M03” 1.561 1.558

”1969M04” 1.524 1.318

”1969M05” 1.583 1.43
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”1969M06” 1.528 1.455

”1969M07” 1.368 1.432

”1969M08” 1.358 1.393

”1969M09” 1.507 1.367

”1969M10” 1.381 1.406

”1969M11” 1.229 1.404

”1969M12” 1.327 1.402

”1970M01” 1.085 1.434

”1970M02” 1.305 1.43

”1970M03” 1.319 1.317

”1970M04” 1.264 1.354

”1970M05” 1.29 1.334

”1970M06” 1.385 1.431

”1970M07” 1.517 1.384

”1970M08” 1.399 1.609

”1970M09” 1.534 1.383

”1970M10” 1.58 1.437

”1970M11” 1.647 1.457

”1970M12” 1.893 1.437

”1971M01” 1.828 1.471

”1971M02” 1.741 1.448

”1971M03” 1.91 1.489

”1971M04” 1.986 1.709

”1971M05” 2.049 1.637

”1971M06” 2.026 1.637

”1971M07” 2.083 1.699

”1971M08” 2.158 1.896

”1971M09” 2.041 1.804

”1971M10” 2.128 1.815
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”1971M11” 2.182 1.844

”1971M12” 2.295 1.895

”1972M01” 2.494 1.942

”1972M02” 2.39 2.061

”1972M03” 2.334 1.981

”1972M04” 2.249 1.97

”1972M05” 2.221 1.896

”1972M06” 2.254 1.936

”1972M07” 2.252 1.93

”1972M08” 2.382 2.102

”1972M09” 2.481 2.053

”1972M10” 2.485 1.995

”1972M11” 2.421 1.985

”1972M12” 2.366 2.121

”1973M01” 2.481 2.162

”1973M02” 2.289 2.124

”1973M03” 2.365 2.196

”1973M04” 2.084 2.195

”1973M05” 2.266 2.299

”1973M06” 2.067 2.258

”1973M07” 2.123 2.066

”1973M08” 2.051 2.056

”1973M09” 1.874 2.061

”1973M10” 1.677 2.052

”1973M11” 1.724 1.925

”1973M12” 1.526 1.869

”1974M01” 1.451 1.932

”1974M02” 1.752 1.938

”1974M03” 1.555 1.806
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”1974M04” 1.607 1.83

”1974M05” 1.426 1.715

”1974M06” 1.513 1.897

”1974M07” 1.316 1.695

”1974M08” 1.142 1.634

”1974M09” 1.15 1.651

”1974M10” 1.07 1.63

”1974M11” 1.026 1.59

”1974M12” 0.975 1.54

”1975M01” 1.032 1.588

”1975M02” 0.904 1.346

”1975M03” 0.993 1.293

”1975M04” 1.005 1.278

”1975M05” 1.121 1.349

”1975M06” 1.087 1.234

”1975M07” 1.226 1.276

”1975M08” 1.26 1.29

”1975M09” 1.264 1.333

”1975M10” 1.344 1.134

”1975M11” 1.36 1.383

”1975M12” 1.321 1.306

”1976M01” 1.367 1.258

”1976M02” 1.538 1.311

”1976M03” 1.421 1.347

”1976M04” 1.395 1.332

”1976M05” 1.459 1.44

”1976M06” 1.495 1.39

”1976M07” 1.401 1.322

”1976M08” 1.55 1.374
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”1976M09” 1.72 1.371

”1976M10” 1.629 1.388

”1976M11” 1.641 1.428

”1976M12” 1.804 1.457

”1977M01” 1.527 1.457

”1977M02” 1.943 1.655

”1977M03” 2.063 1.619

”1977M04” 1.892 1.548

”1977M05” 1.971 1.555

”1977M06” 1.893 1.636

”1977M07” 2.058 1.687

”1977M08” 2.02 1.673

”1977M09” 1.949 1.865

”1977M10” 2.042 1.675

”1977M11” 2.042 1.77

”1977M12” 2.142 1.634

”1978M01” 1.718 1.777

”1978M02” 1.738 1.719

”1978M03” 2.032 1.785

”1978M04” 2.197 1.843

”1978M05” 2.075 1.85

”1978M06” 2.07 1.905

”1978M07” 2.092 1.957

”1978M08” 1.996 1.976

”1978M09” 1.97 1.944

”1978M10” 1.981 1.885

”1978M11” 2.094 1.877

”1978M12” 2.044 1.844

”1979M01” 1.63 1.85
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”1979M02” 1.52 1.845

”1979M03” 1.847 1.946

”1979M04” 1.748 1.866

”1979M05” 1.876 2.007

”1979M06” 1.913 1.853

”1979M07” 1.76 1.759

”1979M08” 1.778 1.779

”1979M09” 1.832 1.983

”1979M10” 1.681 1.832

”1979M11” 1.524 1.892

”1979M12” 1.498 1.863

”1980M01” 1.341 1.794

”1980M02” 1.35 1.803

”1980M03” 1.047 1.701

”1980M04” 1.051 1.751

”1980M05” 0.927 1.532

”1980M06” 1.196 1.48

”1980M07” 1.269 1.472

”1980M08” 1.436 1.44

”1980M09” 1.471 1.267

”1980M10” 1.523 1.272

”1980M11” 1.51 1.313

”1980M12” 1.482 1.378

”1981M01” 1.547 1.27

”1981M02” 1.246 1.395

”1981M03” 1.306 1.377

”1981M04” 1.36 1.469

”1981M05” 1.14 1.246

”1981M06” 1.045 1.35
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”1981M07” 1.041 1.337

”1981M08” 0.94 1.222

”1981M09” 0.911 1.221

”1981M10” 0.873 1.206

”1981M11” 0.837 1.074

”1981M12” 0.91 1.129

”1982M01” 0.843 1.052

”1982M02” 0.866 0.935

”1982M03” 0.931 0.965

”1982M04” 0.917 0.979

”1982M05” 1.025 1.06

”1982M06” 0.902 0.93

”1982M07” 1.166 1.006

”1982M08” 1.046 0.985

”1982M09” 1.144 0.947

”1982M10” 1.173 1.059

”1982M11” 1.372 1.079

”1982M12” 1.303 1.047

”1983M01” 1.586 1.187

”1983M02” 1.699 1.135

”1983M03” 1.606 1.168

”1983M04” 1.472 1.197

”1983M05” 1.776 1.3

”1983M06” 1.733 1.344

”1983M07” 1.785 1.41

”1983M08” 1.91 1.711

”1983M09” 1.71 1.493

”1983M10” 1.715 1.586

”1983M11” 1.785 1.462
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”1983M12” 1.688 1.509

”1984M01” 1.897 1.595

”1984M02” 2.26 1.562

”1984M03” 1.663 1.6

”1984M04” 1.851 1.683

”1984M05” 1.774 1.732

”1984M06” 1.843 1.714

”1984M07” 1.732 1.692

”1984M08” 1.586 1.685

”1984M09” 1.698 1.642

”1984M10” 1.59 1.633

”1984M11” 1.689 1.611

”1984M12” 1.612 1.629

”1985M01” 1.711 1.646

”1985M02” 1.632 1.772

”1985M03” 1.8 1.715

”1985M04” 1.821 1.63

”1985M05” 1.68 1.665

”1985M06” 1.676 1.791

”1985M07” 1.684 1.693

”1985M08” 1.743 1.685

”1985M09” 1.676 1.806

”1985M10” 1.834 1.565

”1985M11” 1.698 1.749

”1985M12” 1.942 1.732

”1986M01” 1.972 1.723

”1986M02” 1.848 1.753

”1986M03” 1.876 1.756

”1986M04” 1.933 1.685
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”1986M05” 1.854 1.833

”1986M06” 1.847 1.672

”1986M07” 1.782 1.722

”1986M08” 1.807 1.763

”1986M09” 1.687 1.732

”1986M10” 1.681 1.782

”1986M11” 1.623 1.793

”1986M12” 1.833 1.84

”1987M01” 1.774 1.862

”1987M02” 1.784 1.771

”1987M03” 1.726 1.694

”1987M04” 1.614 1.735

”1987M05” 1.628 1.713

”1987M06” 1.594 1.635

”1987M07” 1.575 1.685

”1987M08” 1.605 1.624

”1987M09” 1.695 1.587

”1987M10” 1.515 1.577

”1987M11” 1.656 1.578

”1987M12” 1.4 1.632

”1988M01” 1.271 1.554

”1988M02” 1.473 1.45

”1988M03” 1.532 1.6

”1988M04” 1.573 1.615

”1988M05” 1.421 1.483

”1988M06” 1.478 1.512

”1988M07” 1.467 1.527

”1988M08” 1.493 1.551

”1988M09” 1.492 1.531
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”1988M10” 1.522 1.529

”1988M11” 1.569 1.407

”1988M12” 1.563 1.547

”1989M01” 1.621 1.561

”1989M02” 1.425 1.597

”1989M03” 1.422 1.442

”1989M04” 1.339 1.542

”1989M05” 1.331 1.449

”1989M06” 1.397 1.346

”1989M07” 1.427 1.386

”1989M08” 1.332 1.429

”1989M09” 1.279 1.338

”1989M10” 1.41 1.333

”1989M11” 1.351 1.475

”1989M12” 1.251 1.304

”1990M01” 1.551 1.508

”1990M02” 1.437 1.352

”1990M03” 1.289 1.345

”1990M04” 1.248 1.332

”1990M05” 1.212 1.351

”1990M06” 1.177 1.263

”1990M07” 1.171 1.295

”1990M08” 1.115 1.307

”1990M09” 1.11 1.312

”1990M10” 1.014 1.282

”1990M11” 1.145 1.248

”1990M12” 0.969 1.173

”1991M01” 0.798 1.149

”1991M02” 0.965 1.09
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”1991M03” 0.921 1.176

”1991M04” 1.001 1.093

”1991M05” 0.996 1.07

”1991M06” 1.036 1.093

”1991M07” 1.063 1.076

”1991M08” 1.049 1.05

”1991M09” 1.015 1.216

”1991M10” 1.079 1.076

”1991M11” 1.103 1.013

”1991M12” 1.079 1.002

”1992M01” 1.176 1.061

”1992M02” 1.25 1.098

”1992M03” 1.297 1.128

”1992M04” 1.099 1.083

”1992M05” 1.214 1.187

”1992M06” 1.145 1.189

”1992M07” 1.139 1.251

”1992M08” 1.226 1.14

”1992M09” 1.186 1.123

”1992M10” 1.244 1.139

”1992M11” 1.214 1.224

”1992M12” 1.227 1.199

”1993M01” 1.21 1.135

”1993M02” 1.21 1.236

”1993M03” 1.083 1.105

”1993M04” 1.258 1.216

”1993M05” 1.26 1.111

”1993M06” 1.28 1.193

”1993M07” 1.254 1.09
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”1993M08” 1.3 1.264

”1993M09” 1.343 1.172

”1993M10” 1.392 1.246

”1993M11” 1.376 1.235

”1993M12” 1.533 1.289

”1994M01” 1.277 1.21

”1994M02” 1.333 1.354

”1994M03” 1.531 1.261

”1994M04” 1.491 1.369

”1994M05” 1.507 1.423

”1994M06” 1.401 1.337

”1994M07” 1.431 1.278

”1994M08” 1.454 1.353

”1994M09” 1.483 1.419

”1994M10” 1.437 1.363

”1994M11” 1.504 1.354

”1994M12” 1.505 1.4

”1995M01” 1.37 1.415

”1995M02” 1.322 1.302

”1995M03” 1.241 1.442

”1995M04” 1.278 1.331

”1995M05” 1.3 1.324

”1995M06” 1.301 1.256

”1995M07” 1.45 1.332

”1995M08” 1.401 1.247

”1995M09” 1.401 1.267

”1995M10” 1.351 1.32

”1995M11” 1.458 1.36

”1995M12” 1.425 1.225
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”1996M01” 1.453 1.403

”1996M02” 1.514 1.328

”1996M03” 1.439 1.391

”1996M04” 1.511 1.35

”1996M05” 1.478 1.392

”1996M06” 1.474 1.398

C.3 Shipping Volume

”VOL” ”VOLJ” ”VOLQ”

19.2717057789 17.459748181 18.7609251809

19.5739427053 17.0051823285 18.971430836

20.2496352454 20.0632864458 21.5160397659

18.7581267693 19.0300416396 22.511024212

18.9623879164 19.27406249 23.6257746082

18.7082264913 17.7225435923 18.9527794473

17.5583325839 16.3996071649 16.3155079075

16.200570162 16.0688532171 16.4200268795

17.5672224715 15.9365700733 16.7922075809

18.3506389645 15.174656225 17.2723634089

19.6108588322 17.399682921 18.8658616044

19.0548224273 18.3899433918 17.5524349924

17.8562732579 17.3099553279 17.59936768

17.3026348251 15.7391009507 17.3483112881

16.992232973 16.2263804308 16.1946474378

16.6783874199 15.0494683232 15.8035069624

17.440059836 14.8752473335 16.715966412

16.6618026428 17.0961955995 17.5161819485

16.384313619 16.7257725533 17.0938652092
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16.050331812 13.739513488 15.0166120316

15.7184746166 13.4520789836 14.2574702548

15.849494067 15.2452098373 16.1171312944

15.2144285697 13.7662941367 14.7161769243

15.5820599759 13.2800857116 13.5803587289

16.504876926 14.5873238183 15.4941943822

16.3726266283 14.752659297 15.6499708269

17.441672857 16.3451653899 17.4300040172

18.1500104973 17.4648816444 18.1790757434

18.874365366 18.1946450784 17.9539480087

18.1098021573 16.5289387474 17.0578268847

18.6816660898 16.9546621479 17.4720840136

18.246280095 16.8771274629 17.5725869706

18.0012782954 17.1811808451 17.7155012812

19.587794813 17.494746818 20.0703911986

19.5981770221 17.217759479 21.6789128429

19.2223298359 17.8218538169 19.8239398072

20.0634140058 18.5751902922 18.3789688332

20.0809239368 20.6290468968 20.7880586038

19.1786299632 19.0280437604 21.0085727009

19.1588286054 17.0601921473 19.933106815

19.3928968784 18.122574268 19.2421396264

18.9646978349 17.3292945255 18.511792914

20.435792902 19.6739965193 20.1347179524

20.4202833337 20.4439466979 20.4893669879

20.9052188136 19.7398566084 20.1878793077

19.6652673577 18.6546627952 18.249475265

20.0951191985 19.4590133306 20.6924024332

20.7800095041 19.0475471902 20.5414206421
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21.2965069366 18.9291269898 20.0406867042

20.8192028548 20.769493656 20.7077992512

21.0614028758 20.9171131275 19.9587141065

20.9765403357 18.7027400646 19.2220417591

19.1698867079 17.6112329857 17.6748160012

18.9439652669 17.8949795526 18.0725569547

19.8093280201 19.4476632819 19.1307345563

19.5802661175 20.7283882343 19.7635124256

20.188836761 22.031446338 21.3858459329

18.1792990372 19.8472107672 19.1444759791

17.7548507547 18.72925784 18.6182439677

17.2289318147 16.8165314785 17.7292985173

16.4121068243 15.5654085445 15.9577922676

16.2045884936 16.3836619494 15.7260238369

15.0130253194 15.3710289573 16.7921314762

13.8266097099 13.052907295 14.9949652982

13.1843688204 11.6840841891 12.0034276402

12.870213406 11.6770775998 12.9172510431

13.2334442709 11.5479612775 14.9634674363

12.9173329865 11.5577104018 13.6367828064

12.7117169428 11.3733253536 11.787848607

14.1808084522 13.3665634393 12.8296343543

12.9484589444 12.878562356 12.4906568078

13.6214661551 14.483489407 16.3731037573

14.7098312316 15.4407091256 17.3526214658

14.4560809397 13.8277648613 14.4358762589

14.8227523736 13.6335269982 12.5340732824

16.5007559885 15.7312209525 15.0489415034

17.5106649474 17.840872251 17.7325640302
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17.6557029729 18.2473296622 16.7282353463

17.8485823627 17.6195057968 16.7266919875

19.67633947 18.3353228515 19.0679266201

20.277734492 19.3934423648 20.0492502848

18.8260717628 18.7528520307 19.2689093322

17.9179529725 17.8954628599 19.0376518667

19.2171790962 19.1967894497 20.7927473245

18.914769394 17.6541858873 20.4452750898

20.2323399576 17.7928865573 20.5384209949

19.5391206912 16.8753676725 17.9956280129

19.8538946266 18.3103862958 20.1637225044

20.7581219007 20.6901786614 22.1197827216

20.9316987843 19.3631664403 19.8699426046

20.7462892596 19.3640030428 20.5257133466

19.4225143403 19.1001722665 19.4388955707

18.2520026658 16.9920619381 17.0712611214

19.608942608 17.1943404778 17.2762205259

20.4870375324 19.0729051414 20.8129575344

20.9231428276 20.2297824525 22.2245091066

21.02105968 21.1690728089 21.9992265702

22.7732010085 23.0189060197 23.6707827542

22.514446987 21.0231950769 23.1500426815

22.3465504392 21.1552536397 24.20522105

22.6577539724 21.6521714803 22.9788447684

21.5418439884 19.8456301907 20.3661042955

22.3394036118 20.2014282014 21.979090813

23.0377384332 22.5350106791 25.557668128

24.4548555232 25.4417185746 26.3802290462

25.4492262625 26.4301907851 26.7259049531
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26.0800222942 26.1117321025 26.6803797332

25.7911761748 23.9400932834 24.4245899475

25.5847992209 21.93907776 24.6919257021

26.0231773653 23.9091204958 26.7800488092

24.4973264721 23.1144196118 24.9828317369

24.3927828027 23.4339056057 25.5422039392

22.8601533285 23.9932847305 25.2274388821

21.9722786038 20.9681427918 21.3364275906

22.340510202 20.9392190077 21.3514886656

23.178110338 22.8665030015 24.3604684646

24.6484941185 22.7150279438 24.0351232014

24.7817200659 22.5761641267 23.9361608628

23.6865622916 23.1766610537 24.9860708056

25.2079488338 24.6010715071 24.7884467738

27.3211087537 27.0249055141 26.7444706647

27.7235428258 26.5757318032 25.0603692831

28.309548854 25.6624963062 25.5292199701

28.0578284722 26.4611757937 29.0803741879

26.1581604322 25.2816128422 27.3139243645

24.190133874 23.4134398476 24.1925016467

24.4548767286 23.2861317007 24.5498712482

25.7278951519 25.8504378763 26.7140269071

25.5131783927 25.5063764553 25.7889361141

24.9237228352 23.6404561965 25.8633352475

25.409962031 24.5375853257 26.7049047215

25.1984221295 23.8659325277 25.3081948561

26.6551560148 25.7888997326 27.2553131992

26.0002259958 27.5926843712 27.6890420101

24.0036455729 26.4846757191 25.73693066



C.3. SHIPPING VOLUME 553

24.7777899876 24.9877932221 25.2164930005

23.4921955228 22.7141645557 23.8826562386

22.2793511249 21.9125168987 23.8191504286

21.0976561552 21.1247412228 23.894114282

20.8288163817 19.44188337 23.1970348431

20.8638228094 18.3573265486 21.5891808012

20.8980558018 19.8206384805 20.4934938956

21.0619706551 20.6085901372 21.8742971165

18.6701274063 18.1244279374 20.3411534843

20.6007088077 18.6105112695 19.9682448467

20.1389619959 17.0835208855 18.7665465342

21.0123229261 19.6156353981 19.3833124362

20.667671816 19.756398576 19.9818255248

19.3152257144 17.9826814757 19.2152138844

18.679959164 19.0937240221 20.1580164641

19.445442753 19.0690271957 20.3613634188

18.3950216375 16.6347947986 17.2943772219

18.0754720839 16.7480007967 18.9798968194

17.949099935 15.3911546702 18.3499016254

17.2085569825 14.0417133154 16.8890516998

17.0534788489 16.6259563941 17.0382068092

17.1429907854 18.8552913007 16.4384938674

18.5021723746 19.7240189504 19.1165368056

17.1809981532 18.0932390067 19.6651639173

16.8715575665 16.1294506738 17.746526401

17.4542411461 15.2359072701 16.2825178305

17.7473900782 16.1718781121 17.1518078679

17.829701024 17.8086415346 17.7970579525

17.3685099902 16.4949978314 17.2808975505
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17.3949434238 16.0550286765 16.1101830324

18.6989747141 18.9542659565 18.4792272786

18.6846465065 18.7648160468 20.8419383248

18.9306198844 17.7578610147 20.2409134333

17.5729229166 16.5438598725 17.9606830042

18.0739332244 17.8880302871 18.6181490647

17.2507295452 17.3171442986 17.5916131555

17.3792585334 17.7651379488 17.6504299241

16.4320763485 16.2982752451 17.8254445424

16.7933478109 15.6933362068 17.9872436465

16.5190627996 15.3485530218 16.3673260868

17.7564694411 15.4315761325 15.9449256264

18.8370114707 16.9575325807 17.611194868

16.928292708 15.2967887037 17.1400231536

18.657251668 18.4232770204 19.824527657

18.2216460571 19.1539754996 21.3437806632

18.1765329722 18.7223040949 20.3646186335

18.1231211241 17.7984509251 17.2622289511

18.0267230907 16.3030742753 16.1332113107

17.2057201056 15.3882137759 15.5255516343

19.3695759924 16.7182098318 18.3802550567

17.1969637212 16.2442837156 17.2353515985

17.7241137916 17.2317792517 17.1203437917

17.2944190208 15.8843349068 16.6669091401

17.470491388 15.3641123977 16.8551813982

16.1498378983 13.1472904612 15.6012614531

16.7740602842 14.4230964821 15.5086448779

18.5417153526 17.2153398311 18.5540378889

20.0944359175 19.0291421836 19.8158585998



C.3. SHIPPING VOLUME 555

19.5618854131 18.3320013774 17.7131366713

19.2589074566 18.4277187063 20.1977164553

18.4509674474 16.6629259136 17.8855835828

20.4582337378 18.3891106399 19.6143190348

18.8991549148 18.1939683622 19.9814583911

16.8327435075 16.990464713 18.7612193209

16.3872484992 16.1880929528 17.8850416195

17.0434071889 17.4056840078 18.7971980838

16.1873353526 14.4414953077 16.8184456409

15.6693799332 11.833032659 13.0781945376

16.9720675111 15.1806169456 16.0668334749

19.1266563136 17.2570035319 19.4533781776

19.3585341754 16.9028050758 18.5335424625

21.5516285496 19.4802597811 20.1442177594

21.7587725871 20.6168240706 20.9903258975

21.8200171304 20.6700043623 21.6358988412

19.9900423085 18.6721268744 19.6380808657

18.1223443626 17.2656949423 18.4544019026

17.0073882459 14.8938017204 17.2494692953

17.6764622101 16.7706966062 17.4938713105

16.5471831125 17.3608550016 17.5129378141

15.1336065036 14.6423622788 18.8696919892

13.5933196417 11.9614203809 15.0914451671

11.8922993507 10.8989818839 12.3719969593

12.9792532877 11.3093549053 14.874765085

13.2525228835 10.0072486302 13.4098884284

14.2012719789 12.7478370304 14.754422718

13.6390791171 14.4037521116 14.0637227305

13.4863734289 12.5546065488 11.944629052



556 APPENDIX C. PROBLEMS AND COMPLEMENTS DATA

13.3058904489 9.8681948227 11.1977633977

13.8880929566 12.3213850067 13.8194375469

14.5353434757 13.6643526293 14.9182149824

14.2270370612 11.9699489905 13.6694506986

13.9279040761 13.8643051684 14.5464302004

15.5458094922 15.8959039789 15.4938533744

17.1028315286 17.7287858103 18.6680621028

16.3770032224 16.4426582273 17.8485416373

15.9922044218 14.0712909853 14.7548208802

17.1087386592 15.0603369214 15.9055684402

17.6512137478 15.6631332073 17.0522838584

17.6538328172 18.1289527652 18.2660043146

16.6832498412 17.8887371637 18.6728109572

15.305531634 14.9279931726 17.5729848736

14.3195009831 12.7877164232 13.0553330776

14.4053019566 12.107440994 13.1649766486

14.4842521561 13.5984482771 15.9549228982

14.0636282626 12.0090024876 14.3949805786

12.8584560571 10.9501498295 13.9343271549

13.0860805015 14.4201934438 16.3693368261

12.0045389739 13.5897899096 15.1533367919

10.1860556759 11.2654176894 11.2305040843

11.6172375556 11.7897245077 11.8953155341

13.6887086068 11.9049896003 13.6439356193

13.4339843303 11.6735261414 14.1251999412

14.297034008 14.518163804 15.5499969183

14.5631142042 13.6598936396 14.249444216

14.462636831 12.31610567 12.8322807377

14.9756193359 13.1153849658 14.8811074394



C.3. SHIPPING VOLUME 557

13.2281979392 11.8856206242 12.7763373734

11.7223121602 11.6820077126 11.700749822

10.988282058 10.6323597054 11.9456987648

12.6780557077 12.0987220557 13.0086293827

13.1879117244 13.4444662146 15.8594941185

13.1708257104 12.6744878153 15.176984815

15.1370107561 14.5434709767 15.0800799684

16.5389693478 16.6532639951 15.3514687031

17.5778333136 17.049090127 17.523751158

17.101844839 15.821528298 17.2895009478

17.1815774639 15.4422459511 16.353068953

16.9303511141 16.2555602655 17.1338698692

17.6041430019 17.1916134874 18.166043312

17.3397375674 15.3263700856 17.4882543394

17.397222218 16.3586599867 17.8351820647

18.1118957978 17.6659505236 18.1721698844

20.4871702842 19.5667184188 19.3851257499

20.0732084475 18.5900566876 19.1596501799

20.6831061094 19.2984072947 21.3427199232

21.9311965536 20.1818451959 21.4651039503

19.8731129437 17.8698724488 18.6347104915

18.8870897878 18.4831658733 18.8844647261

18.9373467112 18.7657221868 21.073085258

19.1222161684 18.205919517 22.2839612374

18.4419961166 16.8004779789 18.2486488717

19.0919098255 17.012484616 17.6643303519

20.4842902986 19.1957898359 19.9359566247

20.1493131966 19.4869774878 20.1466759111

19.1493887473 19.8103031926 20.2410268015



558 APPENDIX C. PROBLEMS AND COMPLEMENTS DATA

19.0803921474 19.6331294076 20.1894038473

18.9774237315 18.4838204515 18.5255073377

18.5951204971 17.2380193453 17.0952695772

18.1202398412 15.4738698799 16.1724956515

18.9493083777 17.1012271058 17.2513459355

19.4330846221 17.9582462404 17.1747880028

18.9388177502 17.186551866 15.925098325

17.1994059115 15.3040242876 14.0525424022

18.2425007177 16.9683657256 16.4553290302

19.1864508026 16.9975200548 16.4254802264

20.3883877206 17.1688724494 17.7150312537

20.9237898566 19.8632664667 21.0055981934

20.4857838628 20.2765320654 19.5923552627

20.9344768673 20.2555920022 19.765716827

22.6286362817 22.5406746977 24.2559186341

23.3835467107 23.9766267744 26.0840689496

22.9080141853 21.5620943949 24.1434845471

21.9087452385 20.1485252991 22.8028759064

23.3625975594 22.876000135 24.533062705

23.7507675386 22.8000020619 24.7802677328

22.9991666475 21.0444272266 23.349061915

23.9101097677 21.7736734484 24.1372974453

25.0481965385 23.2442106217 25.1928892128

24.378337561 22.9443109328 23.9085559835

24.0729702983 24.1641013804 22.734968973

24.03330376 22.3932053631 22.2289221234

25.8573819761 22.7792350251 24.8463087148

25.247985532 24.5454737364 27.1846385734

26.6352566668 26.2679469323 28.5772601514



C.3. SHIPPING VOLUME 559

26.5706393237 25.0674303642 27.1124521629

27.1020003043 23.8338381778 25.9495915889

25.407451359 22.1617576711 21.7258099887

24.9217137001 22.3908187053 22.9860986468

24.7336224961 21.8527485073 25.6282992548

23.733044213 20.8828150041 24.1866788436

23.7002788761 21.7153498813 24.4057981764

22.0169551843 22.2532215733 23.6781326117

22.3872561117 21.8207079904 22.665252291

23.2468318591 22.0037164455 23.3720385988

22.3031641246 20.59708956 22.8464936989

22.2882789426 18.5334714503 21.4659071838

22.0142923185 18.8125614082 20.8689316677

21.147403764 20.1339433991 20.5697742398

23.1582607822 22.6016035839 22.5155118781

24.5494166858 23.516222821 24.3412964107

25.4438237759 24.2016784812 25.43146408

26.2419657113 23.4613715669 25.4476293145

28.0251788813 25.1381195175 26.426280573

27.1103832179 24.4821257753 26.0235121131

26.0636161013 21.9629934657 25.5023633851

24.045421333 20.345249999 23.3470138301

24.6230735748 24.2465087457 26.0368943072

24.8632535937 25.2916452395 25.6742120389

25.1107771897 24.2685449126 23.6806571676

24.1460380115 23.43034969 22.5463709003

24.6554541615 24.1090924498 24.5693824503

25.803343129 24.2028796484 26.5239434661

25.3210480052 24.5483346202 27.1710669468



560 APPENDIX C. PROBLEMS AND COMPLEMENTS DATA

24.3512790657 24.8491588249 26.2951505306

23.2398097757 22.7840152024 24.5075273728

23.7241444609 21.8148420646 24.3200068831

26.0353232687 24.2522043325 25.4361786164

25.6097408758 26.4400100575 26.7910897862

25.063915726 25.0954334514 25.6814399254

24.8958915922 22.8567963975 25.5866891795

24.3703393673 23.1188081545 25.53691195

23.8271292384 23.33094276 22.8929259453

24.4649332039 23.2794283617 22.3399911894

23.687565252 22.8605971108 22.6686592849

22.2380979023 20.4431944678 21.8716033803

21.2517328293 18.6501250939 19.5984581859

23.4427655694 21.453116372 21.744249143

23.0893939784 21.8778477559 22.0716295269

22.618359591 22.7316141988 22.2482273796

23.3007725567 22.5400084265 24.117049645

22.6457677274 21.4637610354 23.6131170032

20.9280736606 19.6999045161 20.7981175777

23.32502062 21.6019012651 23.2329287692

22.9606839238 21.175852282 23.0163238851

21.4593501176 20.5116668993 23.1472203339

20.2915284518 18.7965466782 21.8750713427

21.6026410977 19.4070771868 22.0692832518

21.2713155413 20.8821145097 22.1446262998

21.753485771 22.8736738225 23.4722854425

22.0449829683 22.3135898403 23.0481856245

21.9606947779 20.1276998265 20.8756023949

20.6831695911 19.0538943225 19.5515318425



C.3. SHIPPING VOLUME 561

20.4705890117 19.5938982172 20.9078733403

19.2668812869 18.480906785 21.0805823524

18.9119477041 17.8215688645 20.5010875444

18.874718744 18.1218202426 19.8423708377

19.2447445598 19.0777652508 20.6073522484

20.0046662833 20.2414263753 20.9381706722

19.9169518794 20.7151340149 21.0468436088

19.0840575418 18.9154928962 20.1140672061

19.1831364912 16.7070405998 19.5959314411

18.4047333053 16.4088827162 18.4363570721

18.5150431465 18.8862179884 18.2222225423

21.1052367891 21.3631058603 21.5641207421

20.3224822562 20.3357962296 20.1752533424

21.6262169581 20.8966817131 19.2322121201

21.6628109831 20.3742045012 19.7437892188

20.8894316342 19.9240120458 20.0617332717

19.7357968942 19.603144811 21.2685459271

18.6649522425 18.3498091278 19.8446702664

18.9272714656 18.3335516281 17.8497048108

18.6408302137 17.3005167375 17.817158861

19.0348509046 15.5603227378 16.9413415764

18.8620380441 16.6206855703 18.0618215214

17.7582018138 17.6833355663 19.7603378309

17.5865912068 17.5007424849 19.9151530734

17.4569461928 16.8756312559 18.8736735748

18.6928705763 17.5490627771 17.406025111

20.8554312267 20.518518501 20.2285407441

21.0431871878 20.7553777845 21.4478749251

21.7605112375 21.5179825665 22.6879389307



562 APPENDIX C. PROBLEMS AND COMPLEMENTS DATA

22.2635859944 22.2947487461 23.0692442556

23.4593270587 23.8728061029 22.2072964945

24.3643538925 24.1161240546 23.7067318271

22.8511668654 23.4799577383 23.7518257326

22.2158881701 24.1399220831 22.4762667724

21.506969127 22.4898191792 21.0257920594

21.3643153637 22.0539723757 21.6471236819

20.6308301889 19.8958877919 20.9097801487

22.3502803992 20.6295465845 21.4109599994

22.4509312433 20.5845742334 21.8772735351

22.9625097649 21.3040703952 24.9445821146

22.2889775934 22.1084431949 25.1297478098

21.8275142561 20.7767966791 21.7927009695

22.767427257 20.2312336356 20.8178045959

23.2639014579 21.8411265196 21.6162171178

23.5056807811 22.3836713841 22.2470168841

22.2531214982 21.0609077247 23.2046391724

22.5109651384 21.2180327032 22.4055994067

21.1315412798 20.2621906819 20.3601866072

22.7979670363 20.7973540572 22.6120355119

22.4597998002 19.4819583415 20.2589984649

22.5685806919 21.4656028243 20.8244965736

23.1117992222 22.7704556329 23.5759658262

23.1148278442 21.6541335313 23.814912354

22.7080404892 20.5543261522 21.3280078065

20.6138812777 20.8340311797 20.7436982306

19.8175184359 20.627340169 22.0233781607

21.8397837472 21.5781456957 23.2415075421

22.4863739235 21.7160170737 22.3953071808



C.3. SHIPPING VOLUME 563

22.5862446044 19.9504899514 21.1590792018

23.5966887071 21.123650223 22.3135410898

22.389376973 21.646393941 22.2621277802

22.7772227728 21.6994261979 22.3895548005

22.4970718077 20.961671766 21.25748542

23.5577574081 22.5463723266 24.1901600257

23.9486486406 22.9994169231 25.0256848536

23.8292055026 23.0176469965 23.780490369

24.0573682683 24.1477877229 24.0234715129

24.5508444004 23.5898086646 23.7772076304

23.8058600714 23.1746657293 23.894093882

21.8489699241 22.2416986601 22.5296947225

21.73433214 22.2611011035 21.8584446115

20.5412739422 21.6018474042 20.9543264569

20.1933247515 19.3293856417 20.4071418934

19.9090955897 18.5109230835 20.0829073771

21.6728167003 22.1893561572 22.8038479162

21.4656896916 20.6219149552 21.500495681

21.1880209471 18.535793256 20.2834927491

21.4120801886 19.6960497939 21.0566737511

21.0518283049 20.2304960393 21.3641478721

21.4639082222 20.3030557583 22.9946190166

20.5700062517 18.8692110634 20.8827151928

19.8200976155 18.1861361645 19.7724005212

19.1911291962 17.2131394148 18.6597562381

18.9614604716 17.6232807408 17.5566910945

18.7299738725 17.5731644718 17.8560461459

18.5187869958 17.2163096472 17.2747463023

18.5545182341 17.1931258096 17.0383757727



564 APPENDIX C. PROBLEMS AND COMPLEMENTS DATA

19.1291528441 18.2630897704 19.3162915175

19.4902985602 18.1336875229 20.4157543726

20.6587642681 19.2375993093 21.8807963886

20.4673930836 19.1057691056 20.8438942223

20.0897427646 18.3323598047 19.3826887806

20.5063698251 19.7758929097 20.8951597138

20.505497928 19.9000689072 20.4197723677

18.8076524367 18.3810439884 19.6625495626

19.8634849023 19.4156944955 22.0339293394

21.1948630392 20.649772101 21.6611309692

20.8044111905 18.6091384893 20.4370543985

20.6277443624 17.7730402107 19.65093184

19.0335146395 17.495896754 16.4858391269

18.6942260448 16.7361848048 15.3694826033

17.6886993803 15.8142204458 16.0435568897

18.3988659 16.3183613043 17.6679485898

18.4186108459 17.449570972 20.5543209185

18.1913308174 18.3289437767 21.4661893014

19.9161736068 19.7393175151 21.28545009

19.4905202791 19.2702556335 20.7353554538

19.5372256525 18.2167986815 19.5896205263

17.8331262582 15.9013072733 17.451699795

16.8628809052 15.3021180272 16.1689763559

19.1377174263 17.7481579931 18.752046662

20.5528472205 18.350169557 20.8465209868

20.044417392 18.9260857695 19.8991045339

21.90705532 21.9526527667 21.0379488008

18.9636093739 16.7995112978 16.7299529102

18.2798826723 15.5327962381 15.8078716203



C.4. HUNGARIAN EXCHANGE RATE 565

17.8625515725 16.5998163031 16.4388265869

15.9985922602 14.3669864476 14.4182778797

15.4755380256 13.8280178767 13.8770849082

14.9382346447 13.9390460484 12.7130002608

17.9565443851 17.6240705632 16.4280246338

16.3803314531 15.4006963992 16.3058512474

16.8321951211 14.8465643447 17.1307350074

18.071538169 17.0518079596 18.7561666438

17.98005764 17.0521784417 18.1471518528

19.1752983323 16.736676832 18.4692580172

18.3863809923 15.6003634767 17.0590983557

19.8586744085 18.5544195266 19.5944455766

18.585237438 17.9512109824 19.330102047

18.3261409431 16.5016242493 18.9295382482

18.8030741444 18.5584192154 19.5012890623

18.3620479436 18.3916749438 18.2236209754

C.4 Hungarian Exchange Rate

1 1.6268391 1.6984192 2.0079907 1.4345695 2.7828483 2.8362358 4.3383264

4.5941219 5.3779608 4.0980233 3.4269932 4.5741974 3.9609699 4.4903911 4.1765334

4.0659293 3.0434249 2.0164477 2.8522073 2.8140498 2.1848722 1.5950817 2.2429898

2.2012101 2.5564244 2.8183936 3.2920329 3.5386639 2.7520406 2.9887184 3.6628315

4.1155835 2.6670804 2.4475717 2.205739 2.4292855 2.0911023 2.0898105 3.043442

3.6113511 3.7893799 3.2121155 3.1678467 3.2550351 2.9450505 2.7632934 2.9777748

3.7541152 2.3789054 1.5524019 2.4166115 2.8760458 2.6712716 2.9638433 2.3101149

1.6210284 1.8385815 2.8168296 3.3515586 2.9978249 3.5861905 3.4218998 2.9695071

2.6977919 2.340162 2.2215253 2.5238235 1.9671895 2.1577204 2.7455625 2.8270665

3.1897584 3.1630046 4.1443688 4.6993679 3.6025463 3.6273713 2.4304996 3.2260433



566 APPENDIX C. PROBLEMS AND COMPLEMENTS DATA

3.5346954 4.0054737 4.6256033 5.8589386 5.5990677 5.4946565 5.9304322 6.596674

5.8305304 5.4417317 5.4687066 3.8988953 4.8830323 3.9859455 5.0013413 4.2901215

4.8488491 5.5400411 5.394801 5.8261948 5.732879 6.111303 5.3929717 4.9007317

5.8244318 5.382873 5.5454446 4.5243989 4.2348796 3.7097975 3.5342468 4.1482148

4.7702349 5.522976 5.6296711 5.9432146 5.308443 5.0303299 5.7792977 6.3424265

6.6176091 5.8713597 6.0768544 6.3105203 6.0791903 6.2389322 7.5763895 7.2482205

6.1525888 4.112468 3.3052322 2.612247 1.4597108 3.5152237 4.7022798 5.5172526

6.0048037 2.8930202 5.5298636 5.5789776 4.1278874 0.89193745 1.0621893

4.7105699 5.4896383 7.1584 6.805053 8.6144752 5.9383055 7.7796817 8.7711985

8.445656 8.7674898 11.132449 11.185289 12.520995 10.611369 12.42819 15.286988

14.225634 12.496366 10.861144 12.023192 10.807324 10.657917 8.6713615 10.223299

9.0802962 10.345198 11.421047 11.195249 11.571653 11.198371 10.802763 11.950971

11.993388 10.957325 12.460033 11.349358 11.800016 10.95823 10.65431 11.015266

11.907817 11.614755 11.885188 11.718403 11.730121 10.947176 10.856941 11.810782

11.220396 10.313982 11.477275 12.436179 13.103131 11.894569 13.290609 12.698543

11.558128 10.872649 11.20708 11.778828 11.960049 11.75378 13.07026 12.523631

12.61295 12.068711 12.377789 11.036417 11.58504 10.704319 10.620286 9.8174616

8.8637119 7.3421925 6.415701 6.616977 7.050929 8.3362776 8.9276029 7.0421763

5.918664 5.7636259 3.2131937 2.7884873 2.0434108 2.4381397 3.0539853 3.991256

3.7851832 3.5634831 4.8391543 6.5874414 6.1625992 6.3229257 5.4022381 5.4390715

6.1107061 5.6039065 5.7098516 5.7363062 5.2972892 4.9316486 6.1513195 5.3786194

4.9928725 3.8859135 3.8087715 4.1064588 3.7335037 3.9662801 3.5048923 4.2965473

4.2758837 4.7575813 6.0889414 6.4267421 7.3985392 7.5934401 7.368304 6.739546

6.477317 7.2241545 7.8019595 7.1136077 6.9831564 6.1580276 6.3652111 6.9822191

6.5015883 4.7377317 5.3674897 8.1587713 8.8813851 9.2597047 9.5927926 10.634377

12.883255 14.895499 14.614359 14.637208 14.936354 13.978189 15.247189 15.428835

17.039209 16.818807 18.553565 16.317014 18.843618 16.408123 14.57398 14.661209

12.336184 13.137634 14.011296 15.997919 15.359496 15.972913 16.310244 17.195519

17.956373 16.820556 18.835553 18.336075 17.228906 16.038311 17.461696 17.266336
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20.315677 20.003691 19.799512 20.344618 18.889694 18.538185 16.689197 18.044006

18.436305 16.9659 17.052194 16.600613 18.075054 19.619692 20.40992 20.9723

21.832826 21.031899 21.40006 21.025204 21.787375 21.633286 23.142391 23.305911

24.422373 24.389852 23.113381 23.453081 23.280491 22.159267 22.357717 22.575927

22.300664 23.27424 22.668373 21.971108 21.969299 22.243379 21.910315 21.742244

21.102066 22.330443 23.778787 22.421849 24.318354 23.276223 22.928615 23.516817

23.192031 24.439776 25.646361 24.013173 22.800817 21.930868 22.396108 21.948636

22.63152 22.843553 21.965477 22.086954 21.484588 20.992311 22.040551 20.708479

18.874245 19.415677 17.806978 17.646874 17.903768 17.644062 17.129987 16.969529

17.931248 17.402765 17.883352 17.408811 17.826599 17.320226 18.132334 18.264919

19.324093 19.563313 20.169274 21.064913 21.383854 21.115485 21.041537 20.447841

19.167268 19.282245 19.669213 19.842788 19.645848 19.393213 20.050257 20.285704

21.206103 21.741322 22.684601 21.714409 21.517625 22.221479 23.531033 22.094984

22.177942 23.901701 24.071843 23.46034 22.124996 22.058321 22.403095 22.590732

22.446712 22.465884 22.912077 23.531783 22.486634 22.982667 22.542868 22.934954

22.528691 23.318882 23.990015 23.4417 23.044388 24.138724 24.843834 23.414284

23.867763 24.197097 23.485826 22.491991 22.776258 21.857711 22.390119 22.338

21.097323 21.759801 21.024496 20.614141 22.051117 21.823722 21.678008 22.437265

23.441052 23.00545 22.465148 21.816945 22.210985 22.049267 22.299764 23.068759

23.795316 23.215257 22.605824 23.075941 23.392012 23.89957 24.102533 23.171489

22.563685 22.157582 21.943941 21.992486 21.965444 21.635254 21.761487 21.824159

21.717114 21.537092 20.917835 21.449659 22.103253 22.371956 21.862982 22.107934

21.452881 21.595871 21.819217 22.351561 22.990218 23.426957 22.771936 23.356011

22.746644 22.104567 23.903777 23.660177 23.246803 23.582306 23.02254 23.442928

23.342003 23.239028 22.862249 22.922168 22.296407 22.855469 22.513571 22.223672

21.680807 21.434534 22.321791 22.649076 21.389639 20.758869 20.44828 19.735225

19.489814 19.043549 19.68086 19.304515 18.50201 18.689426 17.842429 17.905011

18.781568 18.886111 19.397855 19.525678 19.275408 19.967104 18.91759 20.965193

21.155894 21.787756 21.397364 20.419689 18.779237 20.229039 18.601482 17.634975
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17.406744 16.201074 16.397084 16.427208 15.768109 16.176317 15.270209 14.685959

15.355334 15.465751 15.768159 16.678746 17.015378 16.930714 17.128888 17.529663

16.454602 16.312587 15.496236 15.89618 16.518156 17.274122 16.648604 16.293775

17.070625 17.208007 16.974044 16.865031 16.961967 17.3944 17.143105 16.718039

16.753252 16.844759 16.818118 17.125553 18.288319 19.027563 18.176753 17.891172

16.673228 15.974902 16.879096 18.164183 20.231471 19.295101 20.248109 19.621391

21.030168 22.29068 21.865809 19.379118 19.267991 17.739786 16.340927 15.767129

13.917159 16.121872 15.741244 14.635771 14.533094 12.590452 14.162835 13.254253

13.759789 13.531156 11.736316 10.540666 10.701331 11.714493 12.102604 12.890286

11.972669 13.447575 15.760853 17.270281 15.322816

C.5 Eurostar

99.1999969482 86.9000015259 108.5 119 121.099998474 117.800003052 111.199996948

102.800003052 93.0999984741 94.1999969482 81.4000015259 57.4000015259

52.5 59.0999984741 73.8000030518 99.6999969482 97.6999969482 103.400001526

103.5 94.6999969482 86.5 101.800003052 75.5999984741 65.5999984741

C.6 BankWire Transfers

11.5538495 13.6827883 12.483232 10.8330683 10.8457835 11.6694254 11.546721

11.7410884 10.8265671 10.2322593 10.074095 11.1264895 11.2652772 10.2842486

9.1769437 9.3005372 8.9790619 10.510669 12.1111369 12.8633695 12.9791453

13.3202588 14.9058295 13.3445574 13.60132 13.9392483 13.8055779 14.7512005

15.7884112 14.425972 12.1438859 12.1084447 11.6292785 9.7112687 8.8009283

8.5336967 7.4968967 6.1815601 6.3582354 5.0254212 5.8837991 7.6623125 8.086742

8.2718261 7.6887475 6.556665 6.8305189 8.3272832 10.3902244 11.1315264

11.8735433 14.2927949 17.5727407 18.2033083 20.0942024 20.7989315 19.7259136

19.7014543 19.6978237 20.601377 21.5619129 20.0131328 15.9583137 14.9364171

14.200887 14.6443906 16.698498 16.4256365 16.8727126 17.4415194 16.811762
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18.001792 18.1220941 18.9354647 20.9364672 19.3426313 21.0305699 23.5599389

24.8600723 24.1249326 23.0274481 21.1254041 18.8655556 17.1435016 17.1779413

19.206218 21.265189 21.1346605 18.4047332 17.3827121 16.646665 14.4172067

14.0046669 14.8596628 16.013894 16.1252398 15.5183761 15.0779161 14.7967942

14.9373701 16.7335848 17.6085812 18.1885837 20.4345491 20.8636272 21.1309462

21.4834243 20.4571287 17.2258595 13.4686958 12.0095145 11.3749635 10.842555

9.4307203 9.2285011 9.8386113 9.4809494 10.1548046 9.1328098 7.5477886

7.1403309 6.1090428 7.1376253 9.6419962 10.893147 9.8120998 10.0281064

8.0494831 6.5837567 9.9396207 12.2330996 11.4411421 11.930899 12.2443499

13.2757754 13.5147769 14.7485865 16.4410226 17.0872817 16.7905909 16.8072786

16.6540136 16.3968396 16.9873186 16.4413381 15.1697176 14.7529914 14.0347321

12.2286886 12.4921379 12.7870233 11.1981392 10.210248 10.1085626 7.9469598

5.7749489 3.741743 4.505234 5.4420682 6.9616641 8.4792232 9.5632638 9.3949009

9.6204303 8.6989569 7.6235613 6.9667928 7.2350961 5.9276945 4.096203 4.145325

6.2562708 7.7946143 7.8953547 7.9806367 8.3850321 10.712545 11.8330249

12.8937596 13.3888684 12.6286618 12.6561732 13.979903 12.8926098 11.0750817

10.5342009 11.1250268 10.6263291 9.7332819 10.2946824 9.5062875 10.1611082

11.7902245 11.7399657 12.2417721 14.0038044 15.0152511 16.0313511 16.53824

16.5422309

C.7 Nile.com Hits

10527 11510 14982 11609 13962 14829 11811 15315 13702 14136 12513 13447

15791 11032 11552 15616 10698 13013 11990 18108 13341 19639 14734 10308

20065 15601 12745 14778 14227 16321 11750 12596 11046 8203 21149 15019

13109 15456 17693 16824 13117 11156 15489 18109 17760 20384 11889 12650

18174 13942 16485 16015 15010 11684 16182 9811 18900 16397 20547 21057

14467 9365 19399 19388 14776 12164 10494 16762 12231 17009 16362 23383

17742 18326 16453 15082 13735 13893 11698 13851 15218 14424 17427 15253



570 APPENDIX C. PROBLEMS AND COMPLEMENTS DATA

15230 20236 14149 18682 18458 20022 15808 20427 19109 14244 17348 19860

17013 16165 11351 16602 17804 19386 14606 15158 20604 15041 21182 14643

21980 15930 13342 18783 18262 20398 16426 18919 16314 15636 11820 38742

55050 45774 22393 16737 21300 13452 15563 17914 22325 19595 20574 18968

23808 23364 21628 18773 16804 15599 18642 20220 22484 18273 14450 23979

18250 21754 18832 19441 18701 21359 18468 22955 21661 19033 18164 22093

19848 20138 18353 20090 16290 18583 25099 21317 20996 20529 19307 19044

20879 17008 23621 15661 23771 24859 17587 14257 13307 21755 26337 11135

11589 14550 23208 19635 19707 22167 21662 16799 16689 21876 17366 22486

24097 23285 21429 22065 18864 23088 16801 24548 14481 18147 21900 18779

15816 21044 23272 24930 19943 22989 16038 24357 22432 24922 22110 25009

26188 21825 22849 25099 19081 19485 24610 24377 24091 23478 23282 24906

19448 17377 23815 23144 24378 19399 17009 25104 24468 17035 22536 21211

23178 24648 27645 20447 19200 23276 23192 27933 23872 25774 25783 25449

27509 21806 23073 18541 18427 30563 20843 17985 19585 25337 24555 25131

22736 27476 22782 20129 24485 27028 23214

C.8 Thompson Energy Investors

”EHAT1Q” ”EHAT2Q” ”EHAT3Q” ”EHAT4Q”

1.23425460192 1.03743302041 0.660664778877 -1.48341192714

-0.0758299215719 -0.343467088302 -2.38911063376 -3.10166390297

-0.275070631486 -2.32741895311 -3.04601974189 -2.83841393733

-2.07931297888 -2.82223513021 -2.63656651073 -1.37640273576

-0.946753296415 -0.944934637792 0.149401642603 -1.45467026859

-0.0909897884365 0.919635882612 -0.759940644155 -0.338374762846

1.00170611302 -0.685915604252 -0.27160625854 0.61491325413

-1.58942634884 -1.08654754219 -0.120140866444 -0.721249088095

0.347070327601 1.17294213679 0.445075417539 -0.159337273813
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0.85989446139 0.162715217663 -0.414018233742 0.457091124262

-0.61288540509 -1.1135881845 -0.173901298451 -1.50805412218

-0.560782784297 0.324713626883 -1.05831748127 -1.01120432348

0.830523928332 -0.602090813443 -0.599700698829 -0.0746939061698

-1.35120004132 -1.27537615639 -0.684134167958 -0.880011601021

-0.0566317167294 0.415139043834 0.111501922933 1.02111702514

0.466219259761 0.157574841254 1.06267350183 0.39468591984

-0.262941820321 0.683379298596 0.0525732148032 -1.45164388882

0.920545426238 0.266490392497 -1.25869661019 -2.08804434312

-0.56381569496 -2.00760935172 -2.76354257552 -2.40213541057

-1.49906345014 -2.30484847331 -1.98840622949 -2.54229656128

-0.952735397019 -0.768838257964 -1.44228054689 -0.113721647002

0.090502277911 -0.667179549378 0.585397655846 -0.82885790713

-0.748810059004 0.511769231726 -0.895268675153 -2.08774224413

1.18717484737 -0.286071803178 -1.53826379707 -1.18015865035

-1.35687013051 -2.50409377599 -2.05131013086 -0.94479783328

-1.28023507534 -0.947423999468 0.0508764144353 0.0596754486756

0.207312036506 1.09241584611 0.999114726518 0.561258008437

0.905426219083 0.830455341346 0.409131985947 0.405931835908

0.0137863535701 -0.327480475166 -0.258471889456 -1.15819822745

-0.339915378395 -0.269687822482 -1.16831468363 -2.43336593472

0.0369062899403 -0.891775416078 -2.18393529205 -3.61473160519

-0.925063851748 -2.21396052491 -3.64181352088 -2.71248624896

-1.37957894471 -2.8892247995 -2.03367238611 -1.56799475676

-1.64488338704 -0.91131142467 -0.555656731881 -2.67399157867

0.572327134044 0.782543526113 -1.466972578 -0.734539525669

0.266320545835 -1.93259118931 -1.15451441923 -1.55061038079

-2.17280483235 -1.37118037011 -1.74603697555 -2.27724677795

0.588628486395 0.0216555004906 -0.682837874525 -0.257681578979
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-0.509270841191 -1.16171850434 -0.689618440287 1.76748713777

-0.702370526984 -0.275299482213 2.14119118673 1.14470097459

0.358218981497 2.71260702558 1.66010199223 1.20479133305

2.38950357788 1.36867176853 0.941929466687 0.433708107423

-0.786593262579 -1.00205898234 -1.31971480596 -1.89943543039

-0.292573979582 -0.679779285169 -1.32223158651 -0.447422692441

-0.415885783171 -1.08420706875 -0.232731271007 1.74700413174

-0.709089787618 0.105613967763 2.05218202238 1.89508644959

0.745193015609 2.62906433769 2.41541807527 0.800458391031

1.95692119347 1.80916386078 0.253634138264 1.44335976922

0.0440759755961 -1.33842549746 0.00736674871561 0.876655530317

-1.37818078797 -0.028491405351 0.84431248373 1.78405563277

1.21458890905 1.96553597018 2.79536768719 2.32362747072

0.870010930139 1.80723490875 1.43235949223 1.6530858896

1.02250951568 0.724559255237 1.01466998015 1.09365028566

-0.197715573522 0.182804020252 0.343330583055 -0.283858088565

0.361137907534 0.504182734388 -0.138773971447 -0.411945133711

0.17844649749 -0.432578896977 -0.676948914338 -0.763144588712

-0.59353261955 -0.822124645858 -0.894089016001 -1.64050003309

-0.286774913982 -0.411218612622 -1.20496450823 -0.660625243623

-0.152555704718 -0.971657839256 -0.450189189117 0.27836917217

-0.834056883678 -0.326076996714 0.390314879511 2.27538029395

0.426218857531 1.06886458444 2.88741304604 3.5111061776

0.684427160811 2.54066130083 3.19834585457 4.55697089648

1.92332724882 2.64152789994 4.05473675989 4.0698868119

0.90674080812 2.49000758768 2.65854510092 4.42108164086

1.67215287756 1.92086315159 3.75571326721 2.60168516355

0.41262827928 2.39532782603 1.37465575152 0.0486309249447

2.0231487218 1.0389606657 -0.254156602262 -1.66975231483
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-0.785862587624 -1.90009586021 -3.15434323941 -1.12467617648

-1.19126990571 -2.51500216162 -0.548008503469 0.532984902951

-1.44051020683 0.421153023558 1.40714134617 0.175182960536

1.72045272098 2.57907313514 1.23223247785 3.18047331836

1.02727316232 -0.167447458873 1.91800137637 3.65065233056

-1.09401896295 1.08225993617 2.8968370537 3.39162789891

2.06903427542 3.78687975825 4.19442138918 3.58538673215

1.92066902592 2.51115178905 2.06712488869 1.28631735606

0.778762339531 0.504558322416 -0.12307374519 0.423315560572

-0.197863407968 -0.756638392926 -0.148141934973 -0.215127909402

-0.578171163132 0.0128304875567 -0.0699353110479 -1.6581235686

0.534324617729 0.400437729232 -1.23386031381 -0.970434789562

-0.081508050013 -1.6685618537 -1.36252335414 -1.36854847243
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Appendix D

Some Pop and “Cross-Over” Books

and Sites Worth Examining

Lewis (2003) [Michael Lewis, Moneyball ]. Appearances may lie, but the num-

bers don’t, so pay attention to the numbers.

Silver (2012) [Nate Silver, The Signal and the Noise]. Entertaining general

investigation of forecasting’s successes and failures in a variety of disciplines

(including in baseball, speaking of Moneyball), with an eye toward extracting

general principles for what makes a good forecaster.

Tetlock and Gardner (2015) [Philip E. Tetlock and Dan Gardner, Super-

forecasting: The Art and Science of Prediction]. More (much more) extrac-

tion of general principles for what makes a good forecaster – indeed a “Su-

perforecaster” – based on Tetlock’s huge IARPA-sponsored “good judgment

project.”

www.ForecastingPrinciples.com. Still more on what makes a good fore-

caster.

Tetlock (2006) [Philip Tetlock, Expert Political Judgment: How Good Is

It? How Can We Know? ]. It’s lousy. Forecasts and “hopecasts” are not the

same.

Gladwell (2000) [Malcolm Gladwell, The Tipping Point ]. Hard-to-predict

nonlinear phenomena are everywhere.

575



576APPENDIX D. SOME POP AND “CROSS-OVER” BOOKS AND SITESWORTH EXAMINING

Taleb (2007) [Nasim Taleb, The Black Swan]. Why, if you’re careless,

you’ll find that events you assess as likely to happen only “once-a-century”

wind up happening every five years.

Taleb (2008) [Nasim Taleb, Fooled by Randomness ]. Why it’s so easy to

confuse luck with skill, with good lessons for model selection (i.e., avoiding

in-sample overfitting) and forecast evaluation.

Surowiecki (2004) [James Surowiecki, The Wisdom of Crowds: Why the

Many Are Smarter Than the Few and How Collective Wisdom Shapes Busi-

ness, Economies, Societies and Nations.] Often the whole is much greater

than the sum of the parts, providing a foundation for forecast combination.

Koopmans (1957) [Tjalling Koopmans, Three Essays on the State of Eco-

nomic Science]. Why markets work. The classic statement of how decentral-

ized markets work to aggregate information efficiently. Warning: This is not

a pop book!

Kindleberger and Aliber (2011) [Charles Kindleberger and Robert Aliber,

Manias, Panics and Crashes ]. Why markets sometimes fail. In bubbles, for

example, groupthink usurps control of the group.

Shiller (2005) [Robert Shiller, Irrational Exuberance]. A great account of

a particular bubble, in the midst of its growing.

Olson (1971) [Mancur Olson, The Logic of Collective Action: Public Goods

and the Theory of Groups ]. More on why markets can sometimes fail, as

people free-ride and don’t contribute to the group, which is therefore much

smaller than it appears.

Schelling (1980) [Thomas Schelling, The Strategy of Conflict ]. Why mar-

ket outcomes are complicated, but interesting.



Appendix E

Construction of the Wage Datasets

We construct our datasets from randomly sampling the much-larger Current

Population Survey (CPS) datasets.1

We extract the data from the March CPS for 1995, 2004 and 2012 respec-

tively, using the National Bureau of Economic Research (NBER) front end

(http://www.nber.org/data/cps.html) and NBER SAS, SPSS, and Stata

data definition file statements (http://www.nber.org/data/cps_progs.html).

We use both personal and family records.

We summarize certain of our selection criteria in Table ??. As indicated,

the variable names change slightly in 2004 and 2012 relative to 1995. We

focus our discussion on 1995.

CPS Personal Data Selection Criteria

1See http://aspe.hhs.gov/hsp/06/catalog-ai-an-na/cps.htm for a brief and clear introduction to
the CPS datasets.

Variable Name (95) Name (04,12) Selection Criteria
Age PEAGE A AGE 18-65

Labor force status A LFSR 1 working (we exclude armed
forces)

Class of worker A CLSWKR 1,2,3,4 (we exclude self-
employed and pro bono)
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There are many CPS observations for which earnings data are completely

missing. We drop those observations, as well as those that are not in the

universe for the eligible CPS earning items (A ERNEL=0), leaving 14363

observations. From those, we draw a random unweighted subsample with

ten percent selection probability. This weighting combined with the selection

criteria described above results in 1348 observations.

As summarized in the Table ??, we keep seven CPS variables. From the

CPS data, we create additional variables AGE (age), FEMALE (1 if female,

0 otherwise), NONWHITE (1 if nonwhite, 0 otherwise), UNION (1 if union

member, 0 otherwise). We also create EDUC (years of schooling) based on

CPS variable PEEDUCA (educational attainment), as described in Table ??.

Because the CPS does not ask about years of experience, we construct the

variable EXPER (potential working experience) as AGE (age) minus EDUC

(year of schooling) minus 6.

Variable List

The variable WAGE equals PRERNHLY (earnings per hour) in dollars

for those paid hourly. For those not paid hourly (PRERNHLY=0), we use

PRERNWA (gross earnings last week) divided by PEHRUSL1 (usual working

hours per week). That sometimes produces missing values, which we treat as

missing earnings and drop from the sample. The final dataset contains 1323

observations with AGE, FEMALE, NONWHITE, UNION, EDUC, EXPER

and WAGE.
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Variable Description
PEAGE (A AGE) Age
A LFSR Labor force status
A CLSWKR Class of worker
PEEDUCA (A HGA) Educational attainment
PERACE (PRDTRACE) RACE
PESEX (A SEX) SEX
PEERNLAB (A UNMEM) UNION
PRERNWA (A GRSWK) Usual earnings per week
PEHRUSL1 (A USLHRS) Usual hours worked weekly
PEHRACTT (A HRS1) Hours worked last week
PRERNHLY (A HRSPAY) Earnings per hour

AGE Equals PEAGE
FEMALE Equals 1 if PESEX=2, 0 otherwise
NONWHITE Equals 0 if PERACE=1, 0 otherwise
UNION Equals 1 if PEERNLAB=1, 0 otherwise
EDUC Refers to the Table
EXPER Equals AGE-EDUC-6
WAGE Equals PRERNHLY or PRERNWA/ PEHRUSL1
NOTE: Variable names in parentheses are for 2004 and 2012.

Definition of EDUC
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mn3—l—Definition of EDUC
EDUC PEEDUCA Description

(A HGA)
0 31 Less than first grade
1 32 Frist, second, third or four grade
5 33 Fifth or sixth grade
7 34 Seventh or eighth grade
9 35 Ninth grade
10 36 Tenth grade
11 37 Eleventh grade
12 38 Twelfth grade no diploma
12 39 High school graduate
12 40 Some college but no degree
14 41 Associate degree-occupational/vocational
14 42 Associate degree-academic program
16 43 Bachelor’ degree (B.A., A.B., B.S.)
18 44 Master’ degree (M.A., M.S., M.Eng., M.Ed., M.S.W.,

M.B.A.)
20 45 Professional school degree (M.D., D.D.S., D.V.M.,

L.L.B., J.D.)
20 46 Doctorate degree (Ph.D., Ed.D.)
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